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Themain component of haze is the particulatematter (PM) 2.5. How to explore the laws of PM2.5 concentration
changes is the main content of air quality prediction. Combining the characteristics of temporality and non-
linearity in PM2.5 concentration series, more and more deep learning methods are currently applied to PM2.5
predictions, but most of them ignore the non-stationarity of time series, which leads to a lower accuracy of
model prediction. To address this issue, an integration method of gated recurrent unit neural network based
on empirical mode decomposition (EMD-GRU) for predicting PM2.5 concentration was proposed in this paper.
This method uses empirical mode decomposition (EMD) to decompose the PM2.5 concentration sequence first
and then fed themultiple stationary sub-sequences obtained after the decomposition and themeteorological fea-
tures into the constructed GRU neural network successively for training and predicting. Finally, the sub-
sequences of theprediction output are added to obtain theprediction results of PM2.5 concentration. The forecast
result of the case in this paper show that the EMD-GRU model reduces the RMSE by 44%, MAE by 40.82%, and
SMAPE by 11.63% compared to the single GRU model.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, severe global climates have occurred frequently. The
serious environmental problem of air pollution has drawn worldwide
attention. Fine particulate matter 2.5(PM2.5) in the atmosphere
nce and Engineering, Yanshan
(particulate matter less than 2.5 μm in diameter in aerodynamics) is
the main component that affects air quality. PM2.5 in cities mainly
comes from exhaust emissions of urban traffic. Similarly, the exhaust
and pollutants generated by the factory during various industrial activ-
ities are also sources of PM2.5 (Calvo et al., 2013). The increase of PM2.5
concentration level will directly lead to poor air quality and reduce vis-
ibility. Long-term exposure to high PM2.5 concentration will cause
harm to human health, such as leading to respiratory disease and car-
diovascular disease (Gao et al., 2015) (Pun et al., 2017) and even causing
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death in severe circumstances (Burnett et al., 2018). At the same time,
recent studies have shown that the harsh smog climate environment
will reduce the public's subjective well-being (Zheng et al., 2019). Due
to the harm caused by ultra-standard PM2.5 concentration, the problem
of PM2.5 concentration prediction has received more and more atten-
tion, but the accuracy of the current prediction method is still not
ideal. Therefore, timely, effective and accurate prediction of PM2.5 con-
centration is helpful for the formulation and implementation of early
warning decision-making activities. This can help the public to reason-
ably arrange their time and means of travel, reducing the impact of
haze climate on their actual life.

For a long time, most of current PM2.5 concentration prediction
methods are based on the principle of time series analysis. For example,
the ARMA model (Box and Jenkins, 2010) was commonly used to pre-
dict air pollutants. However, as a linear model, when dealing with
non-linear features, theARMAmodel is impossible to accurately capture
the law of non-linear changes, which makes the model's prediction
error high. Neural networks can fully play an important role in handling
complex non-linear relationships. Foued et al. (Saâdaoui and Ben
Messaoud, 2020) (Saâdaoui et al., 2020) proposed a new multiscaled
Feedforward Neural Network (FNN) for nonlinear time series forecast-
ing. Perez et al. (Pérez et al., 2000) used a multilayer neural network
to predict PM2.5 concentration in downtown San Diego and achieved
good results. In term of the time series prediction method based on
time series decomposition. Foued and Hana (Saâdaoui and Rabbouch,
2019) used a wavelet-based hybrid neural network for short-term elec-
tricity prices forecasting. At the same time, they used thewavelet-based
causal statistical model for online virtual sensors that efficient estimator
the urban traffic flow (Rabbouch et al., 2018). With the development of
deep learning, the application of deep learning models for air quality
prediction has set off a boom. Wen et al. constructed a convolutional
long short-term neural network to predict the PM2.5 concentration in
Beijing (Wen et al., 2019). The accuracy of the prediction results is sig-
nificantly higher than that of traditional neural networks.

The prediction of air pollutants in the time dimension can be
regarded as a problem of multivariate time series prediction, but previ-
ous studies of the prediction of air pollutants have not taken the non-
stationarity of air pollutants as time series, and researchers have often
overlooked the impact of non-stationarity in time series prediction.
Thismade the prediction accuracy of themodel lower due to the limited
prediction performance. Aiming at the non-stationarity and long-term
dependence of air pollutant sequences, this paper proposed a gated
unit recurrent (GRU) neural network based on the empirical mode de-
composition (EMD)method for the short-termprediction of PM2.5 con-
centration in Beijing. Our proposed prediction model based on deep
learning algorithms which have the characteristics of training and test-
ing can be trained according to historical marked data features. As an
input, the unknown characteristic data (such as tomorrow's or next
hour's meteorological data) can be tested to output the PM2.5 value
by the trained model effectively.

The main contributions of this paper are as follows: (1) It checked
the stationarity of air pollutant concentration series by calculating the
autocorrelation function (ACF) and Augmented Dickey-Fuller(ADF)
test. The partial autocorrelation function (PACF) was calculated to de-
termine the number of time step in the GRU neural network. (2) The
proposed method used the concept of “divide and rule”. It first used
EMD to decompose the PM2.5 concentration series, and then themulti-
ple stationary subsequences obtained after the decomposition and the
meteorological features were fed into the constructed GRU neural net-
work for training. Finally, the subsequences of the prediction output
from GRU were summed to obtain the prediction results. In this way,
the defects of slow convergence and hysteresis in the neural network
were further solved, for which the proposedmethod improved the pre-
diction model's Goodness of Fit and robustness. (3) The air quality
dataset of Beijing area from 2010 to 2014was used to validate the effec-
tiveness of the EMD-GRU model proposed in this paper. The prediction
2

model effectively predicts the hourly PM2.5 concentration value of the
next hour based on the meteorological data and PM2.5 concentration
data of the past four hours. The experimental results show that the pres-
ent model has reduced the RMSE obtained by using GRU neural net-
works alone by 44%. The model mainly succeeds in predicting hourly
PM2.5 concentration in small area efficiently. The characteristic of our
model is more fine-grained in the short-term PM2.5 forecast.

The remaining part of this article is organized as follows. Section 2 is
a detailed description of the construction of the EMD-GRU model for
PM2.5 concentration prediction. Section 3 introduces the experimental
setup and results. Section 4 summarizes current PM2.5 prediction
methods in China and abroad. Section 5 discusses the advantages and
disadvantages of themethod proposed in this paper. Finally, the conclu-
sion of this article is given in Section 6.

