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Abstract
Time series analysis is widely used in extensive
areas. Recently, to reduce labeling expenses and
benefit various tasks, self-supervised pre-training
has attracted immense interest. One mainstream
paradigm is masked modeling, which successfully
pre-trains deep models by learning to reconstruct
the masked content based on the unmasked part.
However, since the semantic information of time
series is mainly contained in temporal variations,
the standard way of randomly masking a portion
of time points will ruin vital temporal variations
of time series seriously, making the reconstruction
task too difficult to guide representation learning.
We thus present SimMTM, a Simple pre-training
framework for Masked Time-series Modeling. By
relating masked modeling to manifold learning,
SimMTM proposes to recover masked time points
by the weighted aggregation of multiple neighbors
outside the manifold, which eases the reconstruc-
tion task by assembling ruined but complementary
temporal variations from multiple masked series.
SimMTM further learns to uncover the local struc-
ture of the manifold helpful for masked modeling.
Experimentally, SimMTM achieves state-of-the-
art fine-tuning performance in two canonical time
series analysis tasks: forecasting and classifica-
tion, covering both in- and cross-domain settings.

1. Introduction
Time series analysis has attached immense importance in ex-
tensive real applications, such as financial analysis, energy
planning and etc (Wu et al., 2021; Xu et al., 2021). Vast
amounts of time series are incrementally collected from IoT
and wearable devices. However, the semantic information
of time series is mainly buried in human-indiscernible tem-
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poral variations, making it difficult to annotate. Recently,
self-supervised pre-training has been widely explored (Liu
et al., 2021; Jiang et al., 2022), which benefits deep models
from pretext knowledge learned over large-scale unlabeled
data and further promotes the performance of various down-
stream tasks. Especially, as a well-recognized pre-training
paradigm, masked modeling has achieved great successes
in many areas, such as masked language modeling (MLM)
(Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2020;
Brown et al., 2020; Gao et al., 2020) and masked image
modeling (MIM) (He et al., 2022; Xie et al., 2022b; Li et al.,
2022). This paper extends pre-training methods to time
series, especially masked time-series modeling (MTM).

The canonical technique of masked modeling is to optimize
the model by learning to reconstruct the masked content
based on the unmasked part (Devlin et al., 2018). However,
unlike images and natural languages whose patches or words
contain abundant even redundant semantic information, we
observe that the valuable semantic information of time series
is mainly contained in the temporal variations, such as the
trend, periodicity and peak valley, which can correspond to
weather processes, abnormal faults or etc in the real world.
Therefore, directly masking a portion of time points will ruin
the temporal variations of the original time series seriously,
which as a result makes the reconstruction task too difficult
to guide representation learning of time series.

Masked Series
Multiple

Masked Series

Original
Series

Direct 
Reconstruction

Neighborhood
Aggregation
ŏ

(a) Canonical Masked Modeling (b) SimMTM

Manifold Manifold 

Figure 1. A manifold perspective for understanding SimMTM.

According to the analysis in stacked denoising autoencoders
(Vincent et al., 2010), as shown in Figure 1, we can view
the randomly masked series as the “neighbor” of the origi-
nal time series outside the manifold and the reconstruction
process is to project the masked series back to the manifold
of original series. However, as we analyzed above, direct re-
construction may fail since the essential temporal variations
are ruined by random masking. Inspired by the manifold per-
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spective, we go beyond the direct reconstruction convention
of masked modeling and propose a natural idea as recon-
structing the original data from its multiple “neighbors”, i.e.
multiple masked series. Although the temporal variations of
the original time series have been partially dropped in each
randomly masked series, the multiple randomly masked se-
ries will complement each other, making the reconstruction
process much easier than directly reconstructing the orig-
inal series from a single masked series. This process will
also pre-train the model to uncover the local structure of the
time series manifold implicitly, thereby benefiting masked
modeling and representation learning (Schroff et al., 2015;
Wang & Isola, 2020).

Based on the above insights, in this paper, we propose the
SimMTM as a simple but effective pre-training framework
for time series. Instead of directly reconstructing the masked
time points from unmasked parts, SimMTM recovers the
original time series from multiple randomly masked time
series. Technically, SimMTM presents a neighborhood ag-
gregation design for reconstruction, which is to aggregate
the point-wise representations of time series based on the
similarities learned in the series-wise representation space.
In addition to the reconstruction loss, a constraint loss is
presented to guide the series-wise representation learning
based on the neighborhood assumption of the time series
manifold. Benefiting from the above designs, SimMTM
achieves consistent state-of-the-art in various time series
analysis tasks when fine-tuning the pre-trained model into
downstream tasks, covering both the low-level forecasting
and high-level classification tasks, even if there is a clear do-
main shift between the pre-training and fine-tuning datasets.
Overall, our contributions can be summarized as follows:

• Inspired by the manifold perspective of masking, we
propose a new task for masked time-series modeling,
which reconstructs the original series on the manifold
based on multiple masked series outside the manifold.

• Technically, we present SimMTM as a simple but effec-
tive pre-training framework, which aggregates point-
wise representations for reconstruction based on the
similarities learned in series-wise representation space.

• SimMTM consistently achieves state-of-the-art fine-
tuning performance in typical time series analysis tasks,
including low-level forecasting and high-level classifi-
cation, covering both in- and cross-domain settings.

2. Related Work
2.1. Self-supervised Pre-training

Self-supervised pre-training is an important research topic
for learning generalizable and shared knowledge from large-
scale data and benefiting downstream tasks. Firstly, this

topic has been widely explored in computer vision and nat-
ural language processing. Elaborative manually-designed
self-supervised tasks are presented, which can be roughly
categorized into contrastive learning (He et al., 2020; Chen
et al., 2020) and masked modeling (Devlin et al., 2018; He
et al., 2022). Recently, following previous contrastive learn-
ing and masked modeling paradigms, some self-supervised
pre-training methods for time series have been proposed
(Franceschi et al., 2019; Sarkar & Etemad, 2020; Rebjock
et al., 2021; Sun et al., 2021; Yang & Hong, 2022).

Contrastive learning. The key insight of contrastive
learning is to optimize the representation space based on
the manually designed positive and negative pairs, where
representations of positive pairs are optimized to be close
to each other while negative ones tend to be far apart (Wu
et al., 2018; Jaiswal et al., 2020). The canonical design
presented in SimCLR (Tang et al., 2020) views the different
augmentations of the same sample as positive pairs and the
augmentations among different samples as negative pairs.

Recently, in time series pre-training, many designs of posi-
tive and negative pairs have been proposed by utilizing the
invariant properties of time series. Concretely, to make the
representation learning seamlessly related to temporal varia-
tions, TimCLR (Yang et al., 2022) adopts the DTW (Mueen
& Keogh, 2016) to generate phase-shift and amplitude-
change augmentations, which is more suitable for time se-
ries. TS2Vec (Yue et al., 2022) splits multiple time series
into several patches and further defines the contrastive loss
in both instance-wise and patch-wise aspects. TS-TCC
(Eldele et al., 2021) presents a new temporal contrastive
learning task as making the augmentations predict each
other’s future. TF-C (Zhang et al., 2022) proposes a novel
time-frequency consistency architecture and optimizes time-
based and frequency-based representations of the same ex-
ample to be close to each other. Mixing-up (Wickstrøm
et al., 2022) exploits a data augmentation scheme in which
new samples are generated by mixing two data samples
and the model is optimized to predict the mixing weights.
Note that contrastive learning mainly focuses on the high-
level information (Xie et al., 2022a) and the series-wise
or patch-wise representations inherently mismatch the low-
level tasks, such as time series forecasting. Thus, in this
paper, we focus on the masked modeling paradigm.

Masked modeling. The masked modeling paradigm opti-
mizes the model by learning to reconstruct the masked con-
tent from unmasked part. This paradigm has been widely
explored in computer vision and natural language process-
ing, which is to predict the masked words of a sentence
(Devlin et al., 2018) and masked patches of an image (He
et al., 2022; Xie et al., 2022b) respectively.

As for the time series analysis, TST (Zerveas et al., 2021)
directly adopts the canonical masked modeling paradigm,
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which is learning to predict the removed time points based
on the remaining time points. Afterward, PatchTST (Nie
et al., 2022) learns to predict the masked subseries-level
patches to capture the local semantic information and re-
duce memory usage. However, as we stated before, directly
masking time series will ruin the essential temporal varia-
tions, making the reconstruction too difficult to guide the
representation learning. Unlike the direct reconstruction in
previous works, SimMTM presents a new masked modeling
task, which is reconstructing the original time series from
multiple randomly masked series.

2.2. Understanding Masked Modeling

Masked modeling has been explored in stacked denoising
autoencoders (Vincent et al., 2010), where the masking is
viewed as adding noise to the original data and the masked
modeling is to project the masked data from the neighbor-
hood back to the original manifold, namely denoising. Re-
cently, it has been widely used in pre-training, which can
learn valuable low-level information from data unsuper-
visedly (Xie et al., 2022a). Inspired by the manifold per-
spective, we go beyond the classical denoising process and
project the masked data back to the manifold by aggregating
multiple masked time series within the neighborhood.

