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Abstract

Scribble-based weakly-supervised semantic segmentation us-
ing sparse scribble supervision is gaining traction as it re-
duces annotation costs when compared to fully annotated
alternatives. Existing methods primarily generate pseudo-
labels by diffusing labeled pixels to unlabeled ones with local
cues for supervision. However, this diffusion process fails to
exploit global semantics and class-specific cues, which are
important for semantic segmentation. In this study, we pro-
pose a class-driven scribble promotion network, which uti-
lizes both scribble annotations and pseudo-labels informed by
image-level classes and global semantics for supervision. Di-
rectly adopting pseudo-labels might misguide the segmenta-
tion model, thus we design a localization rectification module
to correct foreground representations in the feature space. To
further combine the advantages of both supervisions, we also
introduce a distance entropy loss for uncertainty reduction,
which adapts per-pixel confidence weights according to the
reliable region determined by the scribble and pseudo-label’s
boundary. Experiments on the ScribbleSup dataset with dif-
ferent qualities of scribble annotations outperform all the pre-
vious methods, demonstrating the superiority and robustness
of our method. The code is available at https://github.com/
Zxl19990529/Class-driven-Scribble-Promotion-Network.

Introduction
Primarily driven by the availability of extensive pixel-level
annotated datasets, the field of semantic segmentation has
made remarkable strides in the last decade. However, the
challenges of the laborious and time-consuming process
of collecting and manually annotating such datasets hinder
real-world applications of semantic segmentation. Weakly-
supervised semantic segmentation (WSSS) methods utiliz-
ing sparse labels have emerged as a prominent trend to
overcome this limitation. These methods use annotations
at the image, scribble, or bounding box levels as super-
vision to train the semantic segmentation model. Among
them, image-level annotations offer limited spatial supervi-
sion, while bounding boxes may lead to overlapping issues
when objects are nearby. In comparison, the use of scribble
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Figure 1: Schematic diagrams of different scribble-based
WSSS methods. Existing approaches (a-c) overlooked the
class label in scribbles, which provides image-level super-
vision. “P” represents the model prediction. The red dashed
line represents the supervision relationship.

annotations strikes an optimal balance between supervision
effectiveness and labor cost (Lin et al. 2016). Consequently,
scribble-based WSSS has garnered increasing attention in
recent years (Liang et al. 2022; Wu et al. 2023).

The intrinsic challenge in scribble-based WSSS lies in the
partial supervision provided by sparse labels. Existing ap-
proaches have attempted to address this issue from three per-
spectives, namely, regularization loss (Tang et al. 2018a,b),
consistency learning (Pan et al. 2021; Wang et al. 2022),
and label diffusion (Lin et al. 2016; Wu et al. 2023), as il-
lustrated in Figure 1(a-c). Specifically, regularization loss-
based methods design specific loss functions to improve
the stability of the models. Consistency learning-based ap-
proaches aim to capture invariant features to boost fine-
grained segmentation performance through consistency loss.
However, both methods fail to address the deficiency of
pixel-level supervision, leading to limited performance. In
contrast, label diffusion-based methods generate pixel-level
pseudo-labels by diffusing labeled pixels to unlabeled ones,
i.e. constructing a graph model on the scribble to generate
pseudo-labels for training. However, the diffusion process
predominantly relies on local pixel information and fails to
exploit the global semantics and class-specific cues of im-
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ages, which are important for semantic segmentation. In ad-
dition, such pseudo-label generation approaches are heav-
ily dependent on the quantity and quality of the scribbles,
where the model performance would be undermined when
the scribbles are shrunk or dropped as shown in Figrue 7. In
fact, sparse scribbles inherently possess class information,
which can offer valuable global semantic clues while enrich-
ing scribble-based WSSS supervision. However, this advan-
tage has not been extensively explored in existing scribble-
based WSSS researches.

In light of this, the present paper is dedicated to promot-
ing the performance of scribble-based WSSS with a globally
considered pseudo-label. The image-level class labels could
be easily obtained from the scribbles, making it feasible
to acquire the globally considered pseudo-label via image-
level WSSS methods. Previous image-level WSSS meth-
ods have demonstrated that image-level class labels prompt
models to focus on discriminative areas within an image,
which can be used to compensate for the limitations of local
cues provided by scribbles. Drawing inspiration from this,
we propose a class-driven scribble promotion (CDSP) net-
work for scribble-based semantic segmentation, which uti-
lizes image-level class labels to generate pseudo-labels.

