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Abstract— Scoliosis diagnosis and assessment depend largely
on the measurement of the Cobb angle in spine X-ray images.
With the emergence of deep learning techniques that employ
landmark detection, tilt prediction, and spine segmentation,
automated Cobb angle measurement has become increasingly
popular. However, these methods encounter difficulties such as
high noise sensitivity, intricate computational procedures, and
exclusive reliance on a single type of morphological information.
In this paper, we introduce the Multiple Morphology-Aware
Network (MMA-Net), a novel framework that improves Cobb
angle measurement accuracy by integrating multiple spine
morphology as attention information. In the MMA-Net, we
first feed spine X-ray images into the segmentation network
to produce multiple morphological information (spine region,
centerline, and boundary) and then concatenate the original
X-ray image with the resulting segmentation maps as input
for the regression module to perform precise Cobb angle
measurement. Furthermore, we devise joint loss functions for
our segmentation and regression network training, respectively.
We evaluate our method on the AASCE challenge dataset
and achieve superior performance with the SMAPE of 7.28%
and the MAE of 3.18°, indicating a strong competitiveness
compared to other outstanding methods. Consequently, we can
offer clinicians automated, efficient, and reliable Cobb angle
measurement.

I. INTRODUCTION

Scoliosis is a prevalent spine condition characterized by
abnormal lateral curvature and rotational deformities in the
spine vertebra. In normal spine appearance from the front
and back, the spine should be straight and centered over the
pelvis while a spine with scoliosis exhibits a C- or S-shaped
curve. Scoliosis affects 1% to 4% adolescents during pre-
puberty growth [1]. If left untreated, scoliosis can not only
compromise patients’ physical appearance but also impair
their psychological well-being and cardiopulmonary function
[2]. Therefore, scoliosis assessment is crucial for adolescents.

Clinicians confirm the diagnosis and assessment of scolio-
sis by X-ray images and a subsequent Cobb angle analysis of
the images. The Cobb angle serves as a quantitative criterion
for assessing the severity of scoliosis, which is defined as the
angle between the line that borders the upper endplate (at the
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Fig. 1. An example of Cobb angle measurement in an X-ray image.

top of the superior end vertebra) and the line that borders the
lower endplate (at the bottom of the inferior end vertebra),
as shown in Fig. 1. In current clinical practice, clinicians
measure the Cobb angle manually. However, this manual
measurement depends on experienced clinicians carefully
identifying each vertebra and measuring the angles on X-
ray images, which is time-consuming. Moreover, it is prone
to subjective biases, resulting in potential variations of 5-10°
in Cobb angle measurement among different clinicians [3].
Hence, there is a need for an accurate and objective method
for automated quantitative measurement of the Cobb angle.

With the advancement of computational technologies,
deep learning methods are widely applied in medical image
processing. In recent years, various studies based on deep
learning have been conducted for automated measurement
of the Cobb angle. According to the network prediction
target type, these methods can be classified into three
categories: landmark-based method, tilt-based method, and
segmentation-based method.

For the landmark-based method, the network detects four
landmarks of each vertebra to obtain its inclination and then
calculates the Cobb angle by rules. Wu et al. [4] proposed
BoostNet, a CNN architecture that improves landmark detec-
tion accuracy by removing outlier features and minimizing
intra-class variance. Chen et al. [5] used RetinaNet to detect
vertebrae and HR-Net to identify four landmarks within the
vertebra area for more precise landmark detection. However,
the quality of angle measurements relies heavily on the
accuracy of landmark detection, and even small coordinates
prediction errors can cause significant deviations in Cobb
angle measurement. Due to the low contrast of X-ray images,
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it is common for the vertebral landmarks to be partially
occluded, making errors in landmark detection inevitable.

For the tilt-based method, the network predicts the tilt
vector of each vertebra, which represents the inclination. Kim
et al. [6] proposed a framework with two neural networks:
Centroid-net for predicting vertebra centroids and M-net for
predicting vertebral-tilt vectors. Similarly, Zou et al. [7]
introduced VLTENet, a network for vertebra localization and
tilt estimation, which improved Cobb angle measurement
accuracy through fusion channel attention modules and a
joint spine loss function. These methods essentially predict
the tilt vector based on landmarks to estimate vertebra incli-
nation, facing similar challenges as landmark-based methods.
Moreover, the computational workflow of these methods is
complex and intricate.