2. Method

In this paper, a hybrid EMD-GRUmodelwas proposed on the basis of
data decomposition and GRU neural network for short-term prediction
of PM2.5 concentration. The EMD-GRU model is divided into three
parts. Relevant data preprocessing on the data sample is performed in
the first part. The non-stationarity input sequence is decomposed by
EMD method in the second part. In the third part, the GRU neural net-
work is established to train and learn the decomposed subsequence
and meteorological features, and then we make predictions on the test
set and integrate forecast results from GRU output layer. The process
of predicting the PM2.5 time series by using the EMD-GRU model is
shown in Fig. 1. The specific operation process of the EMD-GRU model
to predict PM2.5 concentration is listed as follows:

(1) In the data preprocessing stage, linear interpolation is used to fill
in missing values in the data sample. Simultaneously, the non-numeric
features are encoded. The linear interpolation method is used to con-
struct linear functions like Eq. (1) from the known sample points at
the left and right of themissing values. Themissing value at time t is re-
placed by the value of F(xt) found at its corresponding point xt.

F xð Þ ¼ axþ b ð1Þ

(2) We calculate the values of Pearson correlation coefficient be-
tween each meteorological feature and PM2.5 concentration, analyze
the correlation between PM2.5 concentration and meteorological fea-
tures(M), and select the appropriate features as input data for
prediction.

(3) We detect the stationarity of PM2.5 concentration series by cal-
culating two different statistical functions: autocorrelation function
(ACF) and augmented Dickey-Fuller(ADF). When we identify whether
this series is a non-stationarity series, the EMD method is used to de-
compose the PM2.5 concentration series into several IMFs(Ci) and one
residue(R).

(4) GRU neural network input preparation: we calculate the partial
autocorrelation coefficient (PACF) of the PM2.5 concentration series to
determine the time step of the series, that is, to bring the historical
data into the GRU unit, and we normalize all input data to make it
meet the GRU model API requirements of Keras software package.

(5) Construct the separate multi-step prediction double-layer GRU
neural network, then adjust the parameters of GRU through the perfor-
mance of the training set on the model, and finally, choose the best
fitting model.

(6) In the end, reconstruct the predicted value output by the GRU
model, that is, to use Eq. (2) to add up all these predicted sequences
to obtain the PM2.5 concentration predicted sequence. Calculate predic-
tion errors and evaluate model effects.

bx ¼ ∑
n

i¼1

bCi tð Þ þ bR tð Þ ð2Þ



Fig. 1. Framework of the EMD-GRU model.

G. Huang, X. Li, B. Zhang et al. Science of the Total Environment 768 (2021) 144516
2.1. Feature selection

Meteorological conditions are important factors affecting the spread
of air pollutants (He et al., 2013). To this end, the analysis of the corre-
lation betweenmeteorological characteristics and PM2.5 to carry out ef-
fective feature selection is crucial for the PM2.5 prediction that follows.
In this paper, the Pearson correlation coefficient (Pearson, 1895) is used
to express the relationship between PM2.5 concentration and
meteorological features. The Pearson correlation coefficient's formula
is shown as Eq. (3), where x and y denote the PM2.5 concentration se-
ries and the meteorological features; n is the number of samples in
the series.

ρx,y ¼
n∑n

i¼1xiyi−∑n
i¼1xi∑

n
i¼1yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n∑n
i¼1x

2
i − ∑n

i−1xi
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑n

i¼1y
2
i − ∑n

i¼1yi
� �2

r ð3Þ
3

Fig. 2 is a heatmap of the correlation coefficient between PM2.5 con-
centration and meteorological features. As shown in Fig. 2, the absolute
value of the Pearson correlation coefficient between wind direction,
wind speed, humidity and PM2.5 concentration value rank in the top
three among all the features. It means that the three meteorological
conditions of wind direction, wind speed and humidity have the
greatest influence on the PM2.5 concentration values. Besides, the tem-
perature and air pressure, which have negative correlation with each
other, also play an important role in affecting the change of PM2.5 con-
centration value. Under the high air pressure and low temperature
weather conditions, air pollution will be more serious. Zhao et al. also
verified this theory in their study by analyzing the relationship between
the changes in PM2.5 pollution and meteorology in five major cities in
China (Zhao et al., 2018). In the data of this paper, the value of the cor-
relation coefficient between the accumulated snowfall time and the
PM2.5 concentration value is less than 0.02. As this value is the closest
to zero, the accumulated snowfall time has the weakest correlation



Fig. 2. Heat map of the correlation coefficient between all of features.
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with PM2.5. In the Beijing PM2.5 dataset, most of the accumulated rain-
fall time and the accumulated snowfall time are zero. It can clearly be
seen that there are fewer rainy and snowy weathers in Beijing. The
two features have little reference value in the PM2.5 concentration
prediction.

We selected different combinations of features to bring into our
model for experiment. Table 1 shows the results of PM2.5 prediction er-
rors under the different feature selections. As shown in Table 1, the
model performs best when using the data after removing the two fea-
tures of rainfall time and snowfall time as the model's input. Accord-
ingly, dew point(fd), historical PM2.5(fc), temperature(ft), air pressure
(fp), wind direction(fw) and wind speed (fs) are selected as the input
variables of the model.

In terms of linearity test of features, this paper used Brock-Dechert-
Scheinkman(BDS) statistics (Brock et al., 1992) to verify the non-
linearity of PM2.5 time series {xt} by the software package of EViews.
We set the embedding dimension ‘m’ of BDS test is 5. The results of
the BDS statistic are represented in Table 2. From the results of BDS
test, all the Z-statistics are much higher than the critical value under
the 95% confidence interval and the P-values are all lower than 0.05.
This indicates all BDS statistics reject the IID hypothesis. It is concluded
that the PM2.5 concentration series is a nonlinear time series. Combin-
ing with the non-linearity of PM2.5 concentration characteristics, this
paper selects the deep neural network with strong ability to deal with
nonlinear features as the main body of the prediction model.

2.2. Time series stationarity detection and data decomposition

When analyzing the data as time series, it is necessary to consider
whether the stochastic process reflected by the time series is steady.
Table 1
PM2.5 prediction error results under the each of different feature selections.