The overview of our method is depicted in Figure 1 (d).
We begin by extracting image-level class labels from the
scribbles and employing them to train a classification model,
subsequently generating the globally considered pseudo-
label. We then proceed to train a semantic segmentation
model with both scribble and pseudo-label for supervision.
By doing so, the inclusion of the image-level class label fa-
cilitates the acquisition of global semantic information for
pseudo-label generation and further benefits the scribble-
based WSSS training. Nevertheless, the noisy supervisions
in pseudo-labels may affect the model, where we specifi-
cally devise a localization rectification module (LoRM) to
address this issue, which corrects foreground representations
in the latent feature space by referencing other pixels. To fur-
ther leverage the advantages of both supervisions, we also
introduce a distance entropy loss (DEL) for model uncer-
tainty reduction, where the model prediction is assigned with
per-pixel confidence based on the reliable region determined
by the scribble and the boundary of the pseudo-label. With
these integrated components, our method achieves state-of-
the-art (SOTA) performance in scribble-based WSSS. Our
contributions can be concluded as:

• We present a class-driven scribble promotion network for
scribble-based WSSS that utilizes image class informa-
tion to generate a globally considered pseudo-label. No-
tably, this is the first approach to exploit image-level class
information in the scribble-based WSSS problem.

• A localization rectification module is proposed to cor-
rect the foreground representations in the latent feature
space that are misled by the noisy pseudo-labels. And a
distance entropy loss is proposed to excavate the reliable
areas based on proximity to scribbles and pseudo-labels.

• The proposed method outperforms existing state-of-the-
art methods. The extensive experiments on the different
qualities of scribbles scribble demonstrate the extraordi-

nary robustness of our method.

Related Works
Image-level WSSS The remarkable achievements of early
deep learning-based methods in image classification (Si-
monyan and Zisserman 2014) have spurred numerous works
on feature visualization. Zhou et al. (2016) first introduced
the class activation map (CAM) technique, which employs
global average pooling on deep features to visualize dis-
criminative localization. This technology subsequently cat-
alyzed various efforts to generate semantic pseudo-labels
from CAM, facilitating the training of segmentation net-
works (Kolesnikov and Lampert 2016; Zhang et al. 2021b;
Zhu et al. 2023b, 2022). Recently, SEAM (Wang et al. 2020)
presented a pixel correlation module that refines current
pixel predictions using information on the similar neighbors
of the pixel. From another perspective, AFA (Ru et al. 2022)
addressed this problem with transformers leveraging multi-
head self-attention for effective long-range modeling. Ad-
ditionally, (Ru et al. 2023) developed patch token contrast
and class token contrast modules to capture high-level se-
mantics. The intrinsic capability of image-level supervised
semantic segmentation to capture global information makes
it a promising approach to promote scribble-supervised se-
mantic segmentation.

Scribble-based WSSS Early methods can be traced back
to traditional interactive segmentation (Rother, Kolmogorov,
and Blake 2004; Grady 2006), which employ graphical mod-
els to expand the scribble area and extract foreground re-
gions. These methods typically require multiple continu-
ous interactions to extract foreground masks and gener-
ate semantic segmentation results. Recent scribble-based
WSSS domain approaches can be categorized into three
main groups: regularization loss-based methods (Tang et al.
2018a,b), consistency learning-based methods (Pan et al.
2021; Wang et al. 2022), and label diffusion-based meth-
ods (Lin et al. 2016; Vernaza and Chandraker 2017; Xu
et al. 2021), as depicted in Figure 1. Regularization loss-
based methods aim to enhance network robustness by pre-
venting it from being overconfident. Consistency learning-
based methods leverage self-supervised learning strategies
to acquire invariant features. While both these two kinds of
methods contribute to enhanced network robustness, they
still struggle to address the issue of lacking supervision.
Specifically, BPG (Wang et al. 2019) utilizes extra boundary
data with edge information to improve segmentation perfor-
mance. Label diffusion-based approaches utilize scribbles to
generate pseudo-labels using unsupervised models, such as
graph models, and subsequently employ these pseudo-labels
to train semantic segmentation models. However, such a dif-
fusion process fails to effectively exploit the global semantic
information lurking in the image. More recent works (Liang
et al. 2022; Wu et al. 2023) aim to adaptively generate
pseudo-labels using a tree filter and a learnable probabilistic
model with Gaussian prior, respectively. Despite their ad-
vancements, both of these methods still lack image-level su-
pervision, thereby limiting their ability to model global se-
mantic information effectively.
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Figure 2: The overview of our method (CDSP). In the first stage, we train a classification model with the image-level class
labels extracted from the scribbles to generate the globally considered pseudo-label. Then we train a semantic segmentation
model with the globally considered pseudo-label and the scribble label jointly in the second stage. We propose a localization
rectification module (LoRM) and a distance entropy loss to assist the training process.