3. SimMTM
As aforementioned, to tackle the problem that temporal
variations are ruined by random masking, SimMTM pro-
poses to reconstruct the original time series from multiple
masked time series. To implement this, SimMTM first learns
similarities among multiple time series in the series-wise
representation space and then aggregates the point-wise rep-
resentations of these time series based on the pre-learned
series-wise similarities. Next, we will detail the techniques
in both model architecture and pre-training protocol aspects.

3.1. Overall Architecture

The reconstruction process of SimMTM involves the follow-
ing four modules: masking, representation learning, series-
wise similarity learning and point-wise reconstruction.

Masking. Given {xi}Ni=1 as a mini-batch ofN time series
samples, where xi ∈ RL×C contains L time points and C
observed variates, we can easily generate a set of masked
series for each sample xi by randomly masking a portion
of time points along the temporal dimension, which can be
formalized as follows:

{xj
i}Mj=1 = Maskr(xi), (1)

where r ∈ [0, 1] denotes the masked portion. M is a
hyperparameter for the number of masked time series.
xj
i ∈ RL×C represents the j-th masked time series of xi,

where the values of masked time points are replaced by ze-
ros. Then we can obtain a batch of augmented time series.
For clarity, we present all the (N × (M + 1)) input series
in a set as follows:

X =

N⋃

i=1

(
{xi} ∪ {xj

i}Mj=1

)
. (2)

Representation learning. After the encoder and projec-
tor layer, we can obtain the point-wise representations Z
and series-wise representations S , which is formalized by:

Z =

N⋃

i=1

(
{zi} ∪ {zji}Mj=1

)
= Enocder(X )

S =

N⋃

i=1

(
{si} ∪ {sji}Mj=1

)
= Projector(Z),

(3)

where zi, z
j
i ∈ RL×dmodel and si, s

j
i ∈ R1×dmodel . We employ

a simple MLP layer along the temporal dimension as the
Projector(·) to obtain series-wise representations. As for
the Encoder(·), we adopt the encoder part of Transformer
(Vaswani et al., 2017), which will be transferred to down-
stream tasks during the fine-tuning process.

Series-wise similarity learning. Note that directly aver-
aging multiple masked time series will result in the over-
smoothing problem (Vincent et al., 2010). Thus, to precisely
reconstruct the original time series, we attempt to utilize
the similarities among series-wise representations S for
weighted aggregation, namely exploiting the local structure
of the time series manifold. For simplification, we formalize
the calculation of series-wise similarities as:

R = Sim(S), (4)

where R ∈ R(N×(M+1))×(N×(M+1)) is the matrix of pair-
wise similarities for (N × (M + 1)) input samples in series-
wise representation space, which are measured by the cosine
distance. Concretely, for series-wise representations u,v ∈
S, their similarity is calculated by Ru,v = uvT

‖u‖‖v‖ .

Point-wise aggregation. As shown in Figure 2, based on
the learned series-wise similarities, the aggregation process
for the i-th original time series is:

ẑi =
∑

s′∈S\{si}

exp(Rsi,s′/τ)∑
s′′∈S\{si} exp(Rsi,s′′/τ)

z′, (5)

where τ denotes the temperature hyperparameter. z′ rep-
resents the corresponding point-wise representation of s′

and ẑi ∈ RL×dmodel is the reconstructed point-wise represen-
tation. After the decoder, we can obtain the reconstructed
original time series, namely

{x̂i}Ni=1 = Decoder({ẑi}Ni=1), (6)
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aggregate multiple series based on the series-wise similarity.
Benefiting from the above designs, SimMTM can succes-
sively unify the series-wise and point-wise properties of
time series into representation learning. Experimentally,
SimMTM achieves consistent state-of-the-art in various
time series analysis tasks when finetuning the pre-trained
model into downstream tasks, even if there is a clear domain
gap between the pre-training and finetuning datasets. Our
contributions are summarized as follows:

• To unify the series-wise and point-wise properties of
time series, SimMTM presents a new mask modeling
task, that is reconstructing the original time series from
multiple randomly masked augmentations.

• Based on the basic operation of masking modeling
and data augmentation views of temporal masking, we
implement SimMTM with series-wise contrastive and
point-wise reconstruction modules.

• SimMTM achieves consistent state-of-the-art finetun-
ing performance in various tasks, including time se-
ries forecasting, classification and imputation, covering
both in-domain and cross-domain settings.

2. Related Work
2.1. Self-supervised Pre-training for time series

Self-supervised pre-training has obtained breakthrough
progress in natural language processing (NLP) (Brown et al.,
2020; Devlin et al., 2018; Gao et al., 2020; Radford et al.,
2019) and computer vision (CV) (He et al., 2022; Li et al.,
2022; Radford et al., 2021) to alleviate the problem of over-
reliance on large-scale labeled data in deep learning.

The core of pre-training is to learn generalizable and shared
knowledge that can transfer to different but related tasks. Al-
though, there are already some self-supervised pre-training
methods for time series (Eldele et al., 2021; Shi et al., 2021;
Zerveas et al., 2021; Zhang et al., 2022). Unlike CV and
NLP, which try to learn general visual elements and latent
semantic and grammatical associations through pre-training,
time series still has not yet established such pre-training prin-
ciples and self-supervised signals due to insufficient labeled
data, potential distribution shifts, and temporal dynamics
(Zhang et al., 2022).

2.2. Contrastive Learning for time series

contrastive learning: pulling positive close neighbors and
pushing apart neg- ative non-neighbor

In comparison to the augmentations of other instances, each
instance is more similar to its own augmentation (Chen et al.,
2020; He et al., 2020).

Contrastive learning aims to learn effective representation
by pulling positive close neighbors and pushing apart neg-
ative non-neighbors. It assumes a set of positive examples
D =

�
(xi, x

+
i )
 M

i=1
. We follow the standard contrastive

framework and take a cross-entropy objective with in-batch
negatives: let hi and h+

i denote the representations of xi and
x+

i , the training objective for
�
xi, x

+
i

�
with a mini-batch of

N pairs is:

`i = � log
esim(hi,h

+
i )/⌧

PN
j=1 esim(hi,h

+
j )/⌧

. (1)

2.3. Masked Modeling for time series

masked modeling: removing a portion of the data and learn-
ing to predict the removed content.

3. Method
To adapt to various downstream time series analysis tasks,
we present a simple time series pre-training framework, nam-
ing by SimMTM, which can unify the series-wise and point-
wise properties into learned representations. As shown in
Figure 1, SimMTM involves three key designs: tempo-
ral masking for creating self-supervised tasks, contrastive
among series for series-wise properties and reconstruction
of original time series for point-wise properties.

3.1. Temporal Masking

At the crossroads of contrastive learning and mask modeling,
we find that temporal masking of time series will bring two
types of self-supervised tasks, which corresponds to series-
wise and point-wise properties of time series respectively.

Technically, given a batch of N time series samples {xi}N
i=1,

where xi 2 RL⇥C contains L time points and C observed
variates, we can easily generate a set of series for each sam-
ple xi by randomly masking along the temporal dimension,
which can be formalized as follows:

{xj
i}M

j=1 = Temporal-Maskr(xi), (2)

where r 2 [0, 1] denotes the masked ratio. M is a hyperpa-
rameter for the number of masked time series. xj

i 2 RL⇥C

represents the j-th masked time series of xi, where the val-
ues of masked time points are replaced by zeros. By doing
this, we can obtain a batch of augmented time series. For
clarity, we present the input series in a matrix as follows:

X =
N[

i=1

⇣
{xi} [ {xj

i}M
j=1

⌘
. (3)

From Eq. (3), we can naturally observe the following two
types of self-supervised tasks:
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Figure 1. Overall Architecture of SimMTM, which can reconstruct the original time series based on the aggregation of masked time series.

• Relation between each pair of elements: If we view
the temporal masking as data augmentation, for the
original time series xi, its own maskings {xj

i}M
j=1 are

positive samples since they still share the same series
properties (e.g. trend, periodicity) even though the
latter is masked, while the masked series from other se-
ries are negative samples w.r.t xi. Thus, we can obtain
a series-wise contrastive task by temporal masking.

• Relation between original series and its masked se-
ries: Following the well-acknowledged mask modeling
paradigm, the temporal masking can also be seen as
missing values, where the task is to reconstruct the
masked parts based on the reserved time points, namely
the point-wise reconstruction task.

Instead of directly combining these two types of tasks, we
present a special mask modeling task to unify the series-
wise and point-wise properties of time series and make them
collaborate with each other.

3.2. Series-wise Contrastive

Given the input X after temporal masking, we feed it into
the encoder and obtain the deep representations:

Z =
N[

i=1

⇣
{zi} [ {zj

i}M
j=1

⌘
= Enocder(X ) (4)

where zi, z
j
i 2 RL⇥dmodel . Further, as shown in Figure 1, to

obtain series-wise representations, we employ a temporal
pooler to summarize the temporal information and obtain
the series-wise representations:

S =
N[

i=1

⇣
{si} [ {sj

i}M
j=1

⌘
= Temporal-Pool(Z), (5)

where si, s
j
i 2 R1⇥dmodels denotes series-wise representa-

tions for original time series xi and its mask-augmentation
xj

i respectively. In specific, S contains (M + 1) ⇥ N

representations. Thus, the similarity matrix of S is in
R((M+1)⇥N)⇥((M+1)⇥N), which includes four types of
similarities: original series to original series, original se-
ries to masked series, masked series to original series and
masked series to masked series, where the pair of positive
samples only exists in the latter three types of relations.