Feature selections RMSE MAE R_square

Features (all) 11.52 7.42 0.9849
Features (except snow) 11.44 6.58 0.9850
Features (except rain and snow) 11.37 6.53 0.9852

4

Stationarity is a statistical feature of time series. In other words, the
mean and variance of the time series are constants independent of time.
A time series with such characteristic expression is called a stationary
time series. In this paper, the PM2.5 concentration series in Beijing from
2010 to 2013 in the experimental dataset is taken as a time series for
the stationarity analysis. In time series stationarity detection, we deter-
mined whether the observation series was a stationary series based on
the timing diagram and autocorrelation graph of the PM2.5 series in the
sample. From the statistical aspect, we used ADF test on the observation
sequence to further determine the stationarity of PM2.5 sequence. The
temporal correlations among PM2.5 concentration time series were ana-
lyzed by the autocorrelation coefficient. The autocorrelation coefficient
was statistically defined as the Pearson correlation between values at dif-
ferent times in a random process. For time series {Xt, t ∈ T}, randomly se-
lect t, s ∈ T, and the autocorrelation coefficient of time series {Xt} is r(s, t).
The r(s, t) calculation formula is defined as follows:

r s, tð Þ ¼ E Xt−μ tð Þ Xs−μsð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DXt⋅DXs

p ð4Þ

Fig. 3 is the timing diagram of PM2.5 concentration in Beijing from
2010 to 2013. It can be observed that the waveform distribution of
this series is not balanced, the fluctuation range is large, and there is
no characteristic of a stationary sequence from Fig. 3. To further verify
the non-stationarity of the time series, we applied the autocorrelation
graph drawn by calculating the autocorrelation coefficients of the sam-
ple data to assist the identification.

The upper part of the Fig. 4 is the autocorrelation graph of the PM2.5
concentration series. No phenomenon of truncate or tailing in this time
Table 2
The results of the BDS test in PM2.5 concentration series.

Statistic Z-statistic P-value 95% CI

BDS(2) 385.861 0.000 [−1.96, 1.96]
BDS(3) 407.832 0.000 [−1.96, 1.96]
BDS(4) 433.913 0.000 [−1.96, 1.96]
BDS(5) 472.275 0.000 [−1.96, 1.96]



Fig. 3. Timing diagram of PM2.5 concentration in Beijing from 2010 to 2013.
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series can be found in this figure. According to the stationary sequence
described in literature (Wang, 2012), it usually has the properties of
short-term correlation and tailing. Therefore, we can initially determine
that the PM2.5 time series is a non-stationary series.

At the same time, we used the Augmented Dickey-Fuller(ADF) test
method to test the original time series from an objective point of
view. The ADF test is a kind of unit root test method. The principle of
unit root test is when the lag operator polynomial equation of a time se-
ries has unit roots, the time series is non-stationary; conversely, when
the equation does not have unit roots, the time series is stationary.
The null hypothesis of ADF is that time series has a unit root. If the
test statistic of ADF test is smaller than the critical value and the P-
Fig. 4. Autocorrelation graph of the PM2.5 concentration seri
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value is close to 0, we can reject the null hypothesis (the series is sta-
tionary). When the test statistic of ADF test is greater than the critical
value, the null hypothesis cannot be rejected (this means that the series
is non-stationary). The PM2.5 concentration prediction in this paper is
mainly short-term forecast, so the PM2.5 concentration within a ran-
dom day is taken as an example to analyze the stability of the time se-
ries. Table 3 shows the results of the ADF test. The test-statistic values
calculated by the ADF test of the original time series {xt} are mostly
greater than 10% critical values, and each P-value is mostly significantly
greater than 0.05. So the original time series accepts the unit root null
hypothesis at a significance level of 10%. It is determined that the time
series {xt} presents a non-stationary state within four-hour interval by
es (top) and the partial autocorrelation graph (bottom).



Table 3
The results of ADF test (“*” Indicates that under the 10% significance level, “**” Indicates that under the 5% significance level. Critical Values: 1% :− 10.4172, 5% :− 5.7784, 10% :− 3.3917).

Statistic 0:00–4:00 4:00–8:00 8:00–12:00 12:00–16:00 16:00–20:00 20:00–24:00
Test-statistic −2.6740* −3.3067* −12.1243 −18.5056 −3.9432** −1.3674*
P-value 0.0786 0.0146 1.7950 2.1178 0.0017 0.5978

Table 4
EMD-GRU model evaluation index under the setting of different time steps.

Time step RMSE R-square

One hour 18.28 0.9609
Two hours 13.88 0.9797
Three hours 11.82 0.9840
Four hours 11.37 0.9852
Five hours 11.51 0.9849
Six hours 11.71 0.9844
Seven hours 11.59 0.9847
Eight hours 11.39 0.9852
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observed the ADF test results. Both the ACF coefficient and the results of
the ADF test show that the hourly PM2.5 concentration series is a non-
stationary series, so we have sufficient reasons to affirm this view.

If a time series is a non-stationary series, it means that the popula-
tion from which it comes is changing. Then the analysis performed
without ignoring this situation is not effective. Especially, it cannot be
used to predict future events effectively. The means of decomposing a
non-stationary series into multiple stationary sequences in the early
stage can lay the foundation for later model training. Therefore, after
identifying the PM2.5 concentration series is a non-stationary time se-
ries, we used the EMDmethod to decompose the PM2.5 concentration
time series. The subsequences obtained by EMD decomposed are sev-
eral IMFs(C1, C2, …, Ci) and one residue(R). All the IMFs are stationary
time series of PM2.5 concentration in different frequency domains.
These IMFs do not overlap with each other, and they will restore the
original sequence after adding to the residual. The detailed principle of
EMD's decomposition algorithm is shown in appendix A.

2.3. PM2.5 concentration prediction based on GRU neural network

In the EMD-GRU model, GRU neural network is mainly used to uni-
formly train the sequence obtained by EMD decomposition and selected
meteorological features. After we used the trained GRU model to make
predictions. The essence of PM2.5 concentration prediction is to use the
series sample values observed in the past time to estimate the value of
PM2.5 concentration at the nextmoment. It iswell-known that air quality
and meteorological factors belong to multi-dimensional measurement
data that changeswith time. As GRU neural network is particularly useful
in studying time series and non-linear features, it was selected for its re-
liability and validity in this PM2.5 concentration prediction.

2.3.1. Time step determination
Time step refers to the difference between two adjacent time points,

also known as time lag in some articles. It plays an essential role in time
series prediction. The number of time step determines howmany time-
stamped data should be included as the input data of each unit model.
Especially when constructing a multi-step recurrent neural network,
the determination of the number of time step according to the charac-
teristics of the input time series can often improve the prediction accu-
racy of the model. In this paper, we determine the time step of the
multi-step GRU neural network by analyzing the partial autocorrelation
coefficient (PACF) of the PM2.5 concentration series.