Other WSSS Methods Points (Bearman et al. 2016; Chen
et al. 2021; Wu et al. 2022, 2023; Liang et al. 2022) and
bounding boxes (Dai, He, and Sun 2015; Papandreou et al.
2015; Khoreva et al. 2017; Zhang et al. 2021a) are also com-
mon annotations in weakly-supervised semantic segmenta-
tion. However, both of them fail to achieve a balance be-
tween training supervision and labor costs. The point-level
annotation requires less labor, but it provides very limited
supervision, hence training a high-accuracy semantic seg-
mentation model is difficult. Bounding boxes suffer from
overlapping with each other when encountering multiple ob-
jects and provide redundant supervision, which may confuse
the model. In comparison, scribbles achieve the best balance
between laboring cost and supervision accuracy.

Method
In this part, we first retrospect the general problem formula-
tion of label diffusion-based methods and their limitations.
Then we introduce CDSP with the pseudo-label generation,
basic supervision, LoRM, and DEL sequentially in detail.

General Problem Formulation
Denoting Ω = {yi|i = 1, ...n} as the ground truth label
set and Ωs as the sparse scribble label, where Ωs ⊂ Ω and
|Ωs| << |Ω|. The objective function of the scribble-based
WSSS can be formulated as:

min c(PΩs
,Ωs), (1)

where c(·, ·) denotes the criterion function, which is usu-
ally cross-entropy. PΩs

denotes the model predictions cor-
responding to the sparse scribble label. Such sparse super-
vision limits the model’s performance and decreases the
certainty of the model. Most existing label diffusion-based
methods make efforts on devising a graphical diffusion
model or learnable probabilistic model with low-level cues

ϕ to generate the pseudo-label Ω̃ = {ỹi|i = 1, ...n} by dif-
fusing the labeled pixels to unlabeled ones:

Ω̃ = ϕ(Ωs). (2)
Combined with Eq 1, a complete objective function for
scribble-based WSSS can be obtained:

min(c(PΩs
,Ωs) + c(PΩ̃, Ω̃)). (3)

As shown in Eq. 2, because only scribble-annotated pixels
are considered, it is hard for the diffusion methods to cap-
ture the global information from the scribbles, making the
diffused label ỹ provide locally considered supervision. Be-
sides, it is evident that the diffused pseudo-label heavily de-
pends on the scribble, where its quality may be undermined
by a shrunk or dropped version of the scribble.

Class-driven Scribble Promotion
To solve the problems mentioned above, we naturally think
of utilizing the class label derived from the sparse scribble
to provide global cues for image-supervised segmentation
when generating the pseudo-label. Denoting ϕ̃ as the classi-
fication model with a fully connected layer, the pseudo-label
Ω̃ can be obtained from the image I ∈ R3×H×W with multi-
class label k ∈ R1×K :

Ω̃ = ϕ̃(I,k), (4)
where all the pixels are taken into account to generate the
pseudo-label. After that, we further introduce the LoRM and
DEL to strike the advantages of both supervisions as shown
in Figure 2. In general, the overall loss function for supervi-
sion can be formulated as:

L = Lseg + Llorm + Lde. (5)
Lseg represents the basic supervision from the scribble and
pseudo-label, Llorm represents the supervision from the
LoRM, and Lde is the supervision from DEL. The details of
each component will be introduced sequentially in the fol-
lowing parts.



