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Abstract

One of the ultimate goals of representation learning is to
achieve compactness within a class and well-separability be-
tween classes. Many outstanding metric-based and prototype-
based methods following the Expectation-Maximization
paradigm, have been proposed for this objective. However,
they inevitably introduce biases into the learning process, par-
ticularly with long-tail distributed training data. In this paper,
we reveal that the class prototype is not necessarily to be de-
rived from training features and propose a novel perspective to
use pre-defined class anchors serving as feature centroid to uni-
directionally guide feature learning. However, the pre-defined
anchors may have a large semantic distance from the pixel
features, which prevents them from being directly applied. To
address this issue and generate feature centroid independent
from feature learning, a simple yet effective Semantic Anchor
Regularization (SAR) is proposed. SAR ensures the inter-
class separability of semantic anchors in the semantic space
by employing a classifier-aware auxiliary cross-entropy loss
during training via disentanglement learning. By pulling the
learned features to these semantic anchors, several advantages
can be attained: 1) the intra-class compactness and naturally
inter-class separability, 2) induced bias or errors from feature
learning can be avoided, and 3) robustness to the long-tailed
problem. The proposed SAR can be used in a plug-and-play
manner in the existing models. Extensive experiments demon-
strate that the SAR performs better than previous sophisticated
prototype-based methods. The implementation is available at
https://github.com/geyanqi/SAR.

1 Introduction
Classification, either at the image level or at the pixel level
(semantic segmentation), is a foundation computer vision
task with a wide range of applications, including but not lim-
ited to autonomous agent tasks such as scene understanding,
augmented reality, and autonomous driving. Many efforts
have been made in this problem and great progress has been
achieved in recent years, especially after deep learning meth-
ods (Perronnin, Sánchez, and Mensink 2010; He et al. 2016;
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Figure 1: The difference between prototypes and semantic
anchors in feature space (UMAP-Based). We train HRNet
with two different seeds on Cityscapes to get these prototypes
and semantic anchors. Shapes, colors, and CD represent ran-
dom seeds, classes, and class dependencies, respectively. The
generation of semantic anchors is independent of the main
task, and it achieves more consistent and weaker inter-class
dependencies on imbalanced data.

Krizhevsky, Sutskever, and Hinton 2017; Chen, Fan, and
Panda 2021; Long, Shelhamer, and Darrell 2015; Chen et al.
2017a; Wang et al. 2020) being introduced. However, no mat-
ter what kind of methods are utilized or what kind of network
structures are designed, the ultimate goal is to learn represen-
tations of data that are compact within a class and separable
between classes in the semantic space. To achieve this, many
methods have been proposed, such as metric learning and
prototype-based learning.

Metric learning is to pull together the intra-class samples
and push away the samples of different categories by design-
ing a distance metric. A lot of distance metrics have been
widely utilized and benefit the representation learning, such
as the contrastive loss (He et al. 2020; Oord, Li, and Vinyals
2018; Wu et al. 2018; Huang et al. 2019; Wang and Isola
2020; Wang and Liu 2021; Yang et al. 2022) and the triplet
loss (Schroff, Kalenichenko, and Philbin 2015; Ge 2018).
These losses are utilized to learn effective image represen-
tations for downstream tasks by explicitly selecting positive
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data pairs and negative data pairs. Wang and Isola (2020)
revealed that the contrastive representation benefits from the
alignment of features of positive pairs and uniformity of the
induced feature distribution. However, the contrastive repre-
sentation relies on the construction of positive and negative
sample pairs, which might induce bias in the feature learning
process.

Prototype-based deep learning has been attracting increas-
ing interest recently due to its exemplar-driven nature and
intuitive interpretation, which also can be deemed as only
using one or several hyper-positive samples. By aligning sam-
ples with the most similar prototype in the semantic space,
prototype-based methods have attained remarkable results in
few-shot learning (Wang et al. 2019; Kwon et al. 2021), unsu-
pervised learning (Xu et al. 2020), supervised learning (Zhou
et al. 2022; Wang et al. 2021), and domain adaptation (Jiang
et al. 2022; Lu et al. 2022), especially for long-tailed prob-
lems, e.g, semantic segmentation. ProtoAttend (Arik and
Pfister 2020) shows that prototype learning is more robust
when handling out-of-distribution samples, which should be
attributed to the more compact data representation within
the class. While CNN tends to learn non-discriminative fea-
tures with high activations for different classes (Nguyen and
Todorovic 2019), i.e., the low inter-class distance. Similarly,
learning more separable prototype relationships reduces the
interdependence of class features, leading to enhanced gener-
alization capabilities, especially when the training set follows
a long-tailed distribution. Recently, RegionContrast and Con-
trastSeg (Hu, Cui, and Wang 2021; Wang et al. 2021) propose
to explore the ”global” context of the training set by lever-
aging contrastive loss between pixel features and prototypes.
CAR (Huang et al. 2022) and SASM (Hong et al. 2022)
propose directly optimizing inter-class and intra-class pro-
totype relationships by Euclidean distance. ProtoSeg (Zhou
et al. 2022) proposes a non-learnable classifier using online
clustering to match learned prototypes.

However, the methods mentioned above are all via the
Expectation-Maximization paradigm (Moon 1996), which
estimates prototype assignments given learned features and
updates learned features with updated prototype assignments.
Compared to these sophisticated prototype learning meth-
ods, one realistic but seldom mentioned fact is that the rela-
tive relationships among prototypes undergo an evident drift
with distinct random seeds, even though the training set and
structure of the network are fixed (see Fig. 1). Especially
in long-tailed problems like segmentation, the prototype of
the rare class appears a strong bias towards certain classes.
This phenomenon demonstrates that the traditional prototype
calculations are sub-optimal since they are heavily bound
to the feature learning process and distributions of training
data, which can potentially result in the learning collapse for
tail-end classes.