For the segmentation-based method, the network segments
the vertebrae to improve Cobb angle measurement by ex-
tracting and utilizing spine morphological information more
effectively. Wang et al. [8] segmented two spine boundaries
and combined them with the X-ray image to accurately
predict Cobb angle using another network. Lin et al. [9]
proposed Seg4Reg+, which combines spine region segmenta-
tion with Cobb angle regression using a triangle consistency
learning scheme. These methods leverage the implicit rela-
tionship between the overall spine shape and the Cobb angle
to enhance measurement accuracy. However, these methods
only utilize a single morphological information of the spine,
leading to insufficient learning of spine morphology.

In this paper, we present a novel deep-learning framework
called MMA-Net, for automated Cobb angle measurement
in X-ray images. The framework consists of a multiple mor-
phology segmentation network and a multiple morphology-
aware Cobb angle regression network. To leverage the three
types of morphological information (spine region, centerline,
and boundary), we first design a segmentation network
that generates multiple morphological segmentation maps
mentioned above. Then, we combine the obtained three
segmentation maps with the raw X-ray image and feed them
into a regression network to predict Cobb angles accurately.
In contrast to solely using a single type of morphology
as auxiliary information, we believe that providing multiple
morphological information may better facilitate the network
in learning the coarse-to-fine morphology of the spine. We
summarize our main contributions as follows:

• We propose the novel MMA-Net deep-learning frame-
work, which exploits three types of spine morphological
information to achieve Cobb angle measurement with
high efficiency and precision. This auxiliary information
can help the network focus on the proper spine area.

• We develop a joint segmentation loss function that
provides enhanced supervision for both region and
edge segmentation. We also propose a joint regression
loss function that is more task-specific and effectively
optimizes the Cobb angle regression.

• We evaluate the effectiveness of our proposed MMA-
Net on a public dataset sourced from the AASCE
Challenge [4]. Extensive experiments demonstrate that

our method outperforms the state-of-the-art (SOTA)
methods for Cobb angle measurement.

II. METHODS

The pipeline of MMA-Net is illustrated in Fig. 2. The
framework consists of three parts: multiple morphology
segmentation, multiple morphology-aware Cobb angle re-
gression, and joint loss functions. The segmentation network
takes a preprocessed raw X-ray image as input and generates
three types of morphological information (spine region,
centerline, and boundary). After performing a channel-wise
concatenation of the X-ray image and the obtained segmen-
tation maps, we feed them into the regression network for
accurately predicting the Cobb angle.

A. Multiple Morphology Segmentation

The main idea of MMA-Net is to leverage the three types
of spine multiple morphology to help the network achieve
Cobb angle measurement with high efficiency and precision.
Specifically, the spine multiple morphology is defined as
follows: the spine region is the area enclosed by all vertebra
landmarks, representing the overall morphological shape of
the spine. The spine centerline is created by the center points
based on the four corner landmark coordinates, indicating
the vertebra center in the detailed spine curvature. The spine
boundary is composed of two continuous curves formed by
connecting landmarks on the left and right sides, represent-
ing the spinal and vertebral edge shape information. This
multiple morphology can assist the Cobb regression network
by providing auxiliary information from the overall spine
area to the detailed vertebra center and edge information,
from coarse to fine, thus increasing the accuracy of the Cobb
angle measurement. From this point of view, we first design
a multiple morphology segmentation network Res-UNet++
based on ResNet [10] and UNet++ [11].