By analyzing the relation between each pair of elements in
S , we can derive the series-wise contrastive loss as follows:

Lcontrastive = �
NX

i=1

⇣ MX

j=1

log
eSim(si,s

j
i )/⌧

P
s02S\{si}

�
eSim(si,s0)/⌧

�
⌘

�
NX

i=1

MX

j=1

 
log

eSim(sj
i ,si)/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘

+
X

1kM,k 6=j

log
eSim(sj

i ,sk
i )/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘
!

,

(6)

where Sim(x,y) = xyT and ⌧ is the temperature hyper-
parameter. By optimizing with Lcontrastive, the model can
extract valuable series-wise properties to representations.

3.3. Point-wise Reconstruction

Instead of directly generating missing values for masked
data, we attempt to reconstruct the original time series
{xi}N

i=1 by weighted aggregating the point-wise represen-
tations Z of other series, which is based on the similarity
matrix calculated from series-wise representations S .

Since the similarity matrix of S has already been calcu-
lated in Eq. (6). As shown in Figure 1, we can present the
reconstruction of i-th original time series as follows:

ẑi =
X

s02S\{si}

eSim(si,s
0)/⌧

P
s002S\{si}

�
eSim(si,s00)/⌧

�z0, (7)

where z0 denote the corresponding point-wise representation
of s0 and ẑi 2 RL⇥dmodel are the reconstructed point-wise
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Figure 1. Overall Architecture of SimMTM, which can reconstruct the original time series based on the aggregation of masked time series.

• Relation between each pair of elements: If we view
the temporal masking as data augmentation, for the
original time series xi, its own maskings {xj

i}M
j=1 are

positive samples since they still share the same series
properties (e.g. trend, periodicity) even though the
latter is masked, while the masked series from other se-
ries are negative samples w.r.t xi. Thus, we can obtain
a series-wise contrastive task by temporal masking.

• Relation between original series and its masked se-
ries: Following the well-acknowledged mask modeling
paradigm, the temporal masking can also be seen as
missing values, where the task is to reconstruct the
masked parts based on the reserved time points, namely
the point-wise reconstruction task.

Instead of directly combining these two types of tasks, we
present a special mask modeling task to unify the series-
wise and point-wise properties of time series and make them
collaborate with each other.

3.2. Series-wise Contrastive

Given the input X after temporal masking, we feed it into
the encoder and obtain the deep representations:

Z =

N[

i=1

⇣
{zi} [ {zj

i}M
j=1

⌘
= Enocder(X ) (4)

where zi, z
j
i 2 RL⇥dmodel . Further, as shown in Figure 1, to

obtain series-wise representations, we employ a temporal
pooler to summarize the temporal information and obtain
the series-wise representations:

S =

N[

i=1

⇣
{si} [ {sj

i}M
j=1

⌘
= Temporal-Pool(Z), (5)

where si, s
j
i 2 R1⇥dmodels denotes series-wise representa-

tions for original time series xi and its mask-augmentation
xj

i respectively. In specific, S contains (M + 1) ⇥ N

representations. Thus, the similarity matrix of S is in
R((M+1)⇥N)⇥((M+1)⇥N), which includes four types of
similarities: original series to original series, original se-
ries to masked series, masked series to original series and
masked series to masked series, where the pair of positive
samples only exists in the latter three types of relations.

By analyzing the relation between each pair of elements in
S , we can derive the series-wise contrastive loss as follows:

Lcontrastive = �
NX

i=1

⇣ MX

j=1

log
eSim(si,s

j
i )/⌧

P
s02S\{si}

�
eSim(si,s0)/⌧

�
⌘

�
NX

i=1

MX

j=1

 
log

eSim(sj
i ,si)/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘

+
X

1kM,k 6=j

log
eSim(sj

i ,sk
i )/⌧

P
s02S\{sj

i }

⇣
eSim(sj

i ,s0)/⌧
⌘
!

,

(6)

where Sim(x,y) = xyT and ⌧ is the temperature hyper-
parameter. By optimizing with Lcontrastive, the model can
extract valuable series-wise properties to representations.

3.3. Point-wise Reconstruction

Instead of directly generating missing values for masked
data, we attempt to reconstruct the original time series
{xi}N

i=1 by weighted aggregating the point-wise represen-
tations Z of other series, which is based on the similarity
matrix calculated from series-wise representations S .

Since the similarity matrix of S has already been calcu-
lated in Eq. (6). As shown in Figure 1, we can present the
reconstruction of i-th original time series as follows:

ẑi =
X

s02S\{si}

eSim(si,s
0)/⌧

P
s002S\{si}

�
eSim(si,s00)/⌧

�z0, (7)

where z0 denote the corresponding point-wise representation
of s0 and ẑi 2 RL⇥dmodel are the reconstructed point-wise
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Table 1. In-Domain evaluation in forecasting. The input sequence length is 96 and all results are averaged from 4 different prediction
lengths O 2 {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. Full results can be found in Table 11.

MODELS RANDOM INIT.

MASKING CONTRASTIVE DEEP MODEL

TST TF-C TS-TCC MIXING-UP TS2VEC NSTRANS.? SIMMTM
(2021) (2022) (2021) (2022) (2022) (2022) (OURS)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1 0.605 0.549 0.877 0.720 1.162 0.863 1.152 0.857 1.098 1.933 0.897 0.752 0.570 0.537 0.497 0.476

ETTH2 0.457 0.455 2.550 1.361 2.850 1.349 3.101 1.509 2.723 1.348 2.628 1.381 0.526 0.516 0.415 0.428

ETTM1 0.478 0.464 0.669 0.589 0.744 0.652 1.298 0.893 0.734 0.635 0.669 0.600 0.481 0.456 0.414 0.422

ETTM2 0.416 0.388 1.125 0.771 1.755 0.947 1.153 0.857 1.420 0.912 1.466 0.957 0.306 0.347 0.302 0.342

representations. After a channel projector, we can obtain the
reconstructed original time series x̂i = Projector(ẑi), x̂i 2
RL⇥C . Thus, the point-wise reconstruction loss can be
formalized as follows:

Lreconstruction =

NX

i=1

kxi � x̂ik2
2. (8)

Giving consideration to both series-wise and point-wise
properties, The overall optimization process of SimMTM
can be represented as follows:

min
⇥

Lcontrastive + Lreconstruction, (9)

where ⇥ denotes the set of all parameters of the backbone.
Since the point-wise reconstruction is based on the series-
wise similarity matrix, the series-wise contrastive learning
will also benefit the reconstruction process. And the opti-
mization of point-wise representations with reconstruction
loss will also bring better series-wise representations for the
contrastive loss. Thus, both parts will collaborate with each
other for better representation learning of time series.

4. Experiments
To evaluate the proposed SimMTM, we extensively experi-
ment on nine real-world benchmarks, covering three main-
stream time series analysis tasks: multivariate time series
forecasting, classification, and imputation. The nine bench-
marks cover different numbers of channels, varying series
lengths, and application scenarios, including electricity sys-
tems, neurological healthcare, human activity recognition,
mechanical fault detection, and physical status monitoring.

Then we do self-supervised pre-training to evaluate whether
SimMTM can capture effective representations with two
setups, in-domain and cross-domain, in every type of time
series analysis task. In In-Domain evaluation, we pre-train
and fine-tune using the same or same domain dataset. But
in Cross-Domain evaluation, we pre-train a model on one
pre-training dataset and use it for fine-tuning on different
datasets.

Implementation Table 3 is a summary of experiment
benchmarks. More details about datasets, experiment im-
plementation and model configuration can be found in Ap-
pendix

Baselines To verify the generality and effectiveness of
SimMTM, we compared three advanced and prevalent foun-
dation models for time series on four ETT datasets, in-
cluding NSTransformer (Liu et al., 2022), AutoFormer
(Wu et al., 2021), and vanilla Transformer (Vaswani et al.,
2017); Besides, we also compared five state-of-the-art self-
supervised time series pre-training methods, including the
contrastive learning methods: TF-C (Zhang et al., 2022),
TS-TCC (Eldele et al., 2021), Mixing-up (Wickstrøm et al.,
2022), TS2Vec (Yue et al., 2022), and masked modeling
method: TST (Zerveas et al., 2021)

4.1. Main results

As a self-supervised time series pre-training method, our
proposed SimMTM consistently achieves state-of-the-art
performance on nine real-world time series benchmarks
of three main-stream time series analysis tasks, including
multivariate time series forecasting, classification, and im-
putation.(Figure x-axis: classification; y-axis: forecasting;
z-axis: imputation)

4.2. Forecasting

In-Domain All results of the in-domain evaluation for the
forecasting task in Table 1. We pre-train the model on one
pre-training dataset and finetune it to the same target dataset
to compare the effect of different time series self-supervised
pre-training methods.