A potentially better solution could be to directly guide
feature learning using well-separated and fixed class anchors.
To explore this assumption, we generate three sets of pre-
defined anchors as feature centroid guiding feature learning,
by randomly sampling from three distinct sources: standard
normal distributions, random orthogonal matrix, and ran-
dom matrix with a maximum equiangular separability struc-

ture (Papyan, Han, and Donoho 2020). Subsequently, we
minimize the Euclidean distance between pixel features and
their corresponding anchor features to regularize the model.
Amazingly, Tab. 7 shows that although the performance of
randomly generated anchors is unstable, they can be ben-
eficial for performance sometimes, and are comparable to
the performance achieved by sophisticatedly prototype-based
methods. In addition, solely controlling the angular structure
of these class anchors did not guarantee inter-class separa-
bility and a more noticeable performance improvement. We
believe this unstable and limited improvement is due to the
significant semantic gap between the randomly generated
anchors and learned pixel features.

To align the anchor with features in the semantic space
and keep the independence of anchor generation from fea-
ture learning, we propose a simple yet effective Semantic
Anchor Regularization (SAR) for learning intra-class com-
pact and inter-class separable representations. As shown in
Fig. 2, instead of collecting prototypes during feature learn-
ing process, these pre-defined class anchors A ∈ RC×D for
all categories are projected into the semantic space through a
lightweight embedding layer and categorized by the classi-
fier of the main network, where C is the total class number
and D denotes the semantic dimension of last feature layer
before classification. In addition, we apply two key training
strategies, loss reweighting, and exponential moving average
(EMA) updates, to ensure that semantic anchors obtained
during training are independent of the main task. We will
detail these in Sec. 3. In addition to being supervised by
GT labels, by aligning features in the main network with
semantic anchors, several advantages can be achieved: 1) the
intra-class compactness and inter-class separability can be
intuitively achieved by pulling the feature of each class to the
corresponding semantic anchor, 2) induced bias and errors
of the learned prototype which is calculated as the feature
center can be avoided, 3) less influenced by the number of
training samples and robust in long-tailed problem. The main
contributions of this paper are summarized as follows:

• We reveal that prototype representations derived from the
learned features are sub-optimal and propose a simple yet
effective SAR to gain better class representation.

• SAR can be used in a plug-and-play manner in existing
models with a little extra training cost (add 0.3 GFLOPs
and 1.56M parameters for HRNet) and no testing cost.

• We evaluate the proposed approach on various challeng-
ing semantic segmentation benchmarks. Extensive ex-
periments and visualization examples demonstrate the
proposed SAR is capable of promoting intra-class com-
pactness and inter-class separability.

2 Related Work
One of the ultimate goals of learning data representation is
to have good intra-class compactness and inter-class separa-
bility. In the following, we review some related works that
pursue this goal in metric learning and prototype-based deep
learning.



2.1 Metric Learning
Metric learning is to pull together samples within a class and
push away the samples of different categories by designing a
distance metric. Among them, the contrastive loss (He et al.
2020; Oord, Li, and Vinyals 2018; Wu et al. 2018; Huang
et al. 2019; Wang and Isola 2020; Wang and Liu 2021), the
triplet loss (Schroff, Kalenichenko, and Philbin 2015; Ge
2018), and the n-pair loss (Sohn 2016) are the most widely
utilized. These losses are utilized to learn effective image
representations for downstream tasks by explicitly selecting
positive data pairs and negative data pairs. CPC (Oord, Li,
and Vinyals 2018) applied contrastive predictive coding to
learn representations from widely different data modalities,
images, speech, and natural language. MoCo (He et al. 2020)
proposed a momentum contrast method for unsupervised vi-
sual representation learning, which allows them to build large
and consistent dictionaries. Wang and Isola (2020) revealed
that the contrastive representation benefits from the alignment
of features from positive pairs and uniformity of the induced
feature distribution. However, the contrastive representation
relies on the construction of positive or negative sample pairs,
which might induce bias in this process. DCL (Chuang et al.
2020) proposed a debiased contrastive learning method to
reduce false negative samples without human annotations.
After all, the ideal unbiased contrastive learning is unachiev-
able in practice since calculating all pairwise comparisons on
a large dataset is impossible.

2.2 Prototype-based Deep Learning
Prototype-based learning can be deemed as special metric
learning which only considers the hyper-positive samples.
Previously, prototype-based learning was combined with
nearest neighbors rule (Cover and Hart 1967) for classifi-
cation tasks. Recently, a lot of work has combined prototype
learning with deep neural networks and achieved remark-
able results in many areas. ProtoAttend (Arik and Pfister
2020) shows that prototype learning is more robust when
handling out-of-distribution samples. DPCL (Kwon et al.
2021) addresses the few-shot semantic segmentation prob-
lem by learning more discriminative prototypes that have
larger inter-class distance and small intra-class distance in
feature space. APN (Xu et al. 2020) utilized an attribute
prototype network to transfer knowledge from known to un-
known classes. To tackle the bias in calculating prototypes,
BiSMAP (Lu et al. 2022) proposed multiple anisotropic pro-
totypes. ProCA (Jiang et al. 2022) proposed a prototypical
contrast adaptation method for domain adaptive segmenta-
tion, which incorporates more inter-class information into
class-wise prototypes. CAR (Huang et al. 2022) proposed
optimizing representation distance from inter-class and intra-
class representation relationships. ProtoSeg (Zhou et al. 2022)
directly selects sub-cluster centers of embedded pixels as pro-
totypes and implements segmentation via nonparametric near-
est prototype retrieving. Unlike these previous methods that
via EM paradigm to optimize representation relationships,
SAR introduces some anchors in the semantic space to serve
as feature centroids and employs them to unidirectionally
guide feature learning. By generating feature centroids inde-

pendently of feature learning, SAR is more consistent across
the learning process and robust to long-tailed distribution.