Lag k partial autocorrelation coefficient (PACF) refers to the relevant
measure of the influence of Xt−k on Xt given the intermediate k-1 random
variablesXt−1,Xt−2,…,Xt−k+1 of time series (Wang, 2012). The calculation
of the lag k partial autocorrelation coefficient (PACF) is shown in Eq. (5).

ρXt ,Xt−k ∣Xt−1,...,Xt−kþ1
¼

E Xt−bEXt

� �
Xt−k−bEXt−k

� �h i
E Xt−k−bEXt−k

� �2
� � ð5Þ

bEXt ¼ E Xt jXt−1, . . . ,Xt−kþ1½ � ð6Þ

bEXt−k ¼ E Xt−kjXt−1, . . . ,Xt−kþ1½ � ð7Þ

It can be found from Fig. 4 that the autocorrelation coefficient (ACF)
of PM2.5 concentration is 0.82 and the partial autocorrelation coeffi-
cient (PACF) decays to zero when the time lag k = 4. When k>4, the
6

PACF always fluctuates slightly above and below zero. It is concluded
that the random variables Xt, Xt−1, Xt−2, Xt−3 and Xt−4 have the stron-
gest correlation in the time series.

This paper tests the RMSE and R-square of the EMD-GRU model
under different number of time steps. Table 4 shows the RMSE and
R-square under the different number of time step settings. With the
number of time step increases, the model's prediction error appears a
downward trend overall. This illustrates that inputting more informa-
tion of time series into themodel for training is helpful for the recurrent
neural network to learn the time series better. In addition, the experi-
mental results show that RMSE = 11.37 which reaches the lowest
value when the time step is four hours, and then RMSE = 11.39 which
reaches a lower value with using eight hours as time step. We find out
a regular pattern from this experiment that the prediction error of the
model can often be minimized when the time step is set to a multiple
of four, which verifies the conclusion drawn in the partial autocorrela-
tion graph (see Fig. 6). Taking into account the complexity of model cal-
culation, the parameter of time step in the GRU neural network was set
to four. In other words, the information of four-hour interval in the
hourly PM2.5 concentration series was used as the input of the
GRU unit.

2.3.2. Multi-step prediction
The process of the multi-step prediction GRU neural network deal

with time series is shown in Fig. 5. At time t in the series that parameter
setting of time step is four, the input data x = {xt−4,xt−3,xt−2,xt−1} of
the current moment are used as the input of the GRU neural network
unit. At the same time, the hidden state value of the previous moment
also was brought to the GRU network unit automatically. The output
value at the current moment was obtained by unit calculating. In this
way, each time step in the sequence is recursive. The parameters are de-
fined by three matrix weights: U, V and W. They correspond to the
weights of the input, output and hidden states respectively, and all of
them are shared on all time steps.

In terms of neural networks, a separate multi-step prediction
double-layer GRU neural network for PM2.5 prediction is built. The vec-
tor matrix (Ci(T),M(T)) and (R(T),M(T)) are respectively composed of
each sequence after EMD decomposition Ci, i ∈ [1.n], R and meteorolog-
ical feature set M(T). The (Ci(T),M(T)) and (R(T),M(T)) can be seen as
input variables x of the GRU neural network. When the GRU neural net-

work accomplishes the prediction, the resulting output values are bCi tð Þ
and bR tð Þ. The calculation process is shown in Eqs. (9) and (10). The GRU
function refers to the solution process of ht in Eq. (7) of appendix B.

M ¼ f d, f t , f p, f w, f s
n o

ð8Þ



Fig. 5. Process of multi-step GRU processing time series.
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bCi tð Þ ¼ GRU Ci Tð Þ,M Tð Þð Þ ð9Þ

bR tð Þ ¼ GRU R Tð Þ,M Tð Þð Þ ð10Þ

T ¼ t−4, t−3, t−2, t−1f g ð11Þ

3. Experimental results and analysis

The deep learning models involved in this article are all built using
the Python programming language based on the Keras framework.
The experimental environment is 64-bit Windows 7 operating system,
the CPU processor is Intel Core i5-4460, and the main frequency is
3.2GHz. All experiments in this article are conducted under the same
operating environment.

3.1. Data description

The dataset used in our experiment comes from the 2010/1/5–2014/
12/31 PM2.5 concentration value of the US Embassy in Beijing and the
meteorological data of Beijing Capital Airport provided by UCI machine
learning repository (Liang et al., 2015). The data of dataset belong to
time series, covering eight features including PM2.5 concentration,
dew point, temperature, air pressure, wind direction, wind speed,
snowfall and rainfall. The time interval for collecting all feature data is
one hour, and the number of data instances is 43,800. The data types
of all the features are all numerical data except that the wind direction
are character data. The attribute of wind direction includes four fea-
tures: NW, CV(wind speed less than or equal to 1.78 m/s), SE and NE.
The experiment in this paper divides the data set into two parts: the
first 80% of the data as the training data, and the remaining 20% of the
data as the test data. In data preprocessing, the non-numeric feature
of wind direction and filled 2067 missing values of the data set was
encoded by using the linear interpolation method. Finally, the training
set was transformed into the data for supervised learning, and the
data of the training set and the test set were normalized.

3.2. Error measure

In terms of model evaluation, the evaluation indicators selected for
all prediction models in this paper are mean square error (RMSE),
mean absolute error (MAE), symmetric mean absolute percentage
error (SMAPE), and R-square (R2). RMSE is used to measure the devia-
tion of the observed value from the true value. Compared with MSE
which has the same effect in measuring the accuracy of the model,
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MAE is more robust for outliers. SMAPE examines the ratio between
the prediction error and the true value, that is, the degree of deviation
of the predicted value from the true value. The smaller the calculation
results of RMSE,MAE and SMAPE are, the lower the prediction deviation
is, and the better the model prediction effect is. R-square is the Good-
ness of Fit of the regression prediction model. The value of R-square is
closer to one, indicating that the fitting effect of the forecasting model
is better. The calculation formulas of evaluation indicators are shown
in Eqs. (12)–(15):

MAE ¼ 1
n
∑
n

i¼1
∣ byi−yi
� �

∣ ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
byi−yi
� �2s

ð13Þ

SMAPE ¼ 100%
n

∑
n

i¼1

∣byi−yi∣
jbyij þ jyij
� �

=2
ð14Þ

R2 ¼ 1−
∑
n

i¼1
byi−yi
� �2

∑
n

i¼1
yi−yið Þ2

ð15Þ

where yi is the observed value of PM2.5 concentration, byi is the pre-
dicted value of PM2.5 concentration, yi is the average value of PM2.5
concentration series, and n is the number of data samples.