As shown in Table1, TST outperforms all the contrastive
pre-training baselines as a masked pre-training method
by randomly masking single time steps of the time se-
ries and reconstructing the missing content, indicating that
masked time series modeling by temporal-wise reconstruc-
tion learns more benefit forecasting representations than
the series-wise contrastive pre-training. Nevertheless, our

Decoder

Point-wise Aggregation

Reconstructed
Original Series

Original &
Masked
Series

Self-supervised
Pre-training

Figure 2. Overall Architecture of SimMTM, which reconstructs the original time series by aggregating multiple masked time series.

where x̂i ∈ RL×C is the reconstruction to xi. Decoder(·)
is instantiated as a simple MLP layer along the channel
dimension following (Xie et al., 2022b).

3.2. Self-supervised Pre-training

Following the masked modeling paradigm, SimMTM is
supervised by a reconstruction loss:

Lreconstruction =

N∑

i=1

‖xi − x̂i‖22. (7)

Note that the reconstruction process is directly based on
the series-wise similarities, while it is hard to guarantee
the model captures the precise similarities without explicit
constraints in the series-wise representation space. Thus, to
avoid trivial aggregation, we also utilize the neighborhood
assumption of the time series manifold to calibrate the struc-
ture of series-wise representation space S. For clarity, we
formalize the neighborhood assumption as follows:

(
{si} ∪ {sji}Mj=1

)
∼
(
{si} ∪ {sji}Mj=1

)

(
{si} ∪ {sji}Mj=1

)
�
(
{sk} ∪ {sjk}Mj=1

)
, i 6= k

(8)

where ∼ and � mean the elements among two sets are as-
sumed as close to and far away from each other respectively.
Eq. (8) indicates that the original time series and its masked
series will present close representations and be far away
from the representations from other series in S. For each
series-wise representation s ∈ S, we define the set of its
assumed close series as s+ ⊂ S. Note that to avoid the
dominating representation, we assume that s /∈ s+. With
the above formalization, we can define manifold constraint
to series-wise representation space as

Lconstraint = −
∑

s∈S

(∑

s′∈s+
log

exp(Rs,s′/τ)∑
s′′∈S\{s} exp(Rs,s′′/τ)

)
,

(9)

which can optimize the learned series-wise representation
to satisfy the neighborhood assumption in Eq. (8) better.

Finally, the overall optimization process of SimMTM can
be represented as follows:

min
Θ
Lreconstruction + λLconstraint, (10)

where Θ denotes the set of all parameters of the deep ar-
chitecture. To trade off the two parts in Eq. (10), we adopt
the tuning strategy presented by Kendall et al., which can
adjust the hyperparameters λ adaptively according to the
homoscedastic uncertainty of each loss.

4. Experiments
To fully evaluate SimMTM, we conduct experiments on two
typical time series analysis tasks: forecasting and classi-
fication, which covers the learning of both low-level and
high-level representations. Further, for each task, we present
the model fine-tuning performance under both in- and cross-
domain settings.

Benchmarks. We summarize the experiment benchmarks
in Table 1, which involves nine real-world datasets in total,
covering two mainstream time series analysis tasks: time se-
ries forecasting and classification. The detailed descriptions
for each dataset are provided in Appendix A.1

Table 1. Summary of experiment benchmarks.

TASKS DATASETS SEMANTIC INFORMATION

FORECAST.

ETTH1 HOURLY
ETTH2 ELECTRICITY DATA

ETTM1 15-MINUTELY
ETTM2 ELECTRICITY DATA

CLASSIFY.

SLEEPEEG EEG DATA
EPILEPSY EEG DATA
FD-B FAULTY DETECTION FOR SYSTEMS
GESTURE PATHS OF HAND MOVEMENT
EMG SIGNAL OF MUSCLE RESPONSES

Baselines. We compare SimMTM with five competitive
self-supervised time series pre-training methods, including
the contrastive learning methods: TF-C (2022), TS-TCC
(2021), Mixing-up (2022), TS2Vec (2022), and the masked
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Table 2. In-domain setting of forecasting the future O time points based on the past 96 time points. All results are averaged from 4
different choices of O ∈ {96, 192, 336, 720}. A smaller MSE or MAE indicates a better prediction. Full results can be found in Table 12.

MODELS

DEEP MODEL CONTRASTIVE MASKING

NSTRANS. TF-C TS-TCC MIXING-UP TS2VEC TST RANDOM INIT. SIMMTM
(2022) (2022) (2021) (2022) (2022) (2021) (OURS)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1 0.570 0.537 1.162 0.863 1.152 0.857 1.098 1.933 0.897 0.752 0.624 0.562 0.605 0.549 0.497 0.476

ETTH2 0.526 0.516 2.850 1.349 3.101 1.509 2.723 1.348 2.628 1.381 0.429 0.458 0.457 0.455 0.415 0.428

ETTM1 0.481 0.456 0.744 0.652 1.298 0.893 0.734 0.635 0.669 0.600 0.494 0.471 0.478 0.464 0.414 0.422

ETTM2 0.306 0.347 1.755 0.947 1.153 0.857 1.420 0.912 1.466 0.957 0.425 0.371 0.416 0.388 0.302 0.342

Table 3. Cross-domain setting of forecasting the future O time points based on the past 96 time points. All results are averaged from 4
different choices of O ∈ {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. Full results are in Table 13.

MODELS

CONTRASTIVE MASKING

TF-C TS-TCC MIXING-UP TS2VEC TST RANDOM INIT. SIMMTM
(2022) (2021) (2022) (2022) (2021) (OURS)

SCENARIO MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH2 → ETTH1 1.135 0.834 1.151 0.856 1.116 0.854 0.944 0.744 0.645 0.535

0.605 0.549

0.499 0.479

ETTM1 → ETTH1 1.200 0.877 1.162 0.864 1.094 0.825 0.957 0.768 0.645 0.533 0.507 0.483

ETTM2 → ETTH1 1.091 0.814 1.119 0.839 1.137 0.855 0.896 0.726 0.632 0.576 0.508 0.484

ETTH1 → ETTM1 0.746 0.652 0.699 0.625 0.731 0.632 0.697 0.616 0.482 0.444

0.478 0.464

0.416 0.421

ETTH2 → ETTM1 0.750 0.654 0.714 0.641 0.709 0.620 0.606 0.556 0.472 0.448 0.424 0.426

ETTM2 → ETTM1 0.758 0.669 0.700 0.630 0.734 0.634 0.756 0.638 0.480 0.455 0.420 0.422

modeling method: TST (2021). Besides, to demonstrate the
generality of SimMTM, we also apply three advanced time
series foundation models as the encoder, including NSTrans-
former (2022), Autoformer (2021), and vanilla Transformer
(2017), where NSTransformer is the state-of-the-art model
for time series forecasting. Without special clarifications,
we adopt the vanilla Transformer (2017) as the encoder for
forecasting. As for the classification, we use the 1D-ResNet
(2016) following (Zhang et al., 2022).

Implementations. We present the fine-tuning perfor-
mance under both in- and cross-domain settings. For the in-
domain setting, we pre-train and fine-tune the model using
the same or same-domain dataset. Especially for the classifi-
cation task, since the SleepEEG and Epilepsy present quite
similar semantic information, we view the “pre-training on
SleepEEG and fine-tuning on Epilepsy” as the in-domain
task, which is denoted as SleepEEG→ Epilepsy for clarity.
As for the cross-domain setting, we pre-train the model on a
certain dataset and fine-tune the encoder to different datasets.
More implementation details can be found in Appendix A.

4.1. Main results

We summarize the model performance in forecasting and
classification tasks of in- and cross-domain settings in Fig-

Cross-DominIn-DominIn-Domain Cross-Domain

Figure 3. Performance comparison of time series pre-training meth-
ods in forecasting (MSE ↓) and classification (F1 ↑) tasks, includ-
ing both in-domain (left) and cross-domain (right) settings.

ure 3. A lower MSE means better forecasting performance
(x-axis of Figure 3), and a higher F1 means better classifica-
tion performance (y-axis). In all these settings, SimMTM
outperforms other baselines significantly. It is also no-
table that although the masking-based method TST (2021)
achieves good performance in the forecasting task, it fails
in the classification task. Besides, the previous contrastive-
based methods fail in low-level forecasting tasks but perform
well in high-level classification tasks. These results indicate
that previous methods cannot cover both the high-level and
low-level tasks simultaneously, highlighting the advantages
of SimMTM in task generality.
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Table 4. In-domain setting of classification. We pre-train the model on SleepEEG and then fine-tune it on the same-domain dataset:
Epilepsy. Accuracy (Acc. %), Precision (Pre. %), Recall (Rec. %), F1 score (F1. %), and their average value (Avg. %) are recorded.

SCENARIOS MODELS ACC. PRE. REC. F1. AVG.

SLEEPEEG
↓

EPILEPSY

RANDOM INIT. 89.83 92.13 74.47 79.59 84.00

CONTRASTIVE

TS2VEC (YUE ET AL., 2022) 93.95 90.59 90.39 90.45 91.35
MIXING-UP (WICKSTRØM ET AL., 2022) 80.21 40.11 50.00 44.51 53.71
TS-TCC (ELDELE ET AL., 2021) 92.53 94.51 81.81 86.33 88.80
TF-C (ZHANG ET AL., 2022) 94.95 94.56 89.08 91.49 92.52

MASKING TST (ZERVEAS ET AL., 2021) 80.21 40.11 50.00 44.51 53.71

SIMMTM (OURS) 95.49 93.36 92.28 92.81 93.49

Table 5. Cross-domain setting of classification. We pre-train a model on SleepEEG and fine-tune it to multiple target datasets. Accuracy
(Acc. %), Precision (Pre. %), Recall (Rec. %), F1 score (F1. %), and their average value (Avg. %) are recorded.