Pseudo-label Generation and Basic Supervision
To obtain the pseudo-label with Eq. 4, we first train a multi-
label classification model C(·) followed by a K-class clas-
sifier (e.g. Resnet (He et al. 2016) with an FC layer) with
image-level classes extracted from the scribbles. After the
model converges, the image I is fed into the model to gener-
ate the class activate map of the kth class:

CAMk(I) = ReLU(

C∑
i=1

Wi,kFi), (6)

where F = C(I),F ∈ RC×HW is the feature maps of the
last layer, W is the weight matrix in the classifier. We follow
existing image-supervised semantic segmentation methods
to threshold the CAM into binary masks and integrate them
into a single channel multi-class mask (Wang et al. 2020;
Chen et al. 2022) to generate the pseudo-label Ω̃. It is also
possible to adopt one-stage image-supervised WSSS meth-
ods (Ru et al. 2022; Zhu et al. 2023a) as ϕ̃ to generate the
pseudo-label. With both pseudo-label and scribble, the basic
supervision can be summarized as:

Lseg = Lsegs + Lsegc. (7)

In detail, Lsegs denotes the sparse supervision from the
scribble label in the form of a partial cross-entropy:

Lsegs =
1

|Ωs|
∑

yi∈Ωs

c(yi,pi), (8)

where c(yi,pi) = −
∑K

k=1 yi,klog(pi,k), K is the class
number, pi is the prediction from the model, yi is the one-
hot label. Lsegc denotes the supervision from the pseudo-
label, which can be formulated as a smoothed cross-entropy:

Lsegc =
1

|Ω̃|

∑
yi∈Ω̃

[(1− ϵ)c(yi,pi) + ϵc(
1

K
,pi)], (9)

where ϵ = 0.1 is a regularization item of label smooth-
ing (Müller, Kornblith, and Hinton 2019) to prevent the
model from being over confident.

Localization Rectification Module
Adopting the pseudo-label directly for supervision can lead
to absurd predictions (Wang et al. 2018), particularly evi-
dent when foreground objects are nearby, as illustrated in
Figure 3(c). Rather than correcting the pseudo-label itself,
we are motivated to refine the feature representations of the
model so that the model can adopt pseudo-labels with differ-
ent qualities. To achieve this goal, we propose a novel mod-
ule namely LoRM. The primary concept behind the LoRM is
to leverage the inherent similarity of representations among
foreground pixels belonging to the same semantic class.
By doing so, mispredicted pixels can be refined through
a weighted combination of representations from other pix-
els. Let F ∈ RC×H×W denotes the feature map generated
by the last layer of the segmentation backbone S(·), and
M ∈ RH×W denotes the pseudo mask, as depicted in Fig-
ure 2. The LoRM takes F and M as inputs and operates
accordingly to rectify the representations.

(a) scribble label (b) pseudo label (c) no LoRM (d) with LoRM (e) GT

Figure 3: Visualization results employing resnet50 backbone
and deeplabV2 segmentor. (a) is the original image with
scribble label, (b) is the pseudo-label for training, (c) is the
prediction trained with Lseg , (d) is the prediction trained
with Lseg + Llorm. (e) is the ground truth label.
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As detailed in Figure 4, the feature map F is firstly liner
projected into FQ ∈ RC×H×W and FK ∈ RC×H×W with
a single convolution, then flattened along the row axis into
Q ∈ RC×HW and K ∈ RC×HW . Taking K as the key set
to be refined, and Q as the query set for similarity matching,
we calculate the weighted similarity matrix A by:

A = softmax(
QTK

∥QT ∥C2 ∥K∥C2
), (10)

where A ∈ RHW×HW , softmax is implemented along the
row axis, the L2-norm operation ∥ · ∥C2 of QT and K is im-
plemented along the channel dimension. Each row Ai in the
matrix A describes the similarity between the i-th feature
vector in K and all the HW feature vectors in Q. With the
help of Eq. 10, the i-th feature vector can be refined by refer-
encing the feature vectors in other locations. It is worth not-
ing that, the background vectors vary largely, and contribute
little to the foreground rectification. Therefore, we extract
the foreground mask M ∈ RH×W from the pseudo-label
and flatten it along the row axis, then element-wise multiply
it with A leveraging the broadcast technique:

A′ = flatten(M) ∗A, (11)

so that the background features in each row Ai are largely
suppressed in its masked one A′

i. Then the original fea-
ture map F is flattened along the row axis, and it is matrix-
multiplied with the masked similarity matrix A′:

F̂ = δ ∗ flatten(F)A′, (12)



where δ is a learnable parameter initialized with 1 to control
the rectification degree, F̂ ∈ RC×HW is the refined fea-
ture which is finally reshaped back to RC×H×W . The mean
square error loss (MSE) is implemented on the original fea-
ture F and the refined feature F̂:

Llorm = MSE(F, F̂). (13)

The whole process is realized by efficient matrix operations.
With the supervision of Eq. 13, the LoRM achieves the goal
of rectifying the misled foreground representations by refer-
encing the representations in other foreground locations.

Distance Entropy Loss
The LoRM effectively addresses the misalignment in the
feature space in the foreground area, but the model remains
susceptible to being misled by noisy labels near the object
boundary during later training steps. This could undermine
the efforts of LoRM and reduce the model’s certainty.

To overcome this challenge, it becomes crucial to identify
reliable predictions. We propose that discriminative areas,
such as the surroundings of the scribble, are more reliable
and should be assigned higher confidence. Conversely, in-
discriminative areas like the boundary of the pseudo-label,
generated by global class supervision, are less reliable and
should be assigned lower confidence. Based on this con-
cept, we introduce a distance map strategy, to assign pre-
dictions with different confidence levels according to their
distance from the scribble and the pseudo-label boundary re-
spectively, known as the distance entropy loss. By doing so,
we can better leverage the advantages of both supervisions
during model training.

For the pseudo-label, the pixels around its boundary are
indiscriminative, and such an area is probable to provide
uncertain supervision. Denoting the coordinates of the ith

point in the image as (m,n), and the coordinates of the jth

point on the foreground pseudo-label boundary as (m′, n′),
the distance maps of the pseudo-label is designed as:

dc(i) = min
∀j

(
⌊
√
eλc [(m−m′)2 + (n− n′)2]⌋255

255
), (14)

where dc is a probability ranges in [0, 1] that describes the
minimum Euclidean distance between a point and the set of
pseudo-label boundary points with the distance value trun-
cated to 255 for normalization and the efficiency of data stor-
age. λc is a coefficient to control the scope of the pseudo-
label distance map as shown in Figure 5 (f-h). Denoting Nc

as the number of non-zero elements in dc, the distance en-
tropy of the pseudo-label is formulated as:

Ldc =
1

Nc

Nc∑
i=1

dc(i)pilog(pi). (15)

Compared with the pseudo-label, the scribble is certain
and correct, the pixels lying around the scribble may largely
belong to the same semantic class as the scribble. Moreover,
the scribble lying in the foreground’s inner area provides
correct supervision, which could suppress the noisy super-
vision in pseudo-label. But this confidence should decrease

(a) Pseudo (b) λc = 1 (c) λc = e3 (d) λc = e7

(e) Image (f) λs = 1 (g) λs = e3 (h) λs = e7

Figure 5: Visualization of disance maps with different coef-
ficients for pseudo label boundary (b-d) and scribble (f-h)

with the increment of the distance. Therefore, denoting the
coordinates of the ith point in the image as (m,n), and the
jth foreground scribble point coordinates as (m′, n′), the
distance map of the scribble is designed as:

ds(i) = 1−min
∀j

(
⌊
√
eλs [(m−m′)2 + (n− n′)2]⌋255

255
),

(16)
where ds is a probability ranges in [0, 1] that describes the
minimum Euclidean distance between a point and the set of
scribble points. λs is a coefficient to control the scope of the
scribble distance map as shown in Figure 5(b-d). Denoting
Ns is the number of nonzero elements in ds, the distance
entropy of the scribble is formulated as:

Lds =
1

Ns

Ns∑
i=1

ds(i)pilog(pi), (17)

Finally, the overall distance entropy can be formulated as:

Lde = Lds + Ldc. (18)

Figure 5 presents visualizations of the distance maps for
the scribble and pseudo-label boundaries at different coeffi-
cients of λs and λc. As λs increases, the reliable area deter-
mined by the scribble becomes more prominent. Conversely,
a higher λc endows more weights to the pseudo-label in de-
termining the reliable area. Through the distance entropy
loss, we effectively excavate the reliable areas and reinforce
the prediction certainty of the model by leveraging informa-
tion from both the scribble and the pseudo-label boundaries.