3.3. Experimental setup

In the PM2.5 prediction of this paper, the meteorological data and
the decomposed PM2.5 concentration sequence values of the past four
hours are used to predict the PM2.5 concentration an hour later.

In the time series smoothing process, we applied the Pythonpackage
of EMD algorithm to decompose the PM2.5 concentration series. The
time series is decomposed into 18 intrinsic mode functions (IMFs) and
one residual, as shown in Fig. 6.

In terms of neural network construction, a deep neural network
model is constructed by stacking two layers with GRU units as hidden
layers. The first GRU layer has 200 neurons, and the second one has
100 neurons. Themodel is continuously optimized by adjusting param-
eters to obtain the model with the best fitting effect on the training set.
The specific parameters of the GRU neural networkmodel are shown in
Table 5.



Fig. 6. IMFs and residual plot after the decomposition of 2010 to 2014 PM2.5 concentration series.
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The optimizer is oneof themain parameters needed to build a neural
network in the Keras framework. The optimizer selected for GRU train-
ing in this paper is Adam optimization function. The learning rate of
GRU is set as 0.001, and the learning rate decay over each update is 0.
Loss function is defined by mean absolute error (MAE). Since the ReLU
function has no gradient disappearance problem when the input data
are positive numbers, the activation function in the GRU unit is set as
the ReLU function in the experiment. In order to achieve the best train-
ing effect of recurrent neural network and reduce the training set error
to themost stable value, a total of 30 epochs were performed in the ex-
periment. Since the data of training set are too much, the batch size is
set to 128 in each epoch. In other words, the model will update param-
eters after processing 128 sets of data. This operation makes the direc-
tion of gradient descent in neural network learning more accurate,
and the resulting training fluctuations reach a relatively stable state.
To prevent the model from overfitting, dropout technology is used in
the hidden layers. The parameter of dropout is 0.2, which makes 20%
of randomneuron nodes in each hidden layer become invalid. This tech-
nology is used to weaken the strong dependence of some nodes and
Table 5
PM2.5 prediction error results under the each of different feature
selections.

Parameter name Value

Training set 35,040
Test set 8756
Number of GRU units 200&100
Batch size 128
Loss MAE
Optimizer Adam
Epochs 30
Sample weight mode 1D
Dropout 0.2
Learning rate 0.001
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distribute the backpropagation correction value to each parameter in a
balanced manner. The learning rate is reduced by using the callback
function ReduceLROnPlateau to further improve the performance of
the neural network when the evaluation indicators stop changing in
the network. The specific operation of the callback method is that if
the model performance is not seen in three batches, the learning rate
is reduced at a rate of 0.7 times. The lower limit of the learning rate is
set to 0.00001. After the model training, each sample point of the test
set is predicted, and all the sequences obtained by the prediction are
added as the final prediction values. Finally, the RMSE, MAE, SMAPE
and R-square are calculated to evaluate our model.

3.4. Results and analysis

We selected four kinds of machine learning models and three kinds
of deep learningmodels as comparative models to compare the predic-
tive performance of models. The four regression prediction models of
machine learning are the Support Vector Machine(SVM), the Decision
Tree Regressor(DTR), the Gradient Boosted Decision Trees(GBDT) and
the Random Forest(RF). All of these machine learning models are built
under the scikit-learn framework. Models based on deep learning algo-
rithms include RNN, LSTM and GRU. The neural network architectures
of these models are consistent with the EMD-GRU model. To ensure
the validity of the experiment, all experiments are conducted under
the same experimental setup,with the same training set and test set ap-
plied in the data. By theway, in order to reduce the influence of the ran-
domness of some models on the prediction results, GBDT, RF, RNN,
LSTM, GRU and the proposed EMD-GRU model in this paper have all
carried out ten random repeated experiments. Therefore, the numerical
results of the experiments shown in Table 6 are the average values of
the evaluation index obtained from ten experiments plus its upper
and lower limits.

Table 6 lists the quantitative results by RMSE, MAE, SMAPE and R-
square, with comparative analyses of SVM, DTR, GBDT, RF, RNN, LSTM,



Table 6
The EMD-GRU model evaluation index under the setting of different time steps.

Method Parameter setting RMSE MAE SMAPE(%) R-square

ML SVM Kernel = RBF 30.627±0.000 23.346±0.000 39.790±0.000 0.8934±0.0000
C = 14, gamma = 0.01

DTR Criterion = ‘mse’ 26.299±0.000 16.578±0.000 26.553±0.000 0.9117±0.0000
Max depth = 3,
Max leaf nodes = 8

GBDT Loss = ‘huber’ 20.872±0.028 11.447±0.012 17.188±0.001 0.9478±0.0001
Min samples split = 2,
Learning rate = 0.1

RF n estimators = 50 24.841±0.175 15.188±0.162 24.773±0.175 0.9210±0.0011
Max depth = 6
Min samples split = 3

DL RNN See Table 5 21.225±0.044 11.358±0.098 17.357±0.044 0.9488±0.0002
LSTM See Table 5 20.872±0.038 11.184±0.023 16.759±0.116 0.9506±0.0006
GRU See Table 5 20.309±0.053 11.039±0.049 16.758±0.227 0.9531±0.0002

Proposed EMD-GRU See Table 5 11.372±0.145 6.532±0.073 14.809±0.646 0.9852±0.0004
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GRU and the proposed EMD-GRUmodel. The hyperparameter setting of
RNN, LSTM and GRU are basically the same as that in the EMD-GRU
model. From the experimental results statistically shown in Table 6,
the RMSE, MAE and SMAPE of the EMD-GRU model are lower than the
other seven models, and R-square is closer to 1. This proves that the
EMD-GRUmodel has a better model fitting effect and higher prediction
accuracy than traditional machine learning and deep learning models.
In the experimental comparative analysis of the three models of deep
learning, the average RMSE of the GRU model is 20.309, which is
1.916 lower than the average RMSE of the RNN model. It is verified
that the GRU model can solve the problem that RNN cannot achieve
long-term dependence in sequence prediction. Fig. 7 shows a line
graph of the predicted PM2.5 concentration of the EMD-GRU model
and the predicted PM2.5 concentration of three traditional deep learn-
ing models and observed PM2.5 concentration. The figure can visually
show that the predicted value sequence of the EMD-GRU model repre-
sented by the red broken line is more consistent with the observed
value sequence represented by the purple broken line, that is, the pre-
dicted value of the EMD-GRU model is closer to the observed value. At
the same time, from the experimental data results shown in Table 6,
compared with the GRU model, the prediction error evaluation index
of the EMD-GRU model decreased the RMSE by 44.5%, MAE by 40.82%,
and SMAPE by 11.63%. It can be explained from many aspects that the
EMD-GRU model effectively solves the time lag caused by the GRU
Fig. 7. Line graph of January 1, 2014 to January 4, 201
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model when dealing with non-stationary time series, and further im-
proves the accuracy of model prediction.