3 Method
3.1 Recap of Prototype-based Deep Learning
In the setting of semantic segmentation, each pixel i of an
image I has to be assigned to a class c ∈ C. Specifically, let
model Sϕ,θ comprises a feature extractor fϕ parameterized
by ϕ and a classifier gθ parameterized by θ, i.e., Sϕ,θ(x) =
gθ(fϕ(x)). Denote a 2D dense feature map for I and its
corresponding semantic feature as F = fϕ(I) ∈ RHW×D

and the ground truth label as Y ∈ RHW×C . H , W , and
D denote I’s height and width, and number of channels,
respectively. Existing methods typically obtain the prototype
by using the average features of all pixels of a certain class
during training. Specifically, prototype P c of a class c in an
image1 can be formulated as follows,

P c =

∑HW
i=1 [Yi == c]·F∑HW
i=1 [Yi == c]

∈ RD, (1)

where [·] denotes the Iverson bracket. To improve the repre-
sentation relationship between and within classes, many met-
ric strategies D(·, ·) have been proposed and can be grouped
into two types: intra-class compactness loss and inter-class
dispersion loss. The training loss with prototype regulariza-
tion can be expressed as (here we take the intra-class pixel-
to-prototype compactness loss as an example for illustra-
tion (Huang et al. 2022)):

Lseg = Lce(Sϕ,θ(I),Y ) + λDintra−p2p(Y ·P ,F ), (2)

where λ is the trade-off that balances the cross-entropy loss
Lce and regularization loss Dintra−c2p which aims to reduce
the distance between prototypes and class features. Y ·P dis-
tributes prototypes to corresponding positions in each image.
Similarly, inter-class pixel-to-prototype loss can be expressed
as pushing two different classes of pixel features and proto-
types apart.

In the setting of classification, class prototypes can be
calculated in batch data,

P c =

∑N
i=1[Yi == c]·F∑N
i=1[Yi == c]

∈ RD, (3)

where N denote the batch size.

3.2 Motivation
Although previous prototype-based methods have achieved
significant results, the following two problems still exist:
1) Feature entanglement. Conventionally, the prototype is
generated from the learned feature and updated with con-
sideration of the previous state (i.e., prototypes in memory
bank) (Zhou et al. 2022; Wang et al. 2021) during training. As
a result, some errors and induced biases accumulate during
the whole training process. For example, the bias caused by

1To obtain more robust prototypes, previous methods typically
calculate the class centers using all the training images in a batch.
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Figure 2: Framework of the proposed method which consists of a main stream (lower stream) for segmentation/classification
and an auxiliary stream (the upper stream) for SAR. Pre-defined class anchors are first embedded into the semantic space to
mitigate the semantic gap and then categorized by the classifier of the mainstream. The embedded anchors are ensembled into
semantic anchors in an EMA manner. The learned feature with dimension is pulled to the corresponding semantic anchor for
better intra-class compactness and inter-class separability. Bold pink lines highlight the proposed SAR.

the long-tailed problem, where there are numerous features
learned from red cars but very few from green cars in the
training set, leads to an overemphasis on color attributes for
the car’s prototype. 2) Classifier imperceptible. Although a
large number of metric functions have been proposed for op-
timizing inter-class distance in the semantic space, they are
not directly perceptible to the model classifier which predicts
probabilities.

To address issue 1, we propose Class-anchor Regulariza-
tion (CR) to decouple feature centriod generation from fea-
ture learning, by pulling pixel features for each class to pre-
defined class anchors with good angle relationships. Our
motivation stems from the fact that in the training paradigm
of empirical risk minimization, class representations are not
only bound to the data but also guided by the objective func-
tion. As seen in Fig.1, class prototypes can be any feature
vector in the semantic space as long as they are separable.
In this sense, if we explicitly guide class representations to-
wards some pre-defined anchors that are independent of fea-
ture learning and well-separated, we can attain more consis-
tent and discriminative class representations. In other words,
the prototype is predetermined and consistently maintains
good inter-class relationships, as opposed to being estimated
from the learned representations through the Expectation-
Maximization (EM) paradigm. Errors and biases caused by
long-tailed distributions can be effectively minimized com-
pared to EM estimation.

However, as shown in Tab. 7, CR cannot steadily improve
performance since suffers from the issue 2. The semantic gap
between learned features and class anchors greatly inhibits
the effect of class anchors. To solve these problems simul-
taneously, we further propose the classifier-aware Semantic
Anchor Regularization.

3.3 Semantic Anchor Regularization
Semantic Anchor Regularization (SAR) introduces classifier-
aware semantic anchors by projecting the pre-defined class
anchors into the semantic space and sorting them through
the classifier, to address issue 2. As shown in Fig. 2, SAR
learns in the fashion of multi-task learning (Caruana 1997)
by introducing a simple auxiliary steam (the upper steam) to
classify the embedded anchors. The lower stream is the main
task stream to perform segmentation/classification based on
existing models. The C-way classifier is shared between the
auxiliary and main streams. In training, we randomly gener-
ate pre-defined class anchors A ∈ RC×D and fix them, and
project them into the semantic space through a trainable em-
bedding layer hψ , getting namely embedded anchors hψ(A),
and utilizing them update semantic anchors Â by Exponen-
tial Moving Average (EMA) strategy. In this manner, the
separability of semantic anchors is guaranteed according to
the classifier’s decision directly in the semantic space. Hence,
shifting class representations toward corresponding semantic
anchors can get intra-class compact embedding space and
naturally achieve inter-class separability. Specifically, the pro-
posed SAR is a pixel-to-anchor compactness loss by directly
minimizing the distance between data representations and
corresponding semantic anchors,

Lp2a = Dmse(F , Y ·Â) (4)

The next problem that needs to be addressed is how to train
embedding layers in a way that disentangles them from the
main task.