SCENARIOS MODELS ACC. PRE. REC. F1. AVG.

SLEEPEEG
↓

FD-B

RANDOM INIT. 47.36 48.29 52.35 49.11 49.28

CONTRASTIVE

TS2VEC (YUE ET AL., 2022) 47.90 43.39 48.42 43.89 45.90
MIXING-UP (WICKSTRØM ET AL., 2022) 67.89 71.46 76.13 72.73 72.05
TS-TCC (ELDELE ET AL., 2021) 54.99 52.79 63.96 54.18 56.48
TF-C (ZHANG ET AL., 2022) 69.38 75.59 72.02 74.87 72.97

MASKING TST (ZERVEAS ET AL., 2021) 46.40 41.58 45.50 41.34 43.71

SIMMTM (OURS) 69.40 74.18 76.41 75.11 73.78

SLEEPEEG
↓

GESTURE

RANDOM INIT. 42.19 47.51 49.63 48.86 47.05

CONTRASTIVE

TS2VEC (YUE ET AL., 2022) 69.17 65.45 68.54 65.70 67.22
MIXING-UP (WICKSTRØM ET AL., 2022) 69.33 67.19 69.33 64.97 67.71
TS-TCC (ELDELE ET AL., 2021) 71.88 71.35 71.67 69.84 71.19
TF-C (ZHANG ET AL., 2022) 76.42 77.31 74.29 75.72 75.94

MASKING TST (ZERVEAS ET AL., 2021) 69.17 66.60 69.17 66.01 67.74

SIMMTM (OURS) 80.00 79.03 80.00 78.67 79.43

SLEEPEEG
↓

EMG

RANDOM INIT. 77.80 59.09 66.67 62.38 66.49

CONTRASTIVE

TS2VEC (YUE ET AL., 2022) 78.54 80.40 67.85 67.66 73.61
MIXING-UP (WICKSTRØM ET AL., 2022) 30.24 10.99 25.83 15.41 20.62
TS-TCC (ELDELE ET AL., 2021) 78.89 58.51 63.10 59.04 64.89
TF-C (ZHANG ET AL., 2022) 81.71 72.65 81.59 76.83 78.20

MASKING TST (ZERVEAS ET AL., 2021) 46.34 15.45 33.33 21.11 29.06

SIMMTM (OURS) 97.56 98.33 98.04 98.14 98.02

4.2. Forecasting

In-domain. As shown in Table 2, SimMTM outperforms
all baselines consistently, regardless of masking-based or
contrastive-based methods. On the average of all bench-
marks, SimMTM achieves 71.2% MSE reduction and 54.8%
MAE reduction compared to the advanced contrastive base-
line TS2VeC, 17.4% MSE reduction and 15.1% MAE re-
duction compared to the masked modeling baseline TST.
Besides, empowered by SimMTM pre-training, the model
performance is promoted significantly (SimMTM vs. Ran-
dom Init) and surpasses NSTransformer, which is the state-
of-the-art deep model in time series forecasting.

It is also notable that TST (2021) outperforms all the
contrastive-based baselines, where TST directly adopts the

vanilla masking protocol presented by He et al. (2022) into
time series. This indicates that masked modeling based on
point-wise reconstruction will suit the forecasting task better
than the series-wise contrastive pre-training.

Cross-domain. As shown in Table 3, we present multiple
scenarios to verify the fine-tuning performance under the
cross-domain setting, where SimMTM consistently outper-
forms other baselines across all scenarios. Especially on
the cross-domain scenarios ETTh2→ ETTh1 and ETTh1
→ ETTm1, SimMTM even achieves a comparable perfor-
mance w.r.t. the corresponding in-domain pre-training set-
tings. This indicates that SimMTM can learn transferable
knowledge to improve the performance of target tasks in
cross-domain scenarios and outperform other existing time
series pre-training methods.
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Figure 4. Ablations of SimMTM on the reconstruction loss (Lrec.) and constraint loss (Lcon.) in time series forecasting (left part) and
classification (right part) tasks under both in- and cross-domain settings. See Tables 14, 15 and 16 for full results.

Table 6. Representation analysis for different pre-training methods in classification and forecasting tasks. For each model, we calculate
the centered kernel alignment (CKA) similarity (Kornblith et al., 2019) between representations from the first and the last layers. A higher
CKA similarity means more similar representations. For comparison, we also calculate the |∆CKA| between pre-trained and fine-tuned
models, where a smaller value indicates a smaller representation gap between pre-training and fine-tuning.

MODELS
CONTRASTIVE MASKING

TF-C TS-TCC MIXING-UP TS2VEC TST SIMMTM
(2022) (2021) (2022) (2022) (2021) (OURS)

CLASSIFICATION
CKA OF PRE-TRAINED MODEL 84.78% 41.78% 88.94% 70.01% 54.98% 33.87%

CKA OF FINE-TUNE MODEL 86.30% 43.14% 90.06% 69.79% 55.80% 32.84%

|∆CKA| 1.53% 1.35% 1.12% 0.22% 0.82% 1.04%

FORECASTING
CKA OF PRE-TRAINED MODEL 59.35% 43.75% 58.62% 70.20% 99.76% 97.79%
CKA OF FINE-TUNED MODEL 60.60% 60.42% 60.98% 83.73% 94.92% 97.89%

|∆CKA| 1.25% 16.67% 2.36% 13.53% 4.84% 0.11%

SUM |∆CKA| 2.77% 18.02% 3.48% 13.75% 5.66% 1.15%

4.3. Classification

In-domain. We investigate the in-domain pre-training ef-
fect on the time series classification tasks in Table 4, where
we pre-train a model on SleepEEG, followed by the fine-
tuning on Epilepsy. Note that different from forecasting,
the classification task requires the model to learn the high-
level representation of time series. As shown in Table 4, we
can find that the contrastive pre-training baselines TS2Vec
and TFC achieve competitive performances. In contrast,
the vanilla masking-based model TST exhibits a negative
transfer phenomenon in comparison to random initializa-
tion, indicating that contrastive learning is generally more
suitable for classification tasks.

It is surprising that while SimMTM follows the masked
modeling paradigm, with our specially-designed reconstruc-
tion task, it can still achieve the best performance in the
classification task. This is benefited from the neighborhood
aggregation from multiple masked series, which enables the
model to exploit the local structure of time series manifold.

Cross-domain. As presented in Table 5, we experiment
with three cross-domain fine-tuning scenarios, namely from
SleepEEG to FD-B, Gesture and EMG, where the target
datasets are distinct from the pre-training dataset.

Due to the large gap between pre-training and fine-tuning
datasets, the baselines perform poorly in most cases of

the cross-domain setting, while SimMTM still surpasses
other baselines and the random initialization significantly.
These results demonstrate that SimMTM can precisely cap-
ture valuable knowledge from pre-training datasets and uni-
formly benefit extensive downstream datasets. Especially
for the SleepEEG→ EMG, SimMTM remarkably surpasses
previous state-of-the-art TF-C (Avg.: 78.2% vs. 98.02%).

4.4. Model Analysis

Ablations. As shown in Figure 4, we provide ablations to
the two parts of the training loss in SimMTM. It is observed
that both Lreconstruction and Lconstraint are essential to the fi-
nal performance. Especially, for the SleepEEG → EMG
experiment, SimMTM surpasses the random initialization
remarkably, where reconstruction and constraint losses pro-
vide 7.32% and 12.19% absolute improvement respectively.
Besides, we can also find that in comparison to Lreconstruction,
Lconstraint provides more contributions to the final results.
This comes from our design that the constraint loss uncov-
ers a proper time series manifold helpful for reconstruction
from multiple masked series, without which the neighbor-
hood aggregation will degenerate to the trivial average.

Representation analysis. To illustrate the advantages of
SimMTM intuitively, we provide a representation analysis
in Table 6, where we can find the following observations.
Firstly, we can find that the CKA value of SimMTM in the
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Table 7. Performance by applying SimMTM to three advanced
time series forecasting models under the in-domain setting. We
report the MSE and MAE averaged from all prediction lengths.

DATASET ETTH1 ETTH2 ETTM1 ETTM2

MODEL MSE MAE MSE MAE MSE MAE MSE MAE

TRANS. 1.088 0.836 4.103 1.612 0.901 0.704 1.624 0.901
+ OURS 0.927 0.761 3.498 1.487 0.809 0.663 1.322 0.808

GAIN 12.3 % 12.8 % 8.3 % 15.6 %

AUTO. 0.573 0.573 0.550 0.559 0.615 0.528 0.324 0.368
+ OURS 0.561 0.568 0.543 0.555 0.553 0.505 0.315 0.360

GAIN 1.5 % 1.0 % 7.4 % 2.5 %

NSTRANS. 0.570 0.537 0.526 0.516 0.481 0.456 0.306 0.347
+ OURS 0.543 0.527 0.493 0.514 0.431 0.455 0.301 0.345

GAIN 3.4 % 3.3 % 6.5 % 1.0 %

classification task is clearly smaller than the values in the
forecasting task, where the former is a high-level task and
the latter requires low-level representations. These results
demonstrate that SimMTM can learn adaptive representa-
tions for different tasks, which can be benefited from our
design in the pre-training loss. Concretely, the temporal vari-
ations of classification pre-training datasets are much more
diverse than the forecasting datasets. Thus, the Lconstraint
will be easier for optimization in classification, deriving a
smaller CKA value. Secondly, from |∆CKA|, it is observed
that the models pre-trained from SimMTM present a smaller
representation gap w.r.t. the fine-tuned models, which is why
SimMTM can consistently improve downstream tasks.