3.5. Comparative experiment

In order to verify the prediction accuracy of the model proposed in
this article, we compared the prediction results and time cost of the
model proposed in this article with other three different hybrid models,
among them, the prediction results of the CNN-BGRU model are pro-
vided from the research of Tao et al. (Tao et al., 2019), and the other
two are comparison models constructed by us. The data sets used in
all models are the PM2.5 concentration values of the US Embassy in Bei-
jing from January 1, 2010 to December 31, 2014, and themeteorological
data of Beijing Capital Airport. In this comparative experiment, the fea-
tures we selected remain the same as those used by Tao's model, and
the data set is also divided into a training set, a verification set, and a
test set according to the division ratio in Tao's experiment. Then theme-
teorological data and PM2.5 data of the past eight hours is used to pre-
dict the PM2.5 concentration after two hours by using the proposed
model. Finally, two error evaluation indexes RMSE and MAE were se-
lected to evaluate the model performance. The time cost of the model
is also used as an evaluation indicator of computational cost.

The main difference between these four PM2.5 prediction models is
that different feature extraction methods are used in the prediction
4 hourly PM2.5 concentration prediction results.



Table 7
The comparison analysis of prediction errors and time cost between the CNN-BGRU, the
Wavelet-GRU, the VMD-GRU and the EMD-GRU.

Method RMSE MAE Time cost(min)

CNN-BGRU (Tao et al., 2019) 14.5319 10.7498 –
Wavelet-GRU 14.0386 8.8671 18.36
VMD-GRU 14.7882 9.497 12.80
EMD-GRU 11.8334 7.7031 43.00
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process. TheWavelet-GRU, the VMD-GRU and the EMD-GRUmodel are
all based on the GRU neural network and time series decomposition to
estimate the PM2.5 concentration value. We respectively combined
wavelet analysis and variational mode decomposition(VMD) instead
of EMD method with the GRU neural network constructed in this
paper to generate the Wavelet-GRU and the VMD-GRU models. Then
conducted the same number of experiments on the same data set to
verify the prediction effect of the model. In the Wavelet-GRU model,
we applied 5-level stationary wavelet transform (5-level SWT) to de-
compose the original time series of PM2.5 concentration, then obtained
five sequences at low frequency and one sequence at high frequency.
They were obtained by applying Db1 wavelets implemented in the
wavelet library Pywavelets of Python. Db1 was chosen as the wavelet
function as it provided the smallest variability of time series at the par-
ticular levels. The parameters of the GRU neural network in all hybrid
methods are set according to the parameter setting table in Table 5.

Table 7 is the comparison analysis of prediction errors and time cost
between the CNN-BGRU, the Wavelet-GRU, the VMD-GRU and the
EMD-GRU.We analyze compare experimental results from two aspects.
In term of model's time cost, Since Tao et al. had did not show the time
consumption of the CNN-BGRU model in their article, we did not use it
as a comparison object. The VMD-GRU model has the least number of
sub-sequences and the least number of iterations, so the running time
cost is the lowest among the three models. In terms of error in forecast
results, the EMD-GRU model proposed in this paper is the smallest in
both RMSE and MAE indicators. Comprehensive comparison although
the EMD-GRU model proposed in this paper has the largest time cost,
the model prediction error is the smallest. But the computation course
of the EMD-GRU is offline, the time consumption can be acceptable.

4. Related work

Faced with the crises caused by PM2.5 to various aspects of the eco-
logical environment, human health, and social activities, how to use the
monitored PM2.5 concentration of the city to accurately predict the fu-
ture PM2.5 change trend has become a hot issue in atmospheric pollu-
tion research. The existing research methods for air prediction are
mainly divided into two methods: deterministic method represented
by three-dimensional air quality model and statistical methods for
data-driven models. The deterministic method is mainly used by the
simulation model which based on the principle of simulating atmo-
spheric flow in three-dimensional space to predict pollutants. One of
the most classic models is the CMAQ model developed by the US Envi-
ronmental Protection Agency (EPA) in the late 1990s. The CMAQ
(Byun and Schere, 2006) broke through the previous simulation of
only a single species, realized the air quality prediction and assessment
of multiple angles and multiple pollution sources (Binkowski and
Roselle, 2003). The advantage of the simulation model is that it can be
carried out in the absence of historical data. However, the complexity
of its establishment is relatively high, and the use of default parameters
that lack actual observations limits the performance of the model. Until
now, the air quality predictions in the actual production process are still
mainly realized by the atmospheric simulation model CMAQ or WRF-
Chem at regional scale. The models by statistical approach are suitable
for PM2.5 analysis of health research. Furthermore, the statistical ap-
proach now is also combined with WRF-Chem or other chemistry
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transport model to forecast PM 2.5. Statistical methods are supported
by strong mathematical theories, so statistical models are easier to in-
terpret than other air quality models, and are more applicable when
data reserves are large. The non-linear change of air quality in urban
space depends on various environmental factors, such as temperature,
humidity, wind direction and other meteorological conditions. In
order to better deal with these non-linear features that affect air quality,
more and more machine learning methods that deal with non-linear
changes are now applied to the prediction of air quality. Hou et al.
(Hou et al., 2014) proposed to predict PM2.5 and PM10 concentrations
in Beijing based on support vector regression (SVR) method used daily
average aerosol optical depth (AOD) and meteorological parameters
as reference data. Similarly, Jun Wang and Sundar A. Christopher
(Wang and Christopher, 2003) confirmed that there is a linear relation-
ship between aerosol optical thickness (AOT) and PM2.5 concentration.
After that, they used the atmospheric aerosol thickness (AOT)measured
by satellite-mountedMODIS to estimate the PM2.5 concentration in the
Alabama area, and the accuracy of the prediction under cloudless condi-
tions was as high as 90%.Â It can be seen that Satellite-derived AOT is a
useful tool for air quality studies over large spatial domains to track and
monitor aerosols. Besides, Stafoggia et al. (Stafoggia et al., 2019) used a
phased random forest algorithm to estimate the average daily concen-
trations of PM10, PM2.5 and PM2.5–10 in a grid of one kilometer in
Italy from 2013 to 2015. This method can capture the variability of
most particulate matter, and raise the experimental prediction error
index to 0.86. Nevertheless, the model did not achieve a good fit in the
prediction of PM2.5–10 concentration levels. Zhang et al. (Zhang et al.,
2020) used Kalman filter (KF) to perform deviation correction on the
output of GEOS-Chem,WRF-Chem andWRF-CMAQ chemical transmis-
sion models to adjust the model's predicted output. Then two different
integration methods arithmetic mean ensemble(AME) and optimized
ensemble(OPE) were used to integrate the predicted output of the
three models to obtain the predicted values of the daily PM2.5 concen-
tration. In their research, KF-OPE model which their paper proposed
showed the best results with the RMSE decreasing from 5.61 to 3.52
μgm−3 (37%). The biggest contribution of this method is that multiple
model outputs and multiple satellite data products are used as ensem-
ble members for Kalman filter processing, and the emphasis is on the
synergy between surface observation networks and satellite observa-
tions for improving air quality forecasts in rural areas. In terms of neural
networks, the artificial neural network (ANN) model was used to pre-
dict the PM10 concentration in Seoul Metro Station and achieved good
results (Park et al., 2018). At the same time, the hybrid model based
on artificial neural network further improves the accuracy ofmodel pre-
diction. The superiority of ANN in dealing with the functional relation-
ship between non-linear influence factors is often impossible to
achieve by other machine learning methods. However, in the current
prediction of air quality, when the concentration of pollutants changes
rapidly within a short period of time, the prediction results of pollutant
concentration have a large deviation. Existing artificial neural networks
often fail to capture the abrupt changes in particle concentration and
the dependence of particle concentration as a time series. In solving
this problem, this paper chose to apply deep GRU neural network in
the construction of neural network. The reason is that GRU can contin-
uously retain the valuable historical information of the input sample se-
ries during training and learning and continue these to a new round of
learning. Application of GRU improves the accuracy of our prediction
models.