Experiments
Dataset Our experiments were carried out on the widely
used ScribbleSup dataset (Lin et al. 2016), which com-
bines PASCAL VOC2012 and SBD (Hariharan et al. 2011)
datasets with scribble annotations. The dataset includes
10,582 training images and 1,449 validation images. To en-
sure fairness, we used the same scribble generation code as
previous works (Lin et al. 2016; Tang et al. 2018b; Pan et al.
2021), maintaining uniform scribble thickness. Additionally,
we validated our method on scribble-shrink and scribble-
drop introduced by URSS (Pan et al. 2021) to assess its ro-
bustness in diverse scenarios.



(a) I+S (b) baseline (c) URSS (d) TEL (e) AGMM (f) Ours (g) GT

Figure 6: Visualization results comparison. (a) is the image with its scribble annotations. The baseline (b) is deeplabV3+ trained
with only scribble annotations. (c) to (e) are recent methods, and (g) is the ground truth label.

Implementation Details With the pseudo-labels gener-
ated by BMP (Zhu et al. 2023a), we employed representative
segmentation frameworks deeplabV2 (Chen et al. 2017) and
deeplabV3+ (Chen et al. 2018) for method validation and
generating competitive results, respectively. We conducted
a total of 50 epochs with a base learning rate of 1e−3 and
batch size set to 16 for training. To ensure stable training, we
adopted a learning rate warmup strategy, linearly increasing
the learning rate to 1e−3 over the first 10 epochs, followed
by a cosine decay to zero over the next 40 epochs. Validation
results were reported using the last checkpoint. The stochas-
tic gradient descent (SGD) optimizer was utilized with a mo-
mentum of 0.9 and weight decay of 5e−4. Data augmenta-
tion followed the same strategy used in URSS. All exper-
iments were reported with the mIoU metric (%) and con-
ducted on one NVIDIA RTX 4090 24G GPU with an Intel
Xeon Gold 6330 CPU.

Comparison on ScribbleSup We deploy resnet101 (He
et al. 2016) as the backbone and deeplabV3+ as the segmen-
tor with hyper-parameters of (λs = e2, λc = e7) to generate
the best result. The comparison details are recorded in Ta-
ble 1. It is worth noting that, previous works of ScribbleSup,
RAWKS (Vernaza and Chandraker 2017), and NCL (Tang
et al. 2018a) adopted CRF for postprocessing, which was
fairly time-consuming. For recent works of TEL (Liang et al.
2022) and AGMM (Wu et al. 2023), they were designed
for general sparsely supervised segmentation, covering point
level, scribble level, and box level annotations. To ensure
the fairness, we reimplemented them using standard scrib-
bles commonly used in previous works like ScirbbleSup,
NCL, and URSS. As shown in Table 1, our method outper-
forms all the previous methods, exceeding the TEL by 0.6%
and AGMM by 1.6%. The test results reported in the last
column of Table 1 are acquired from PASCAL VOC2012

website (Everingham and Winn 2012). The visualization
comparison of our method using deeplabV3+ with previous
SOTA methods is shown in Figure 6, where recent methods
fail to capture correct global semantics.

Shrink and Drop As scribble-based annotations are flex-
ible, it is common that the user annotates the scribbles with
different length and sometimes drop some of the objects.
Therefore, evaluating the model’s robustness with differ-
ent shrink or drop ratios is also essential. Some shrunk or
dropped samples are presented in Figure 7. Notably, as de-
picted in the figure, an increase in the drop or shrink ratio
leads to a decrease in the model’s performance. Specifically,
when the scribbles are shrunk to points (shrink ratio = 1),
AGMM and TEL experience an approximately 10% perfor-
mance degradation. In contrast, our method exhibits only a
marginal drop within 1%, showcasing its robustness.