Model generality. From Table 7, we can find that as a
general time series pre-training framework, SimMTM can
consistently improve the forecasting performance of diverse
base models, even for the state-of-the-art time series fore-
casting model NSTransformer (Liu et al., 2022). This gener-
ality also indicates that by employing advanced base models
as encoders, we can further improve the model performance.

Fine-tuning to limited data scenarios. One essential ap-
plication of pre-training models is to provide prior knowl-
edge for downstream tasks, especially for limited data sce-
narios, which is important to the fast-adaption of deep mod-
els. Thus, to verify the effectiveness of SimMTM and other
pre-training methods in data-limited scenarios, we pre-train
a model on ETTh2 and fine-tune it to ETTh1 with different
choices for the remaining proportions of training data. All
results are presented in Figure 5. we can find that SimMTM
achieves significant performance gains in different data pro-
portions compared to other time series pre-training methods.

Masking strategy. Note that the difficulty of reconstruct-
ing the original time series increases along with the increase
of the masked ratio, but decreases when the number of
neighbor masked series increases. We explore the potential
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Figure 5. Fine-tuning ETTh2 pre-trained model to ETTh1 with
limited data. A lower MSE means better forecasting performance.
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Figure 6. Relationship between the masked ratio r and numbers
of masked series M . All the results are the averaged MSE and
MAE values for the in-domain setting of ETTh1 under the “input-
96-predict-96” setting. A darker red means better performance.

relationship between the masked ratio and the number of
masked series used for reconstruction, namely r and M in
Eq. (2) respectively. The experimental results in Figure 6
show that we need to set M ∝ r to obtain better results,
namely larger masking ratio requires more masked series
for reconstruction. Therefore, a reasonable balance between
the masked ratio and the number of reconstructed series is
critical. Experimentally, we choose the masking ratio as
50% and three masked series throughout this paper.

Linear probing. As shown in Table 8, both fine-tuning
and linear probing of SimMTM can outperform the fully
supervised learning from scratch.

Table 8. Linear probing of SimMTM on in-domain forecasting.
We report MSE and MAE averaged from all prediction lengths.

DATASET ETTM1 ETTM2

METHODS MSE MAE MSE MAE

SUPERVISED 0.478 0.464 0.416 0.388
LINEAR PROBING 0.432 0.426 0.296 0.337
FINE-TUNING 0.414 0.422 0.302 0.342

5. Conclusion
This paper presents SimMTM, a simple pre-training frame-
work for masked time-series modeling. Going beyond the
previous convention in reconstructing the original time se-
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ries from unmasked time points, SimMTM proposes a new
masked modeling task as reconstructing the original se-
ries from its multiple neighbor masked series. Concretely,
SimMTM aggregates the point-wise representations based
on the series-wise similarities, which are carefully con-
strained by the neighborhood assumption on the time series
manifold. Experimentally, SimMTM can furthest bridge
the gap between pre-trained and fine-tuned models, thereby
achieving consistent state-of-the-art in distinct forecasting
and classification tasks, covering both in- and cross-domain
settings. In the future, we will further extend SimMTM to
large-scale and diverse pre-training datasets in pursuing the
foundation model for time series analysis.
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A. Implementation Details
All the experiments are repeated five times and implemented in PyTorch (Paszke et al., 2019) and conducted on a single
NVIDIA TITAN RTX 24GB GPU. We implement the baselines based on their official codes and follow the configuration
from their original papers. For the metrics, we adopt the mean square error (MSE) and mean absolute error (MAE) for the
time series forecasting. As for the classification, accuracy, precision, recall, F1 score, and their average value are recorded.

A.1. Dataset Description

We conduct experiments to evaluate the effect of our method under in- and cross-domain settings on nine real-world datasets
for two typical time series analysis tasks: classification and forecasting, covering diverse application scenarios (electricity
system, neurological healthcare, human activity recognition, mechanical fault detection, and physical status monitoring),
different types of signals (ECG, EMG, acceleration, vibration, and power load), multivariate channel dimensions (from 1 to
7), varying times series lengths (from 96 to 5120) and large span sampling ratio (from 100 Hz to 4000 Hz). The detailed
descriptions of these datasets are summarized in Table 9.

Table 9. Datasets in Forecasting (Fore.) and Classification (Class.) tasks. Samples are in the formalization of Train/Valid/Test.

TASKS DATASETS CHANNELS LENGTH SAMPLES CLASSES INFORMATION FREQUENCY

FORE.
ETTH1,ETTH2 7 {96, 192, 336, 720} 34465/11521/11521 - ELECTRICITY HOURLY

ETTM1,ETTM2 7 {96, 192, 336, 720} 8545/2881/2881 - ELECTRICITY 15 MINS

CLASS.

SLEEPEEG 1 200 371005 5 EEG 100 HZ

EPILEPSY 1 178 60/20/11420 2 EEG 174 HZ

FD-B 1 5120 60/21/135599 3 FAULTY DETECTION 64K HZ

GESTURE 3 315 320/120/120 8 HAND MOVEMENT 100 HZ

EMG 1 1500 122/41/41 3 MUSCLE RESPONSES 4000 HZ

(1) ETT (Zhou et al., 2021) contains the time series of oil temperature and power load collected by electricity transformers
from July 2016 to July 2018. ETT is a group of four subsets with different recorded frequencies: ETTm1 / ETTm2 are
recorded every 15 minutes, and ETTh1 / ETTh2 are recorded every hour.

(2) SLEEPEEG (Kemp et al., 2000) contains 153 whole-night sleeping electroencephalography (EEG) recordings from
82 healthy subjects. We follow the same data preprocessing approach as (Zhang et al., 2022) to segment the EEG signals
without overlapping and get 371,055 univariate brainwaves. Each brainwave is sampled at a frequency of 100 Hz and
associated with one of five sleeping stages: Wake, Non-rapid eye movement (3 sub-states), and Rapid Eye Movement.

(3) EPILEPSY (Andrzejak et al., 2001) monitors the brain activities of 500 subjects with a single-channel EEG sensor.
Every subject is recorded for 23.6 seconds of brain activities. The dataset is sampled at 178 Hz and contains 11,500 samples
in total. We follow the procedure described by (Zhang et al., 2022). The first four classes (eyes open, eyes closed, EEG
measured in the healthy brain region, and EEG measured in the tumor region) of the original five categories of each sample
are classified as positive, and the remaining classes (whether the subject has a seizure episode) are used as negative.

(4) FD-B (Lessmeier et al., 2016) is generated by electromechanical drive systems. It monitors the condition of rolling
bearings and detects their failures based on the monitoring conditions, which include speed, load torque, and radial force.
Concretely, FD-B has 13,640 samples in total. Each recording is sampled at 64k Hz with 3-class labels: undamaged, inner
damaged, and outer damaged.

(5) GESTURE (Liu et al., 2009) are collected from 8 hand gestures based on the paths of hand movement recorded by
an accelerometer. The eight gestures are: hand swiping left, right, up, and down, hand waving in a counterclockwise or
clockwise circle, hand waving in a square, and waving a right arrow respectively. This dataset contains 440 examples of
balanced classification labels that can be used, and each sample contains eight different kinds of gesture categories.

(6) EMG (PhysioBank, 2000) is sampled with 4K Hz and consists of 163 single-channel EMG recordings from the tibialis
anterior muscle of three healthy volunteers suffering from neuropathy and myopathy. Each patient is a classification category,
so each sample is associated with one of three classes.



SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling

A.2. Pre-training and Fine-tuning Configuration

We built two types of pre-training and fine-tuning scenarios, in- and cross-domain, based on the benchmarks of forecasting
and classification tasks to compare the effectiveness of our method and other time series pre-training methods.

For forecasting tasks, we pre-train a model on one of the ETT subsets and fine-tune it to the same dataset to build four
in-domain transfer evaluation scenarios. In cross-domain evaluation, one certain ETT dataset is selected to pre-train a
model, and then we use the other ETT datasets for fine-tuning. Based on the above settings, we constructed eight in- and
cross-domain pre-training and fine-tuning experiments, covering the same dataset with the same sampled frequency, different
datasets with the same sampled frequency, and different datasets with different sampled frequencies.

We pre-train a model for classification tasks on a univariate time series dataset SleepEEG, which has the most complex
temporal dynamics and the most samples. And then fine-tune the model separately on Epilepsy, FD-B, Gesture, and EMG.
We use SleepEEG and Epilepsy, which are both single-channel EEG sensor signals, to construct the in-domain setting for
classification tasks. Furthermore, we constructed three cross-domain evaluation scenarios by pre-training from SleepEEG
and fine-tuning to FD-B, Gesture, and EMG because of fewer commonalities and the enormous gap among these datasets.
Detailed pre-training and fine-tuning settings are shown in Table 10.