Disentanglement Learning. To mitigate biased learning
resulting from training drift and long-tailed distributed data,
two simple yet effective training strategies are proposed to
ensure that the semantic anchor is generated independently



of feature learning. 1) Reweight. The classifier is required to
make correct predictions with high confidence for all embed-
ded anchors instead of the high mean confidence. Specifically,
the loss for the auxiliary task can be formulated as a weighted
cross-entropy loss in Eq. 5.

Laux−ce = −
C∑
i=1

wi log g
i
θ(hψ(A

i)) (5)

where wc denotes the classification weight of the c-th pre-
defined class anchor. A threshold τ is utilized to filter the
high-confidence predictions in Eq. 6 and the wc can be calcu-
lated as Eq. 7. By re-normalizing the wc after high-confidence
suppression, more attention can be put on low-confidence
embedded anchors,

wc =

{
0, if gcθ(hψ(A

c)) > τ

gcθ(hψ(A
c)), otherwise

(6)

wc =
log(wc)∑C
i=1 log(wi)

, (7)

The above reweight strategy serves two purposes. First, it
can be utilized to correct biases towards common classes the
classifier learns under the guidance of the main task. Second,
attributed to the Eq. 6, embedded anchors with prediction con-
fidence higher than τ are not changed along with the training,
it can accelerate the convergence of the auxiliary task, which
is already quite simple (C samples, C-way classification),
and avoid too much influence on the main task. In practice, for
the 160K training schedule on ADE20K (Zhou et al. 2017),
the embedding layer is updated frequently only during the ini-
tial 600 steps, and subsequently, it is updated approximately
every 25 steps. 2) Update by exponential moving average.
Furthermore, to avoid entangled updates of embedded an-
chors and main task features, we employ the Exponential
Moving Average (EMA) manner to get semantic anchors at
each training step t,

Ât = αÂt−1 + (1− α)hψ(A)t, (8)

In addition, we only use and update semantic anchors when
it is correctly classified with a probability greater than δ for
better inter-class separation.

In summary, the above training strategy ensures the inde-
pendence of learning between semantic anchors and pixel
features, even though the main task and auxiliary task share
the same classifier, which is inherently different from previ-
ous works (Huang et al. 2022; Wang et al. 2021; Wu et al.
2023; Hu, Cui, and Wang 2021) collecting prototypes based
on the feature learning process.

Overall. Integrating all components, the overall loss for
SAR representation learning is the weighted sum of the pre-
sented loss components,

Lseg = Lce + λ1Laux−ce + λ2Lp2a (9)

4 Experiments
4.1 Experimental Settings
Semantic segmentation which is a typical and challenging
classification task at the pixel level is adopted as the main

Model Backbone mIoU

FCN 75.1
FCN+SAR ResNet-101 75.9 (+0.8)

DeepLabV3 80.2
DeepLabV3+SAR ResNet-101 80.6 (+0.4)

HRNet 79.9
HRNet+SAR HRNetV2-W48 81.4 (+1.5)

OCRNet 80.7
OCRNet+SAR HRNetV2-W48 81.7 (+1.0)

SegFormer 81.9
SegFormer+SAR MiT-B4 82.3 (+0.4)

UPerNet∗ 82.7
UperNet+SAR Swin-L 83.2 (+0.5)

Table 1: Quantitative results on Cityscapes. * represents based
on our reproduction.

downstream task to evaluate the proposed method. In ad-
dition, We further apply SAR for image classification ex-
ploratory experiment in Appendix Sec. A.

Datasets. Our experiments are conducted on three datasets,
including Cityscapes (Cordts et al. 2016), ADE20K (Zhou
et al. 2017), and Pascal-Context (Mottaghi et al. 2014)
Cityscapes contains 5,000 fine-grained annotated European
street scenes with 2,975/500/1,524 for train/val/test. It con-
tains 19 classes for scene parsing or semantic segmenta-
tion evaluation. ADE20K is one of the most challenging
large-scale scene parsing datasets due to its complex scene
and up to 150 category labels. The dataset is divided into
20,210/2,000/3,352 images for train/val/test, respectively.
Pascal-Context is split into 4,998/5,105 for training/test set
with 59 semantic classes plus a background class. As a com-
mon practice in semantic segmentation tasks, we use its 59
semantic classes for evaluation.

Network Architectures. Our implementation is based on
the mmsegmentation framework (Contributors 2020) and
follows default model configurations. The embedding layer
is designed as a stack of two LinearModule (Linear, Bn,
ReLU) and one ConvModule (Conv, Bn, ReLU). All back-
bones are initialized using corresponding weights pre-trained
on ImageNet-1K (Deng et al. 2009).