Ablation on Components We employ resnet50 backbone
with deeplabV2 as the segmentor and use the Scribble-
Sup (Lin et al. 2016) dataset for training and validation.
The optimal hyper-parameter combination of the distance
entropy loss with all components is found by grid-search,
where λs = 1, λc = 6, then we validate the effectiveness
of each module by eliminating them one by one. The results
are recorded in Table 2. It can be observed from the first
three lines that, employing either scribble or pseudo-label
as the basic supervision generates an unsatisfied result (only
around 67%), while using both of them produces a much bet-
ter result (72.13%). This demonstrates that the scribble and
pseudo-label provide complementary supervision and they
compensate each other. Additionally, only adding Ldc on
the basic supervision degrades the model to almost the same
performance as merely using Lsegc. This issue is attributed
to the overfitting of the noisy labels in pseudo-labels of the
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Figure 7: The experiments on scribble-drop and scribble-shrink dataset with different drop or shrink ratios.

Method Sup Segmentor val test
AFA (Zhang et al. 2021a) I SegFormer 66.0 -
AMN (Lee et al. 2022) I r101+v2 70.7 -
BECO (Rong et al. 2023) I MiT+v3p 73.7 -
TOKO (Ru et al. 2023) I ViT+v2 72.3 -
BoxSup (Dai et al. 2015) B vgg16+v1 62.0 -
WSSL (Papandreou et al. 2015) B vgg16+v1 67.6 -
SDI (Khoreva et al. 2017) B vgg16+v1 65.7 -
BBAM (Lee et al. 2021) B r101+v2 63.7 -
ScribbleSup (Lin et al. 2016) S vgg16+v1 63.1 -
RAWKS (Vernaza et al. 2017) S r101+v1 61.4 -
NCL (Tang et al. 2018a) S r101+v1 72.8 -
KCL (Tang et al. 2018b) S r101+v2 72.9 -
BPG (Wang et al. 2019) S r101+v2 73.2 -
PSI (Xu et al. 2021) S r101+v3p 74.9 -
URSS (Pan et al. 2021) S r101+v2 74.6 73.3
CCL (Wang et al. 2022) S r101+v2 74.4 -
TEL (Liang et al. 2022) S r101+v3p 75.2 75.6
AGMM (Wu et al. 2023) S r101+v3p 74.2 75.7
Ours S r50+v2 73.9 74.2
Ours S r101+v2 75.3 75.3
Ours S r101+v3p 75.9 76.0
baseline (scribble only) S r101+v3p 66.2 69.7

Table 1: Comparison with the state-of-the-arts methods.

model and can be addressed by our LoRM, which improves
the model performance from 67.33% to 73.64%. Compared
with the baseline, all the components obtain a better perfor-
mance, and using them all achieves the best performance.

Ablation on Pseudo-labels We also conducted experi-
ments with different pseudo-labels to assess their influ-
ence, utilizing deeplabV3+ as the segmentor. The results
in Table 3 indicate that, as the pseudo-label base accu-
racy improves, our method exhibits increasing performance.

basic supervision Lde Llorm mIoULsegs Lsegc Lds Ldc

✓ 66.17
✓ 67.23

✓ ✓ 72.13
✓ ✓ ✓ 67.33
✓ ✓ ✓ 73.38
✓ ✓ ✓ ✓ 73.58
✓ ✓ ✓ 73.26
✓ ✓ ✓ ✓ 73.51
✓ ✓ ✓ ✓ 73.64
✓ ✓ ✓ ✓ ✓ 73.91

Table 2: The effectiveness of each component.

This demonstrates that our approach directly benefits from
image-level WSSS methods, making it a promising avenue
for further development.

Method Base acc res50 res101
SEAM (Wang et al. 2020) 64.5 69.8 71.8
AFA (Ru et al. 2022) 66.0 71.5 73.3
BMP (Zhu et al. 2023a) 68.1 73.9 75.9

Table 3: Performance adopting different pseudo-labels.

Conclusion
We propose a class-driven scribble promotion network for
the scribble-based WSSS problem. To address the issue of
model overfitting to noisy labels, we introduce a localization
rectification module. Additionally, a distance entropy loss is
incorporated to enhance the robustness of the network. Ex-
perimental results show that our method outperforms exist-
ing approaches, achieving state-of-the-art performance.
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