The Res-UNet++ architecture consists of three main
stages: encoder (feature extraction), decoder (feature recon-
struction), and skip connections (feature fusion). To address
network degradation caused by gradient disappearance and
network depth, we utilize a reshaped ResNet34 in the
encoder stage of Res-UNet++. The reshaped ResNet34 is
primarily composed of res-blocks, each consisting of two
3×3 convolutions, batch normalization, and ReLU activation.
Depending on the kernel size and number of channels, four
types of res-blocks are repeated 3, 4, 6, and 3 times, re-
spectively, forming a 34-layer structure. The resulting feature
vectors are then flattened and passed through the decoder
section. The decoder stage involves upsampling modules.
Each module comprises a 3×3 deconvolution with a stride
of 2, followed by a 3×3 convolution, batch normalization,
and ReLU activation. The output layer undergoes a 1×1
convolution and uses a Sigmoid layer for normalization.
This process helps determine whether each pixel is part
of the segmentation target, producing the final result. In
deep learning-based feature extraction, shallow features are
simple and specific, capturing low-level details, while deep



Fig. 2. Overview of our proposed MMA-Net. First, the raw X-ray image undergoes image preprocessing (crop, resize, histogram equalization) before
entering the next parts. The multiple morphology segmentation network, Res-UNet++, takes the preprocessed X-ray image as input and generates three types
of morphological information (spine region, centerline, boundary). The multiple morphology-aware Cobb angle regression network, based on EfficientNet-
b4, concatenates the X-ray image with the segmentation maps and predicts three Cobb angles. In the figure, MBConvX n×n represents an expansion ratio
of X and a filter size of n in the MBConv block.

features tend to be complex and abstract, capturing high-
level semantic information. Similar to UNet++, Res-UNet++
employs skip connections on dense convolutional blocks to
fuse the shallow and deep features.

In general, the segmentation network Res-UNet++ takes
the preprocessed raw X-ray image as input and outputs
three types of morphological segmentation maps, laying the
foundation for the latter Cobb angle measurement.

B. Multiple Morphology-Aware Cobb Angle Regression

The Cobb angle is typically calculated based on the
morphological information of the spine. However, existing
methods only use a single type of morphological information
to assist Cobb angle measurement. By incorporating the
spine multiple morphology as attention, the MMA-Net pri-
oritizes the proper spine area and extracts valuable features,
thereby boosting the accuracy of Cobb angle measurement.

EfficientNet [12] achieves superior results by simultane-
ously considering input resolution scaling, network depth,
and width. For the Cobb angle regression network, we
adopt EfficientNet-b4 based on its best performance among
the EfficientNet family (EfficientNet b0-b7). EfficientNet-b4
comprises mobile inverted bottleneck convolution (MBConv)
blocks, convolutional layers, a global average pooling layer,

and a fully connected layer. Each MBConv block contains
expansion, depthwise convolution, squeeze-and-excitation
(SE) attention mechanism, and a convolutional layer. In the
expansion stage, the number of channels in the layer is
increased to make features wider. After expansion, depthwise
convolution is conducted using a kernel size of 3×3 or
5×5. SE attention mechanism applies global average pooling
to extract global features and squeeze along the channel
dimension. Finally, we replace the last convolution layer with
the output channel corresponding to three Cobb angles.

In summary, we propose our multiple morphology-aware
Cobb angle regression network based on EfficientNet-b4.
The network takes the raw X-ray image concatenated with
the spine region, centerline, and boundary as input and
outputs three Cobb angles.

C. Joint Segmentation Loss and Joint Regression Loss

Upon observing the X-ray images, it is evident that
the regions of interest (especially the spine centerline and
boundary) occupy a relatively small portion of the entire
image. To enhance the region similarity between prediction
maps and ground truth, we employ dice loss (LDSC) [13]
based on dice similarity coefficient (DSC) to supervise the



training of the segmentation network:

DSC =
2
∑N

i=1 Gi · Pi∑N
i=1(Gi + Pi)

, LDSC = 1− DSC (1)

where N is the number of samples, Gi and Pi is the ground
truth and the prediction of the ith sample.