Implementation Details. The proposed SAR and its base-
lines use the same image augmentation for fair comparisons,
including random resize with ratio [0.5, 2.0], random horizon-
tal flipping, random cropping, and random photometric dis-
tortion. We empirically set λ1 = 1, α = 0.999, τ = 0.9 and
δ = 0.8 for our all experiments. We use smaller λ2 = 0.05
for DeepLabV3 (Chen et al. 2017a), which has a relatively
unstable training process. In addition, to ensure generality,
all other models use λ2 = 0.1, although customizing hyper-
parameters for each benchmark can further improve perfor-
mance. Following previous work (Contributors 2020; Chen
et al. 2017a; Liu et al. 2021), we use the stochastic gradient
descent (SGD) (Robbins and Monro 1951) optimizer with a
learning rate of 0.01, weight decay of 0.0005, and momentum
of 0.9 for Convolution-based models. For Transformer-based



Model Backbone mIoU

FCN 39.9
FCN+SAR ResNet-101 40.4 (+0.5)

DeepLabV3 45.0
DeepLabV3+SAR ResNet-101 45.3 (+0.3)

HRNet 42.0
HRNet+SAR HRNetV2-W48 42.8 (+0.8)

OCRNet 43.2
OCRNet+SAR HRNetV2-W48 43.7 (+0.5)

SegFormer 49.1
SegFormer+SAR MiT-B5 49.5 (+0.4)

UPerNet 52.2
UperNet+SAR Swin-L 52.6 (+0.4)

Table 2: Quantitative results on ADE20K.

models, we use the AdamW (Loshchilov and Hutter 2017)
optimizer with a learning rate of 0.00006 and weight decay
of 0.01. The learning rate is scheduled following the polyno-
mial annealing policy. For Cityscapes (Cordts et al. 2016),
we train a batch size of 8 with a crop size of 512 × 1,024
(Transformer-based models trained by 1,024 × 1,024 crop
size). For ADE20K and Pascal-Context, we train a batch
size of 16 with a crop size of 512× 512 and 480× 480, re-
spectively. Unless otherwise specified, the models are trained
for 80k, 160k, and 40k iterations with 8GPUs (Transformer-
based models) or 4GPUs (Convolution-based models) on
Cityscapes, ADE20K, and Pascal-Context, respectively.

Evaluation Metric. We report mean Intersection over
Union (mIoU) over all classes. For fair comparisons, we
do not apply any test-time data augmentation. All results
reported in the baseline are derived from MMSegmenta-
tion (Contributors 2020).

4.2 Main Results
To verify the effectiveness, SAR is evaluated and compared
with other SOTA methods on three segmentation benchmarks
using different backbone networks.

Tab. 1 shows the performance on Citysacpes (Cordts
et al. 2016) dataset. It can be seen that by integrating
SAR with FCN (Long, Shelhamer, and Darrell 2015),
DeepLabV3 (Chen et al. 2017b), HRNet (Wang et al. 2020),
OCR (Yuan, Chen, and Wang 2020), SegFormer (Xie et al.
2021) and Swin Transformer (Liu et al. 2021), their perfor-
mance in mIoU are increased by 0.8%, 0.4%, 1.5%, 1.0%,
0.4% and 0.5%, respectively. These improvements are signif-
icant compared to these commonly used strong baselines.

The consistent performance improvement can be observed
in Tab. 2, which adopts the same baselines as Tab. 1. In
addition, we also couple SAR with DisAlign (Zhang et al.
2021) which is a two-stage approach specifically designed to
address long-tail segmentation. We report results in Tab. 3,
After incorporating DisAlign (DA), we achieved further im-
provements in the column of mTailIoU (34.5% v.s. 34.3%).
This implies that our approach can effectively serve as a
complement to methods focused on long-tailed distributions.

mIoU mHeadIoU mBodyIoU mTailIoU

Stage1

HRNet 42.0 65.5 46.0 32.8
HRNet+SAR 42.7 (+0.7) 66.2 (+0.7) 45.6 (-0.4) 34.3 (+1.5)

Stage2

DA+HRNet 42.2 (+0.2) 65.6 (+0.1) 46.0 (+0.0) 33.1 (+0.3)
DA+SAR 42.9 (+0.9) 66.1 (+0.6) 46.0 (+0.0) 34.5 (+1.7)

Table 3: Incremental improvements for DisAlign (DA) that
is focused on long-tail segmentation on ADE20K.

Model Backbone mIoU (%)

FCN 48.4
FCN+SAR ResNet-101 49.7 (+1.3)
DeepLabV3 52.6

DeepLabV3+SAR ResNet-101 53.3 (+0.7)
HRNet 50.3

HRNet+SAR HRNetV2-W48 51.1 (+0.8)
OCRNet* 52.0

OCRNet+SAR HRNetV2-W48 52.4 (+0.4)

Table 4: Quantitative results on Pascal-Context. * represents
based on our reproduction.

To show SAR’s capacity for effectively handling tailed
classes, we also perform experiments on Pascal-Context
which follows serious long-tail distributions. The overall per-
formance is shown in Tab. 4 (MMSeg does not provide avail-
able config for Transformer-based methods on this dataset),
while for a detailed analysis of specific tail-end classes, please
refer to Appendix Sec. B.

4.3 Comparison with Prototype-based Methods
We conduct a fair comparison between SAR and other im-
portant prototype-based methods, such as ProtoSeg (Zhou
et al. 2022) and CAR (Huang et al. 2022), as these methods
employ experimental settings that differ from the MMSeg
benchmark. For a performance comparison of the classifica-
tion task, please refer to Appendix Sec. A.

Method Resolution Schedule mIoU

Model learned on ADE20K

HRNet 160K 512×512 42.0
SAR 160K 512×512 42.8(+0.8)

ProtoSeg 160K 520×520 43.0(+1.0)
SAR 160K 520×520 43.3(+1.3)

Model learned on Cityscapes

HRNet 80K 1024×512 79.9
HRNet 160K 1024×512 80.6(+0.7)

ProtoSeg 160K 1024×512 81.1(+1.2)
SAR 80K 1024×512 81.4(+1.5)

Table 5: Fair comparison of SAR and ProtoSeg based on
HRNet as the baseline.