In recent years, neural network technology has once again been
pushed to a new climaxwith the rise of deep learning. The proposed re-
current neural networkmakes up for the shortcomings of artificial neu-
ral networks that cannot achieve long-term dependence. Deep learning
algorithms have shown outstanding performance in applied research in
multiple fields such as natural language processing, image recognition,
medical diagnosis (Young et al., 2018) (Norouzzadeh et al., 2018)
(Zhu et al., 2019). The air quality prediction methods based on RNN,
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LSTM and GRU models have also achieved good results in the past two
years. For example, Bun et al. proposed a deep recurrent neural network
using a self-coding pre-trainingmethod based on time series prediction
to train the data collected at Japanese environmental monitoring sta-
tions. This method effectively predicted the PM2.5 concentration, and
its prediction error is lower than that of the RNN model used alone
(Ong et al., 2016). Due to the problem of gradient disappearance in
the RNN model, S. Hochreiter and J. Schmidhuber proposed the LSTM
model in 1997 to solve this problem (Hochreiter and Schmidhuber,
1997). Ma et al. (Ma et al., 2019) used bidirectional long short-term
memory (BLSTM) network and inverse distance weighting (IDW) tech-
nology to predict spatially and temporally air pollutants at different
time intervals. Zhao et al. (Zhao et al., 2019) implemented a long
short-term memory fully connected (LSTM-FC) neural network for
predicting PM2.5 pollutions at a specific air quality monitoring station
within 48 h. Deep learning is stronger than machine learning in dealing
with problems of highly non-linear decision functions. In the article of
Karimian et al. (Karimian et al., 2019), three models based on long
short-term memory network (LSTM), multiple regression trees (MRT)
and deep feedforward neural network (DFNN) were applied to the re-
gression of PM2.5 concentration values respectively. The experimental
results show that the LSTM obtained the best results. The working prin-
ciple of the Gated Recursive Unit (GRU) proposed in 2014 is basically
the same as that of LSTM, but the GRU unit structure design is more
streamlined. In the training of certain data sets, the GRUwith fewer pa-
rameters can exceed the LSTMunit, nomatterwhether it is convergence
in CPU time, or parameter update and generalization (Chung et al.,
2014). Tao et al. (Tao et al., 2019) applied the hybrid model of
convolutional neural network and two-layers GRU to the prediction of
PM2.5 concentration levels in Beijing. These comparison experiments
show that the standard error RMSE of the hybrid model is lower than
that predicted by RNN and LSTM models. After studying and analyzing
PM2.5 prediction methods in China and abroad, we have proposed a
new hybrid model of EMD-GRU model for PM2.5 prediction. This
model effectively solves the time lag generated by the recurrent neural
network in predicting non-stationary series like PM2.5 concentration
series and improves the performance of the cyclic neural network
when processing non-stationary series. Compared with other deep
learning models, the EMD-GRU model's prediction error of PM2.5 con-
centration is lower.

5. Discussion

This paper proposed the EMD-GRU hybrid model combined with
meteorological data to predict PM2.5 concentration in Beijing. Firstly,
through observation of Table 6, it can be easily found that the deep
learning model is significantly better than the machine learning model
in predicting PM2.5 concentration series. This proves that deep learning
has a strong advantage in the prediction of time series and can effec-
tively capture the time dependence of time series data. Secondly,
when the three basic deep learning models RNN, LSTM and GRU are
used to predict the PM2.5 concentration, the GRUmodel has the highest
prediction accuracy. This indicates that GRU is more suitable for PM2.5
concentration prediction in Beijing than other deep learning models
such as RNN and LSTM. The EMD-GRU model proposed in this paper is
a combination of data decomposition and neural network, which fur-
ther solves the performance defects of the GRU model in predicting
the non-stationarity time series. Thirdly, from the results of the compar-
ative experiment, although the EMD-GRUmodel has the most iterative
calculations and consumes longer time, the prediction error is the
smallest. Among all the hybrid models based on the signal decomposi-
tionmethod andGRUneural networkwhichwere proposed in our com-
parative experiment, the EMD-GRU model performs most prominently
in the PM2.5 concentration sequence prediction in Beijing.