The edge of the segmentation maps can directly affect
the quality of the entire area. However, commonly used
loss functions like cross-entropy, IOU, and LDSC tend to
bias towards either the foreground or background, failing to
minimize the edge information adequately. To alleviate this
problem, we adopt boundary loss [14] to enhance the edge
details in the three spine segmentation maps. To construct
boundary loss, we use the maximum pooling layer to extract
the edges of the segmentation maps:

Ge
i = Maxpool(1−Gi, θ0)− (1−Gi) (2)

P e
i = Maxpool(1− Pi, θ0)− (1− Pi) (3)

Ge,ext
i = Maxpool(Ge

i , θ1) (4)

P e,ext
i = Maxpool(P e

i , θ1) (5)

where Ge
i and P e

i is the edge of ground truth and prediction
of the ith sample. Ge,ext

i and P e,ext
i denote the expanded

edge. Maxpool applies a pixel-wise maximum pooling op-
eration to the input with a sliding window of size θ0 or
θ1 (set to 3 and 5, respectively). After that precision and
recall can be calculated. Then, the boundary metric (BF1)
and boundary loss (LBF1 ) are defined as:

Pre =

∑N
i=1 P

e
i ·Ge,ext

i∑N
i=1 P

e
i

, Rec =

∑N
i=1 G

e
i · P

e,ext
i∑N

i=1 G
e
i

(6)

BF1 =
2Pre · Rec
Pre + Rec

, LBF1 = 1− BF1 (7)

Finally, our joint segmentation loss Ljoint seg combines LDSC
and LBF1 :

Ljoint seg = LDSC + LBF1 (8)

In order to minimize the error between the predicted angle
and the ground truth in the Cobb angle measurement task, we
design a joint regression loss function Ljoint reg. Serving as the
final evaluation metric in the AASCE Challenge, symmetric
mean absolute percentage error (SMAPE) is an accuracy
measure based on relative errors. In addition, considering
that mean absolute error (MAE) is a metric describing the
absolute error, we add it to our joint regression loss. To
further minimize the angle error, we incorporate the circular
mean absolute error (CMAE), which is specifically designed
for angle-like quantities.

SMAPE = LSMAPE =
1

N

N∑
i=1

∑3
j=1 |Gij − Pij |∑3

j=1 |Gij + Pij + ε|
×100%

(9)

MAE = LMAE =
1

N · 3

N∑
i=1

3∑
j=1

|Gij − Pij | (10)

CMAE = LCMAE =
1

N

N∑
i=1

arctan
∑3

j=1 sin(Gij − Pij)∑3
j=1 cos(Gij − Pij)

(11)
Ljoint reg = LSMAPE + LMAE + LCMAE (12)

where Gij and Pij denote the ground truth and the prediction
of the jth angle of the ith sample. ε is the smooth factor (set
to 1 × 10-30).

III. EXPERIMENTS

A. Datasets

The dataset used for evaluation is the AASCE Challenge
dataset, which comprises 609 spine (AP) X-ray images.
The dataset is divided by the provider into 481 images for
training and 128 images for testing. Each image in the dataset
contains 17 vertebrae, and each vertebra has been manually
annotated by experienced clinicians using four landmarks
located in the corners. The three Cobb angles, proximal tho-
racic (PT), main thoracic (MT), and thoracolumbar/lumbar
(TL) are derived from these landmarks.

B. Implementation Details

Based on the definition of spine multiple morphology
mentioned above in Section 2. A, we generate the ground
truth for multiple morphology segmentation. Besides, we
enhance the clarity of the spine centerline and boundary by
applying a dilation operation with a kernel size of 5. To
standardize the input size for the network, the images are
cropped and resized to a fixed size [512, 256]. To address
the domain gap between training and testing sets, histogram
equalization is applied to both sets to enhance their similarity.
Then we augment the dataset by flipping, rotating [-25°-25°],
and scaling with the random factor between [0.85, 1.25] to
alleviate overfitting during training.

The MMA-Net is implemented using Pytorch on a single
NVIDIA RTX 4090. We train the segmentation network for
400 epochs using Adam optimization with learning rate 1×
10-4 and cosine decay schedule. The batch size is set to 16.
For the Cobb angle regression network, we train the network
for 1200 epochs with a learning rate 1×10-5 and cosine decay
schedule, and the batch size remains at 16.

C. Evaluation Metrics

To assess the performance of the segmentation network,
we employ two evaluation metrics DSC and BF1. The
definitions and descriptions of these metrics can be found
in Equation (1) and (7).

To evaluate the performance of the Cobb angle regression
network, we use five evaluation metrics including MAE,
SMAPE, CMAE [their definition can be found in Equation
(9-11)], Euclidean distance (ED), Manhattan distance (MD),
and Chebyshev distance (CD).