HRNet                                       SAR                                        HRNet                                       SAR                                   HRNet                                       SAR

Figure 3: Visualization of the learned features with HRNet and SAR on Cityscapes utilizing UMAP.

Method mIoU Method mIoU Method mIoU

DLV3 52.6 HRNet 50.3 OCRNet 52.0
CAR 52.9 (+0.3) CAR 50.7 (+0.4) CAR 52.3 (+0.3)
SAR 53.3 (+0.7) SAR 51.1 (+0.7) SAR 52.5 (+0.5)

Table 6: Fair comparison with CAR on Pascal-Context using
520×520 training crops. DLV3: DeepLabV3

Lce Lp2a Laux−ce EMA Reweight mIoU (%)

✓ 79.9

✓ ND 79.8∼80.3
✓ OM 79.2∼79.9
✓ MES 79.8∼80.4

✓ N ✓ 80.6 (+0.7)
✓ N ✓ ✓ 81.1 (+1.2)
✓ N ✓ ✓ ✓ 81.4 (+1.5)

Table 7: Ablation studies on the key components of our pro-
posed SAR on Cityscapes. ND: standard Normal Distribu-
tion, OM : random Orthogonal Matrix, MES: random ma-
trix with a Maximum Equiangular Separability structure.

4.4 Ablation Studies
In Tab. 7, we evaluate the efficacy of each component in the
proposed SAR on Cityscapes (Cordts et al. 2016). Lce means
the case only using HRNet as baseline. Without embedding
layer (+Lp2a), learned features in the segmentation task are
directly regularized by the pre-defined anchors A which are
randomly sampled from the three sources. As discussed in
Sec. 3.2, these random class anchors can improve the perfor-
mance of the baseline but with strong variations. To reduce
semantic gaps between class anchors and semantic space, we
embed the pre-defined anchor into semantic space (+embed-
ding layer) and control their separability using the classifier
for segmentation (+Laux−ce). In this manner, a stable im-
provement of 0.7 in mIoU can be obtained. Further, the EMA
updating strategy and Reweighting strategy are utilized in
disentanglement learning these semantic anchors. Combin-
ing all components, SAR can achieve an increment of 1.5 in
mIoU compared to the baseline.

Detailed Analyses. More detailed ablation studies can refer
to Appendix Sec. C, including independence of semantic
anchor, model robustness, hyper-parameters sensitivity, and
extra computational and storage burden analyses.

4.5 Qualitative Evaluation on the Segmentation
Results

Visualization of learned representations. Fig. 3 visual-
izes the feature learned with and without the proposed SAR
using UMAP (McInnes, Healy, and Melville 2018) analysis.
Learning with SAR improves intra-class compactness and
inter-class separability. According to the basic assumption
proposed in (Oliver et al. 2018), the decision boundary gener-
ated by SAR will pass through more sparse regions and have
stronger robustness and generalization

HRNet          SAR           HRNet          SAR            HRNet           SAR

Figure 4: Qualitative results on ADE20K (L. 2 Cols.),
Cityscapes (M. 2 Cols.), and Pascal-Context (R. 2 Cols.).

Qualitative results. We present qualitative examples of the
segmentation results in Fig. 4. Examples are from ADE20K,
Cityscapes, and Pascal-Context, respectively. The results
from the HRNet and HRNet training with SAR are included
for comparison.

5 Conclusion
In this paper, we present that prototype representations de-
rived from the learned features are sub-optimal since they
heavily rely on the data distribution. We proposed a novel
perspective to leverage pre-defined class anchors which are
decoupled from pixel features to guide representation learn-
ing. However, directly using these anchors suffers from the
semantic gap between pre-defined anchors and learned fea-
tures in the semantic space. To address this issue, we pro-
posed semantic anchor regularization (SAR) for improved
class representation. SAR adopts a disentangled learning
approach to collect these semantic anchors, using them to



unidirectionally guide feature learning. SAR can be applied
in a plug-and-play manner to help existing models achieve
better performance and address long-tail distributions. Exper-
iments on downstream semantic segmentation with extensive
ablation studies have validated the effectiveness of the pro-
posed SAR method. In addition, exploratory experiments in
Appendix Sec. A show SAR is promising as a general solu-
tion for classification-based tasks. We hope that our proposal
can advance future studies of representation learning and im-
balanced learning. Limitations and future work are provided
in Appendix Sec. D.
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Appendix

The Appendix is organized as follows. Sec. A further ex-
plores the application of our proposed method to the image
classification task. Sec B shows the performance of SAR on
rare classes. Sec. C provides detailed ablation studies of our
proposed methods. Notably, in Sec. C.1, we present two clear
pieces of experimental evidence supporting the semantic an-
chors independent of feature learning. Sec. D discusses the
limitations and future work of SAR.

A Application to Image Classification Task
In the exploratory experiment, we further apply SAR to the
image-level classification task. We evaluate SAR on image
classification performance in normal and long-tail settings.

A.1 Normal Setting
Our experiments are conducted on two datasets, CIFAR-
100 (Krizhevsky, Hinton et al. 2009) and CUB-200 (Wah
et al. 2011). CIFAR-100 is a subset of the tiny images dataset
and consists of 60,000 images. The 100 classes in the CIFAR-
100 are grouped into 20 super-classes. There are 600 images
per class which are split into 500 training images and 100
testing images per class. CUB-200 is a widely used dataset
for fine-grained classification tasks. We use the CUB-200-
2011 version, which contains much more pictures than the
original CUB-200. It contains 11,788 images of 200 subcate-
gories belonging to birds, 5,994 for training, and 5,794 for
testing.