Table 10. Pre-training and fine-tuning scenarios in Forecasting (Fore.) and Classification (Class.) tasks.

TASKS EVALUATION SCENARIOS TRANSFER

FORE.

IN-DOMAIN

ETTH1 → ETTH1

The same dataset with the same frequency
ETTH2 → ETTH2

ETTM1 → ETTM1

ETTM2 → ETTM2

CROSS-DOMAIN

ETTH2 → ETTH1
Different datasets with the same frequency

ETTM2 → ETTM1

{ETTM1,ETTM2} → ETTH1
Different datasets with different frequencies

{ETTH1,ETTH2} → ETTM1

CLASS.
IN-DOMAIN SLEEPEEG → EPILEPSY Different datasets in the same domain

CROSS-DOMAIN SLEEPEEG → {FD-B, GESTURE, EMG} Different datasets in different domains

A.3. Model and Training Configuration

Following the previous convention, for forecasting tasks, we choose the encoder part of Transformer (Vaswani et al., 2017)
as the feature extractor. For the classification tasks, we adopt 1D-ResNet (He et al., 2016) as the encoder following (Zhang
et al., 2022). In the pre-training stages, we pre-train the model with different learning rates and batch sizes according to the
pre-train datasets. Then we fine-tune it to downstream forecasting and classification tasks, which are supervised by L2 and
Cross-Entropy losses respectively. The configuration details are shown in Table 11.

Table 11. Model and training configuration in Forecasting (Fore.) and Classification (Class.) tasks.

TASKS
ENCODER PRE-TRAINING FINE-TUNING

LAYERS dmodel LEARNING RATE BATCH SIZE EPOCHS LEARNING RATE LOSS FUNCTION BATCH SIZE EPOCHS

FORE. 4 16 1e-5 64 50 1e-4 L2 32 10

CLASS. 4 128 1e-5 128 100 3e-4 CROSS-ENTROPY 32 100
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B. Comparison of Masked Modeling
To investigate the reconstruction process of different masked modeling methods, we plot both original and reconstructed
time series from TST and SimMTM in Figure 7, where TST (Zerveas et al., 2021) reconstructs the masked time series
based on the unmasked time points directly. From Figure 7, we can find that direct reconstruction is too difficult in time
series, even for the 12.5% masking ratio. As for the 75% masking ratio, TST degenerates more seriously. In view of this
poor reconstruction effect, direct reconstruction is hard to provide reliable guidance to model pre-training. In contrast, our
proposed SimMTM can precisely reconstruct the original time series, thereby benefiting the representation learning. These
results also support our design in neighborhood reconstruction.

TST    Masked 12.5% TST    Masked 25% TST    Masked 50% TST    Masked 75%
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Figure 7. Comparison of different masked modeling pre-training methods in reconstructing time series. All the cases are from ETTh1.

C. Full Results
Due to the space limitation of the main text, we present the full results of all experiments in the main text as follows:

• Results for the in-domain setting of forecasting: Table 12.

• Results for the cross-domain setting of forecasting: Table 13.

• Ablations for the in-domain setting of forecasting: Table 14.

• Ablations for the cross-domain setting of forecasting: Table 15.

• Ablations for the in- and cross-domain setting of classification: Table 16.

• Results for fine-tuning to limited data scenarios: Table 17.
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Table 12. Full results for the in-domain setting of forecasting. Pre-training and fine-tuning are performed on the same ETT datasets. The
standard deviations of SimMTM are within 0.005 for MSE and within 0.004 for MAE.

MODELS SIMMTM NSTRANS. RANDOM INIT. TST TF-C TS-TCC MIXING-UP TS2VEC

METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
H

1

96 0.445 0.445 0.513 0.491 0.520 0.490 0.503 0.527 1.065 0.804 0.953 0.740 1.055 0.802 0.709 0.650

192 0.488 0.467 0.534 0.504 0.596 0.544 0.601 0.552 1.130 0.840 1.108 0.827 1.003 0.797 0.927 0.757

336 0.514 0.478 0.588 0.535 0.650 0.575 0.625 0.541 1.305 0.945 1.243 0.915 1.197 0.890 0.986 0.811

720 0.540 0.513 0.643 0.616 0.653 0.588 0.768 0.628 1.147 0.862 1.306 0.945 1.138 0.849 0.967 0.790

AVG 0.497 0.476 0.570 0.537 0.605 0.549 0.624 0.562 1.162 0.863 1.152 0.857 1.098 1.933 0.897 0.752

E
T

T
H

2

96 0.328 0.371 0.476 0.458 0.358 0.393 0.335 0.392 1.663 1.021 2.788 1.368 1.761 1.072 1.560 1.077

192 0.418 0.425 0.512 0.493 0.491 0.468 0.444 0.441 3.525 1.561 3.178 1.519 2.465 1.223 3.507 1.647

336 0.456 0.455 0.552 0.551 0.492 0.476 0.455 0.494 3.283 1.500 3.350 1.620 3.876 1.680 2.794 1.428

720 0.456 0.461 0.562 0.560 0.486 0.482 0.481 0.504 2.930 1.316 3.089 1.527 2.790 1.415 2.650 1.373

AVG 0.415 0.428 0.526 0.516 0.457 0.455 0.429 0.458 2.850 1.349 3.101 1.509 2.723 1.348 2.628 1.381

E
T

T
M

1

96 0.348 0.384 0.386 0.398 0.414 0.418 0.454 0.456 0.671 0.601 0.848 0.741 0.609 0.553 0.563 0.551

192 0.386 0.406 0.459 0.444 0.467 0.469 0.471 0.490 0.719 0.638 0.704 0.675 0.674 0.608 0.599 0.558

336 0.434 0.435 0.495 0.464 0.499 0.470 0.457 0.451 0.743 0.659 0.955 0.792 0.754 0.649 0.685 0.594

720 0.486 0.463 0.585 0.516 0.533 0.500 0.594 0.488 0.842 0.708 2.683 1.363 0.898 0.729 0.831 0.698

AVG 0.414 0.422 0.481 0.456 0.478 0.464 0.494 0.471 0.744 0.652 1.298 0.893 0.734 0.635 0.669 0.600

E
T

T
M

2

96 0.201 0.284 0.192 0.274 0.229 0.303 0.363 0.301 0.401 0.490 0.956 0.741 0.927 0.717 1.548 1.012

192 0.261 0.317 0.280 0.339 0.396 0.392 0.342 0.364 0.822 0.677 1.110 0.828 1.358 0.882 1.145 0.836

336 0.323 0.355 0.334 0.361 0.516 0.446 0.414 0.361 1.214 0.908 1.243 0.915 1.139 0.829 0.981 0.744

720 0.424 0.412 0.417 0.413 0.521 0.412 0.580 0.456 4.584 1.711 1.302 0.944 2.257 1.220 2.191 1.237

AVG 0.302 0.342 0.306 0.347 0.416 0.388 0.425 0.371 1.755 0.947 1.153 0.857 1.420 0.912 1.466 0.957
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Table 13. Full results for the cross-domain setting of forecasting. The standard deviations of SimMTM are within 0.005 for MSE and
within 0.004 for MAE.