ED =
1

N

N∑
i=1

√√√√ 3∑
j=1

(Gij − Pij)2 (13)



TABLE I
COMPARISON OF SPINE REGION, CENTERLINE, AND BOUNDARY SEGMENTATION PERFORMANCE WITH DIFFERENT METHODS

Method Region Centerline Boundary

DSC [%] BF1 [%] DSC [%] BF1 [%] DSC [%] BF1 [%]
UNet [15] 90.2 66.0 65.8 76.4 80.4 88.0

PSPNet [16] 89.7 69.6 67.3 77.4 78.5 85.9
Res-UNet [17] 91.6 72.3 69.8 78.9 80.3 87.7

UCTransNet [18] 91.1 72.0 70.8 80.3 81.3 88.7
Res-UNet++ (LDSC) 91.6 70.6 71.1 78.0 81.7 88.3

Res-UNet++ (Ljoint seg) 91.8 74.3 71.6 81.4 82.0 89.7

TABLE II
COMPARISON OF COBB ANGLE MEASUREMENT PERFORMANCE WITH SOTAS

Method MAE [°] SMAPE [%] CMAE [°] ED [°] MD [°] CD [°]

SCG-Net [8] - 22.18 4.91 11.23 14.74 10.17
Seg4Reg [19] - 21.71 4.85 11.17 14.55 10.16

KEF [20] - 8.62 - - - -
VF [6] 3.51 7.84 - - - -

Seg4Reg+ [9] 3.73 7.32 - - - -
MMA-Net (Ours) 3.18 7.28 2.26 6.59 9.56 5.68

MD =
1

N

N∑
i=1

3∑
j=1

|Gij − Pij | (14)

CD =
1

N

N∑
i=1

max(|Gi1−Pi1|, |Gi2−Pi2|, |Gi3−Pi3|) (15)

D. Comparison with SOTA Methods

We compare our segmentation network Res-UNet++ with
other SOTA methods including popular medical segmen-
tation baselines (i.e., UNet [15], ResUNet [17] and UC-
TransNet [18]) as well as the semantic segmentation baseline
(i.e., PSPNet [16], which performs superior performance in
the spine segmentation task [9] [19]). All models are trained
with the same experiment settings for a fair comparison.
Table I lists the segmentation performance of the above-
mentioned methods, evaluated by DSC and BF1. We can ob-
serve that Res-UNet++ achieves the best performance across
all three segmentation tasks (spine region, centerline, and
boundary). For instance, Res-UNet++ gets the highest DSC
of 91.8% and the highest BF1 of 74.3% in the spine region
segmentation task. This can potentially be attributed to Res-
UNet++’s strong ability for multi-scale feature integration.

A series of experiments are conducted to compare our
proposed MMA-Net framework with other SOTA methods
on the AASCE challenge dataset. To better validate the
effectiveness of MMA-Net, we choose three different cat-
egories of deep learning-based Cobb angle measurement
methods, including landmark-based method (KEF [20]), tilt-
based method (VF [6]), and segmentation-based method
(SCG-Net [8], Seg4Reg [19], and Seg4Reg+ [9]). TABLE
II demonstrates that our proposed framework exhibits supe-
rior performance advantages over the other five competing

Fig. 3. Examples of multiple morphological information segmentation
(spine region, centerline, and boundary). Each group shows (a) the raw
image, (b) the segmentation results with LDSC, and (c) the segmentation
results with Ljoint seg, respectively. The yellow mask is true positive, the red
mask is false negative, and the green mask is false positive.

methods. Specifically, our proposed framework MMA-Net
not only achieves the lowest MAE, SMAPE, and CMAE
metric values of 3.18°, 7.28%, and 2.26°, respectively, but
also attains the lowest values in other metrics including ED,
MD, and CD. Notably, the error range for manual Cobb
angle measurement by clinicians is 5-10° [3]. Surprisingly,
MMA-Net exhibits an average error (MAE and CMAE) of
less than 3° in predicting the Cobb angle. Therefore, in a
clinical diagnostic setting, our proposed framework has the
potential to effectively assist clinicians in assessing scoliosis
conditions.