Our implementation is based on the MMPretrain frame-
work (Contributors 2023) and follows default model configs
and training schedules. We use ResNet(He et al. 2016) as the
baseline model. Compared with the segmentation, the em-
bedding layer is simpler and designed as two LinearModules.
All hyper-parameters of SAR are the same as the segmenta-
tion task that we reported in the manuscript. We use Top-1
accuracy for evaluation. The reported baseline results are
derived from MMPretrain. Tab. 8 and Tab. 9 show the perfor-
mance on CIFAR-100 and CUB-200 datasets, respectively.
Through the use of SAR, our approach has shown a notice-
able increase in Top-1 accuracy by 0.57 and 0.25 on both
datasets for ResNet-50, respectively. As for ResNet-18, we
have achieved a significant improvement in Top-1 accuracy
by 0.71 and 1.06 on both datasets, respectively. The results
demonstrate the effectiveness and potential of SAR at the
image-level classification.

A.2 Long-tailed Setting
For long-tailed classification, we employ the CIFAR-100-
LT (Cao et al. 2019), which is the long-tailed version of the
CIFAR dataset. It is collected by controlling the degrees of
data imbalance with an imbalanced factor (IF) β = Nmax

Nmin
,

where Nmax and Nmin are the numbers of training sam-
ples for the most and the least frequent classes. We conduct
experiments with IF=100.

Our implementation is based on the MiSLAS (Zhong et al.
2021) which is a two-stage approach specifically designed to

Method Top-1 Acc

ResNet-18 78.07
ResNet-18+SAR 78.78 (+0.71)

ResNet-50 79.90
ResNet-50+SAR 80.47 (+0.57)

Table 8: Quantitative results on CIFAR-100.

Method Top-1 Acc

ResNet-18 83.10
ResNet-18+SAR 84.16 (+1.06)

ResNet-50 88.19
ResNet-50+SAR 88.44 (+0.25)

Table 9: Quantitative results on CUB-200.

address long-tailed classification, and follows default model
configs (ResNet-32) and training schedules. Furthermore,
we reproduce the CAR approach (Huang et al. 2022), an
outstanding prototype-based method, in this experiment to
compare its outcomes with SAR in long-tailed classification
data. These results are summarized in Tab. 10. By integrating
SAR, MiSLAS achieves an improvement of 1.0% mIoU over
the baseline. However, due to insufficient annotations in the
classification task to support CAR in calculating reliable
class centers during feature learning, along with the impact
of long-tailed distributions, it becomes difficult to apply it to
classification tasks.

Stage1 Stage2

Method Top-1 Acc Method Top-1 Acc

MixUp 39.5 MiSLAS 47.0
MixUp+CAR 38.0 (-1.5) MiSLAS 45.3 (-1.7)
MixUp+SAR 40.6(+1.1) MiSLAS 48.0 (+1.0)

Table 10: Quantitive results on CIFAR-100-LT. The stage 2
model is initialized by the stage 1 model of the same row in
the table.

A.3 Summary
The above experiments illustrate the potential of the SAR-
based perspective to become a generic component for ad-
dressing challenges posed by representation learning and
long-tailed distribution problems.

B Performance on Rare Classes
Semantic segmentation is inherently a long-tailed problem.
To show the SAR that decoupled from feature learning has
better robustness in long-tailed problems, we report the re-
sults of Top 4 rare classes in ADE20K (Zhou et al. 2017),
Cityscapes (Cordts et al. 2016), and Pascal-Context (Mot-
taghi et al. 2014) datasets, as shown in Tab. 11. SAR improves



Class HRNet SAR ∆

Radiator 45.5 54.0 (+8.5)
Glass 10.9 11.3 (+0.4)
Clock 17.3 23.8 (+6.5)
Flag 30.2 30.3 (+0.1)

Class HRNet SAR ∆

Train 75.5 83.9 (+8.4)
Tr.Light 74.9 75.0 (+0.1)

Rider 65.4 67.5 (+2.1)
M.Bike 68.2 68.3 (+0.1)

Class HRNet SAR ∆

Cup 31.1 33.8 (+2.7)
Sign 36.3 39.1 (+2.8)
Light 39.7 40.5 (+0.8)

Mouse 34.7 40.3 (+5.6)

Table 11: Performance on the Top 4 rare classes of the ADE20K (left), Cityscapes (middle), and Pascal-Context (right),
respectively.

significantly in these rare classes. The above performance
demonstrates the robustness of the proposed method to long-
tailed problems across different datasets. As the generation
of class anchors is less affected by feature learning, they are
insensitive to the number of samples in different classes. In
addition, the reweighting strategy in Eq. 6 ensures that the
model can focus more on false predictions, which are usually
tailed classes. Therefore, fewer common-case biases will be
introduced from semantic anchors when serving as the fea-
ture centroid for representation learning. For example, the
rarest ”Mouse” class in the Pascal-Context dataset accounts
for only 7× 10−3% of the entire dataset. SAR improves the
IoU of ”Mouse” by 5.6% to 40.3%.

C Detailed Ablation Studies
C.1 Independence of Semantic Anchors.
In addition to the disentanglement learning analysis men-
tioned in Sec. 3.3 and the SAR’s capacity to address long-tail
problems, there are three more straightforward experimental
phenomenons that demonstrate the independence of semantic
anchors from feature learning.