INPUT-96 SIMMTM TST TF-C TS-TCC MIXING-UP TS2VEC

PREDICT-O MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH2
↓

ETTH1

96 0.457 0.455 0.653 0.468 0.996 0.769 0.983 0.763 0.896 0.761 0.849 0.694

192 0.498 0.476 0.658 0.502 1.114 0.821 1.142 0.832 1.061 0.839 0.909 0.738

336 0.516 0.480 0.631 0.561 1.194 0.864 1.259 0.926 1.370 0.940 1.082 0.775

720 0.525 0.505 0.638 0.608 1.235 0.883 1.221 0.902 1.137 0.874 0.934 0.769

AVG 0.499 0.479 0.645 0.535 1.135 0.834 1.151 0.856 1.116 0.854 0.944 0.744

ETTM1
↓

ETTH1

96 0.471 0.460 0.627 0..477 1.166 0.847 1.024 0.793 1.000 0.789 0.991 0.765

192 0.492 0.471 0.628 0.500 1.172 0.853 1.164 0.854 1.055 0.799 0.829 0.699

336 0.527 0.489 0.683 0.554 1.226 0.911 1.291 0.939 1.217 0.899 0.971 0.787

720 0.537 0.513 0.642 0.600 1.235 0.897 1.169 0.869 1.106 0.813 1.037 0.820

AVG 0.507 0.483 0.645 0.533 1.200 0.877 1.162 0.864 1.094 0.825 0.957 0.768

ETTM2
↓

ETTH1

96 0.474 0.463 0.559 0.489 0.968 0.738 0.959 0.745 1.070 0.795 0.783 0.669

192 0.501 0.476 0.600 0.579 1.080 0.801 1.078 0.810 1.180 0.862 0.828 0.691

336 0.528 0.490 0.677 0.572 1.091 0.824 1.242 0.913 1.233 0.922 0.990 0.762

720 0.527 0.508 0.694 0.664 1.226 0.893 1.198 0.888 1.067 0.839 0.985 0.783

AVG 0.508 0.484 0.632 0.576 1.091 0.814 1.119 0.839 1.137 0.855 0.896 0.726

ETTH1
↓

ETTM1

96 0.349 0.384 0.425 0.381 0.672 0.600 0.607 0.554 0.607 0.550 0.605 0.561

192 0.387 0.404 0.495 0.478 0.721 0.639 0.619 0.575 0.675 0.608 0.615 0.561

336 0.438 0.433 0.456 0.441 0.755 0.664 0.781 0.688 0.752 0.647 0.763 0.677

720 0.488 0.463 0.554 0.477 0.837 0.705 0.789 0.682 0.891 0.723 0.805 0.664

AVG 0.416 0.421 0.482 0.444 0.746 0.652 0.699 0.625 0.731 0.632 0.697 0.616

ETTH2
↓

ETTM1

96 0.359 0.392 0..449 0.343 0.677 0.603 0.584 0.545 0.594 0.540 0.466 0.480

192 0.410 0.416 0.477 0..407 0.718 0.638 0.642 0.601 0.595 0.559 0.557 0.532

336 0.430 0.430 0.407 0.519 0.755 0.663 0.821 0.715 0.750 0.651 0.646 0.576

720 0.497 0.465 0.557 0.523 0.848 0.712 0.810 0.702 0.898 0.728 0.752 0.638

AVG 0.424 0.426 0.472 0.448 0.750 0.654 0.714 0.641 0.709 0.620 0.606 0.556

ETTM2
↓

ETTM1

96 0.352 0.384 0.471 0.422 0.610 0.577 0.600 0.553 0.616 0.557 0.586 0.515

192 0.398 0.409 0.495 0.442 0.725 0.657 0.704 0.642 0.674 0.608 0.624 0.562

336 0.430 0.430 0.455 0.424 0.768 0.684 0.743 0.668 0.751 0.646 1.035 0.806

720 0.500 0.465 0.498 0.532 0.927 0.759 0.755 0695 0.896 0.727 0.780 0.669

AVG 0.420 0.422 0.480 0.455 0.758 0.669 0.700 0.630 0.734 0.634 0.756 0.638
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Table 14. Full ablation studies on ETT datasets for the in-domain setting of forecasting.

INPUT-96 RANDOM INIT. W/O LRECONSTRUCTION W/O LCONSTRAINT SIMMTM
PREDICT-O MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1

96 0.520 0.490 0.453 0.450 0.456 0.453 0.445 0.445
192 0.596 0.544 0.512 0.484 0.512 0.484 0.488 0.467
336 0.650 0.575 0.514 0.478 0.510 0.476 0.514 0.478
720 0.653 0.588 0.559 0.530 0.560 0.528 0.540 0.513

AVG 0.605 0.549 0.510 0.486 0.510 0.485 0.497 0.476

ETTH2

96 0.358 0.393 0.339 0.377 0.348 0.384 0.328 0.371
192 0.491 0.468 0.432 0.431 0.432 0.432 0.418 0.425
336 0.492 0.476 0.452 0.454 0.454 0.457 0.456 0.455
720 0.486 0.482 0.478 0.475 0.472 0.471 0.456 0.461

AVG 0.457 0.455 0.425 0.434 0.427 0.436 0.415 0.428

ETTM1

96 0.414 0.418 0.351 0.384 0.364 0.392 0.348 0.384
192 0.467 0.469 0.407 0.414 0.406 0.416 0.386 0.406
336 0.499 0.470 0.440 0.435 0.442 0.432 0.434 0.435
720 0.533 0.500 0.493 0.465 0.503 0.472 0.486 0.463

AVG 0.478 0.464 0.423 0.425 0.428 0.428 0.414 0.422

ETTM2

96 0.229 0.303 0.199 0.282 0.205 0.289 0.201 0.284
192 0.396 0.392 0.268 0.325 0.267 0.321 0.261 0.317
336 0.516 0.446 0.353 0.373 0.353 0.373 0.323 0.355
720 0.521 0.412 0.439 0.422 0.438 0.421 0.424 0.412

AVG 0.521 0.412 0.315 0.351 0.316 0.351 0.302 0.342

Table 15. Full ablation studies on ETT datasets to ETTm1 results for the cross-domain setting of forecasting.

INPUT-96 RANDOM INIT. W/O LRECONSTRUCTION W/O LCONSTRAINT SIMMTM

PREDICT-O MSE MAE MSE MAE MSE MAE MSE MAE

ETTH1
↓

ETTM1

96 0.356 0.388 0.344 0.379 0.366 0.398 0.349 0.384
192 0.399 0.406 0.404 0.408 0.398 0.411 0.387 0.404
336 0.461 0.441 0.431 0.431 0.447 0.439 0.438 0.433
720 0.497 0.468 0.499 0.471 0.494 0.470 0.488 0.463

AVG 0.428 0.426 0.420 0.422 0.426 0.430 0.416 0.421

ETTH2
↓

ETTM1

96 0.356 0.388 0.354 0.387 0.355 0.387 0.359 0.392
192 0.399 0.406 0.405 0.415 0.400 0.413 0.410 0.416
336 0.461 0.441 0.438 0.434 0.444 0.439 0.430 0.430
720 0.497 0.468 0.494 0.461 0.494 0.468 0.497 0.465

AVG 0.428 0.426 0.422 0.424 0.423 0.427 0.424 0.426

ETTM2
↓

ETTM1

96 0.356 0.388 0.344 0.379 0.350 0.384 0.352 0.384
192 0.399 0.406 0.403 0.413 0.414 0.412 0.398 0.409
336 0.461 0.441 0.462 0.449 0.440 0.436 0.430 0.430
720 0.497 0.468 0.499 0.469 0.487 0.460 0.500 0.465

AVG 0.428 0.426 0.427 0.428 0.423 0.423 0.420 0.422

ETT-MERGE
↓

ETTM1

96 0.365 0.388 0.354 0.387 0.362 0.394 0.353 0.383
192 0.399 0.406 0.402 0.412 0.400 0.413 0.393 0.405
336 0.461 0.441 0.427 0.428 0.442 0.440 0.437 0.433
720 0.497 0.468 0.496 0.468 0.493 0.470 0.492 0.460

AVG 0.428 0.426 0.420 0.424 0.424 0.429 0.419 0.420
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Table 16. Full ablation studies for in- and cross-domain settings of classification. Under the Avg metric, the standard deviations of
SimMTM are within 0.2% for Epilepsy, within 0.5% for FD-B, within 0.6% for Gesture, and within 0.1% for EMG.

SCENARIOS ACCURACY (%) PRECISION (%) RECALL (%) F1 (%) AVG (%)

SLEEPEEG
↓

EPILEPSY

RANDOM INIT. 89.83 92.13 74.47 79.59 84.00
W/O LRECONSTRUCTION 94.54 93.87 88.46 90.84 91.93
W/O LCONSTRAINT 91.73 90.57 82.21 85.53 87.51

SIMMTM 95.49 93.36 92.28 92.81 93.49

SLEEPEEG
↓

FD-B

RANDOM INIT. 47.36 48.29 52.35 49.11 49.28
W/O LRECONSTRUCTION 66.11 67.97 74.70 70.01 69.70
W/O LCONSTRAINT 53.71 69.48 62.67 50.86 59.18

SIMMTM 69.40 74.18 76.41 75.11 73.78

SLEEPEEG
↓

GESTURE

RANDOM INIT. 42.19 47.51 49.63 48.86 47.05
W/O LRECONSTRUCTION 78.50 79.01 78.50 77.17 78.30
W/O LCONSTRAINT 76.67 74.91 76.67 74.80 75.76

SIMMTM 80.00 79.03 80.00 78.67 79.43

SLEEPEEG
↓

EMG

RANDOM INIT. 77.80 59.09 66.67 62.38 66.49
W/O LRECONSTRUCTION 90.24 94.20 78.04 81.53 86.00
W/O LCONSTRAINT 85.37 89.97 69.62 70.74 78.93

SIMMTM 97.56 98.33 98.04 98.14 98.02

Table 17. Full results for fine-tuning to limited data scenarios. The input and prediction sequence length is 96. We fine-tune the model
pre-trained from ETTh2 to ETTh1 with different data proportions {10%, 25%, 50%, 75%, 100%}.

MODELS

CONTRASTIVE MASKING

TF-C TS-TCC MIXING-UP TS2VEC TST SIMMTM
(2022) (2021) (2022) (2022) (2021)

METRIC MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTH2
↓

ETTH1

10% 1.410 0.851 1.356 0.882 1.305 0.870 1.331 0.869 0.775 0.602 0.702 0.547
25% 1.270 0.832 1.116 0.792 1.140 0.790 1.131 0.782 0.726 0.552 0.609 0.510
50% 1.169 0.787 1.123 0.799 1.097 0.760 1.125 0.746 0.732 0.553 0.531 0.483
75% 1.113 0.767 1.068 0.773 0.899 0.758 0.863 0.690 0.696 0.539 0.475 0.464

100% 0.996 0.769 0.983 0.763 0.896 0.761 0.849 0.694 0.653 0.468 0.457 0.455