E. Ablation Analysis

To verify the effectiveness of our joint segmentation
loss function in Res-UNet++, we conduct an ablation ex-
periment. We compare ResUNet++ trained with dice loss
[Res-UNet++ (LDSC)] and our joint segmentation loss [Res-



TABLE III
ABLATION STUDY RESULTS OF INPUT AND LOSS FUNCTION FOR COBB ANGLE MEASUREMENT

Input components Loss MAE
[°]

SMAPE
[%]

CMAE
[°]

ED
[°]

MD
[°]

CD
[°]Image Region Centerline Boundary LSMAPE LMAE LCMAE

✓ ✓ ✓ ✓ 4.64 10.34 3.25 9.24 13.93 7.63
✓ ✓ ✓ ✓ ✓ 3.64 8.16 2.66 7.34 10.92 6.05
✓ ✓ ✓ ✓ ✓ ✓ 3.43 7.80 2.51 7.09 10.30 6.04
✓ ✓ ✓ ✓ ✓ ✓ ✓ 3.18 7.28 2.26 6.59 9.56 5.68
✓ ✓ ✓ ✓ ✓ 3.70 8.49 2.56 7.54 11.10 6.36
✓ ✓ ✓ ✓ ✓ ✓ 3.49 7.83 2.45 7.13 10.47 6.01

Fig. 4. Representative examples of Grad-CAM heatmaps computed by MMA-Net with different input conditions. Each group consists of five images,
from left to right, labeled as follows: (a) raw image; (b) input (image); (c) input (image + region); (d) input (image + region + centerline); (e) input (image
+ region + centerline + boundary).

UNet++(Ljoint seg)]. TABLE I demonstrates that Res-UNet++
(Ljoint seg) shows a distinct advantage as it achieves a higher
DSC and BF1 value in all three segmentation tasks compared
to Res-UNet++ (LDSC). Furthermore, Fig. 3 visualizes and
compares the segmentation results of Res-UNet++ using
different loss functions. By incorporating boundary loss, the
network can prioritize the edge information, facilitating the
segmentation of the overall area in the spine region task. The
spine centerline and boundary segmentation results demon-
strate that Res-UNet++ (Ljoint seg) preserves connectivity with
less deviation from the ground truth. Overall, our joint seg-
mentation loss enhances the network’s ability to accurately
segment the spine region, centerline, and boundary.

We analyze the impact of input components and loss
functions in our MMA-Net framework. In Table III, we
conduct ablation experiments by combining different input
components and loss functions. As the spine morphological
information is gradually incorporated, the regression network
exhibits improved performance and generalizability in Cobb
angle measurement. This improvement is attributed to the
auxiliary morphological information provided by the spine
region, centerline, and boundary, which allows the network
to focus on learning from the proper spine area. Additionally,
compared to using only LSMAPE, employing our proposed
Ljoint reg brings 1.21% improvement in the SMAPE metric.
The improvement can be explained as the unique design of
combining the three different loss functions is more suit-
able for minimizing the error between predicted angles and

ground truth. Fig. 4 illustrates the influence of different input
conditions on MMA-Net using Grad-CAM heatmaps [21].
The representative examples demonstrate that providing only
raw images causes the network to not accurately focus on the
most curved part of the spine, leading to greater measurement
errors. By incorporating the spine region into the input, the
network extends its attention to a wider scope within the
spine area. Furthermore, introducing the spine centerline and
boundary effectively constrains the network’s attention to the
entire spine area, thereby boosting the performance of Cobb
angle measurement. In our framework, the combination of
all input components and loss functions achieves the best
performance, proving the necessity and effectiveness of each
component and loss function.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel deep-learning framework
MMA-Net for accurate and automated Cobb angle measure-
ment. The main idea is to incorporate multiple morpho-
logical information including spine region, centerline, and
boundary to help the network focus on proper spine area. To
better supervise the network training, we design joint loss
functions for segmentation and regression networks, respec-
tively. Experimental results on the AASCE challenge dataset
demonstrate the superiority of MMA-Net. In the future, we
will explore flexible network architectures that consider the
complexity of clinical diagnosis and ensure accurate Cobb
angle measurement for various clinical applications.
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