Segmentation on extremely limited data. As mentioned
in Sec. B the “Mouse” class has an extremely rare appearance
with 7× 10−3% probability in Pascal-Context, we observe
that the ”Mouse” class was never predicted correctly in the
training results of the three DeepLabV3 with different ran-
dom seeds. Tab. 12 shows the performance of SAR on the
”Mouse” class with the same seed. This demonstrates the in-
dependence between SAR and learned features, as the learned
features do not include the effective recognition features for
”Mouse”.

Seed DeepLabV3 SAR

1270964153 0.0 23.4 (+23.4)
1024 0.0 25.6 (+25.6)
5555 0.0 35.4 (+35.4)

Table 12: Quantitative results (IoU) on the ”Mouse” class.
Our result is based on DeepLabV3 with SAR.

Compare with CAR on the ”Mouse” class. An instance
is present in Tab. 13, we compared the performance of our
method with CAR on the ”Mouse” class. CAR is an excellent
prototype-based method that calculates prototypes on learned
features. However, due to the extremely low frequency of the

Model IoU

HRNet 34.7
CAR 0.0 (-34.7)
SAR 40.3 (+5.6)

Table 13: Comparing the IoU of SAR and CAR on the
”Mouse” class.

“Mouse” class, the accumulation of error and bias causes the
training of CAR to collapse in this class. On the contrary,
since SAR is independent of feature learning, it actually
improves the performance of the ”Mouse” class.

C.2 Robustness to Network Initialization
Our method is correlated with the baseline model and robust
to the network initialization. Tab. 14 and Tab. 15 show the per-
formance of multiple seeds on two benchmarks, respectively.
As the result shows, our method consistently improves the
mIoU over its baseline using different random seeds, which
demonstrates the effectiveness and robustness of SAR.

Seed HRNet SAR

1270964153 79.9 81.4 (+1.5)
1024 79.8 81.0 (+1.2)
5555 78.9 80.1 (+1.2)

Table 14: Error analyze HRNet on Cityscapes.

Seed DeepLabV3 SAR

1270964153 52.6 53.3 (+0.7)
1024 52.4 53.4 (+1.0)
5555 52.6 53.3 (+0.7)

Table 15: Error analyze DeepLabV3 on Pascal-Context.

C.3 Hyper-parameter Analysis
We conduct ablation experiments on the hyper-parameters
of HRNet on Cityscapes. Tab. 16 and Tab. 17 summarizes
the influence of hyper-parameters λ1 and λ2 to model per-
formance, respectively. It can be observed that the model
performance is robust to the two trade-offs which balance



the effect of the proposed auxiliary cross-entropy loss and
pixel-to-anchor loss.

λ1 0.5 1 2

mIoU 80.9 81.4 81.3

Table 16: Sensitivity to λ1 on Cityscapes.

λ2 0.05 0.1 0.2

mIoU 81.2 81.4 81.0

Table 17: Sensitivity to λ2 on Cityscapes.

Tab. 18 and Tab. 19 show studies on τ for the auxiliary
loss reweighting and δ for class anchors update strategies,
respectively. The τ filters class anchors with prediction confi-
dence higher than it and makes the model put more attention
on anchors that have lower confidence. However, a low τ
leads the model to ignore some embedded anchors with not
so high classification confidence, which means their inter-
class distance to other class anchors is underoptimized. As a
result, anchors are not dispersedly distributed in the semantic
space and the inter-class distance between anchors might be
not well. With a proper τ , more attention can be put on low-
confidence anchors and broadening the inter-class distance
between those not well-separated anchors. The δ determines
whether an embedded anchor is used as the regularization
for feature learning. Similarly, for δ, a high threshold en-
sures the learned feature is only regularized by those anchors
with good inter-class separability. A value of δ less than τ
means that class anchors with confidence between δ and τ
are continuously optimized and utilized as regularization.

τ 0.5 0.7 0.9 1

mIoU 80.4 81.2 81.4 81.0

Table 18: Sensitivity to τ on Cityscapes.

δ 0.5 0.7 0.8 0.9

mIoU 80.3 81.3 81.4 81.0

Table 19: Sensitivity to δ on Cityscapes.

C.4 Computational and Storage Burden
SAR requires conducting an auxiliary task during training,
which brings additional training parameters. However, in
practice, the process only imposes a minor computational
and storage burden (See Tab. 20). Compared to the origi-
nal HRNet, our method only adds 0.03GFLOPs and 1.56M
(2.3%) training parameters when input images have a size of
1024× 1024.

Model Flops (GFLOPs) ∆1 Params (M) ∆2

HRNet 374.34 65.86

HRNet+SAR 374.37 0.03 67.42 1.56

Table 20: Comparison of the Computation and storage burden
on input size as 1,024× 1,024

D Discussion
D.1 Limitations
In this work, we did not explore the application of SAR to
object detection and query-based segmentation methods. We
did not use these semantic anchors during the testing phase to
ensure speed, but they may be beneficial for the performance
during testing.

D.2 Future Work
The key insight of this study is that the features utilized to
regularize feature learning do not necessarily come from the
task being trained. This enables us to integrate external con-
trolled information to regularize or reinforce the training task,
which is in line with the main idea of the now popular multi-
modal recognition (Girdhar et al. 2023; Radford et al. 2021).
Hence, 1) constructing semantic anchors from a multi-modal
perspective to organize embedding space presumably further
enhances the representation capability of the model. 2) In
addition, using these semantic anchors as additional infor-
mation during inference through a query-based classification
idea. 3) Given the effectiveness of our approach in the classifi-
cation task, initializing the segmentation model with weights
pre-trained under SAR, and training the segmentation model
using SAR may lead to a synergistic effect where the whole
is greater than the sum of its parts.