Due to the proposed model considers much more on fine-grained
and short-term PM2.5 forecast at hour level, in the case analysis here,
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we chose a separate site to verify the accuracy of model prediction.
But this does not mean that our method has geographic limitations in
PM2.5 prediction, our model also can be applied to many different sta-
tions of different cities. In future research, air quality data and weather
data from multiple stations will be used in our model to predict hourly
PM2.5 concentration. Because the data set which we used lacks the rel-
evant characteristics of PM2.5 in the spatial dimension, the EMD-GRU
model proposed in this paper only analyzes the PM2.5 concentration
from the perspective of time series, and the spatial prediction is not
involved.

6. Conclusion

This paper proposed the EMD-GRUmodel based on data decomposi-
tion and recurrent neural network for predicting PM2.5 concentration
in Beijing. It fully considers the relationship between meteorological
features and PM2.5 concentration and the impact of non-stationarity
of time series on prediction. In the early experiments, by comparing
the predicted values and the observed values obtained by using the
GRU model alone, it was found that most of the predicted values often
lags behind the true values. To solve this problem of the GRU model,
an improved GRU network based on EMD(EMD-GRU) was proved. In
this method, in the form of data decomposition and neural network,
the time series data was put after steadying into the GRU network to
training and testing. The results of this study indicate that the proposed
method greatly reduces the prediction error of themodel and improves
the fit of the model. By the way, the proposed method initially solved
the time lag caused by the original GRU model. At the same time, the
prediction accuracy of the proposed EMD-GRUmodel method is higher
than that of traditional machine learning and a single deep learning
method. All these findings suggest a role for data decomposition in pro-
moting deep learningmethod. However, the present study is limited by
the lack of information on spatial features related to PM2.5, and the gen-
eralization of themodel in different regions cannot be explained. To this
end, a lot of real and effective air quality related data will be collected
later, and the model proposed in this paper will be applied to multiple
different regions of data sets for verification.
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Appendix A. Empirical mode decomposition (EMD)

The Empirical mode decomposition (EMD) is an adaptive signal de-
composition method for non-linear and non-stationary signal process-
ing proposed by Huang (Huang et al., 1998). This method can
decompose the original signal into many finite oscillation time scale
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components called intrinsic mode functions (IMFs) and a residual com-
ponent in a self-adaptiveway (Huang et al., 1999). The EMDmethod has
a high Signal-Noise Ratio (Yeh et al., 2010). Compared with the wavelet
transform (WT) method for signal decomposition, the EMD does not
have the problem of preselecting wavelet basis functions like wavelet
transform. On the other hand, the EMD does not require pre-defined
number of IMFs like the VMD. It avoid the impact on results of time se-
ries decomposition due to unreasonable parameter settings. At the
same time, because the EMD is based on the local characteristics of
the time scale of the signal sequence, it has good time-frequency resolu-
tion and adaptability. Giving original time series X(t) (t= 1,2,…,n) the
procedure of EMD can be described as follows:

Fig. 1. Series decomposition in the EMD method.

(1) Identify all the local maxima of the original signal data series X
(t), and then use the three-spline interpolation function to create the
upper envelope u(t) of the original data series.

(2) Identify all the localminima of the original signal data seriesX(t),
and then use the three-spline interpolation function to create the lower
envelope l(t) of the original data series.

(3) Calculate average envelope ml(t) of the upper and lower enve-
lopes. The mean value ml(t) can be computed using the following for-
mula:

ml tð Þ ¼ l tð Þ þ u tð Þ
2

ð1Þ

(4) Subtract the average envelopeml(t) from the original data series
X(t). The result is a new data series hl(t). The hl(t) can be computed
using the following formula:

hl tð Þ ¼ X tð Þ−ml tð Þ ð2Þ

(5) Check hl(t): If hl(t) does not exist negative local maxima and
positive local minima, then hl(t) is defined as an IMF. The X(t) is re-
placed by the residue item r(t) = X(t) − hl(t). Here, the IMF is repre-
sented as; If hl(t) exists negative local maxima and positive local
minima, it means that hl(t) is not an IMF, so the X(t) is replaced by hl(t).

(6) Repeat steps (1) to (5), until the residue item r(t) becomes a
monotone function or the number of extrema is less than one or equal
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to one, so that no more IMFs can be extracted. R(t) indicates the ten-
dency of the original signal data series.

Finally, the original signal data series can be reconstructed through
all the decomposition IMFs and a residue. It can be expressed as the fol-
lowing formula:

X tð Þ ¼
Xn
i¼1

Ci tð Þ þ R tð Þ ð3Þ

Appendix B. GRU neural network

TheGated recurrent unit neural network (GRU) is a kindof recurrent
neural network (Chung et al., 2014). Essentially, it effectively integrates
and screens information in a chronological order, of which some is
retained, and the other is discarded. GRU can be seen as an improved
model of LSTM. Its special gating structure can effectively improve the
problem of gradient disappearance caused by long time series during
back propagation. The problem of gradient disappearance means that
the gradient will continue to decline when the gradient propagates
backwith time.When the gradient value becomes very small (infinitely
close to zero), there will be no further learning, and long-term depen-
dence cannot be achieved. The GRU model effectively avoids the short-
comings of the recurrent neural network when processing long
sequences.

Fig. 2. Network structure of the GRU.

GRU as a variant of LSTM, uses the same design concept to solve the
gradient disappearance problem. It is worthmentioning that its internal
structure is simpler than LSTM. GRU's unit structure contains only two
“gates”: the update gate(rt) and the reset gate(zt). In details, the purpose
of the update gate is to decide which information to forget and which
information need to be retained. The reset gate is used to decide the de-
gree of forgetting of previous information. Fig. 2 presents the network
structure of GRU. Each gate of GRU and output of the hidden layer are
calculated as follows:

rt ¼ σ xtWxr þ ht−1Whr þ brð Þ ð4Þ

zt ¼ σ xtWxz þ ht−1Whz þ bzð Þ ð5Þ

eht ¼ tanh xtWxh þ rt⊗ht−1Whh þ bhð Þ ð6Þ

ht ¼ zt þ 1−ztð Þ⊗eht ð7Þ

where σ is the activation function; xt is the present input; ht−1 is the
previous output; Wxr and Whr are the weights of the update gate; Wxz

andWhz are the weights of the reset gate;Wxh andWhh are the weights
of the output candidate value; br, bz and bh are bias vectors of the update
gate, the reset gate and the output candidate value eht respectively. The
operator “⊗” means to sequentially multiply the elements of the array.
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