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Abstract

Most lip-to-speech (LTS) synthesis models are trained
and evaluated under the assumption that the audio-video
pairs in the dataset are perfectly synchronized. In this
work, we show that the commonly used audio-visual
datasets, such as GRID, TCD-TIMIT, and Lip2Wav, can
have data asynchrony issues. Training lip-to-speech with
such datasets may further cause the model asynchrony is-
sue — that is, the generated speech and the input video
are out of sync. To address these asynchrony issues, we
propose a synchronized lip-to-speech (SLTS) model with
an automatic synchronization mechanism (ASM) to correct
data asynchrony and penalize model asynchrony. We fur-
ther demonstrate the limitation of the commonly adopted
evaluation metrics for LTS with asynchronous test data and
introduce an audio alignment frontend before the metrics
sensitive to time alignment for better evaluation. We com-
pare our method with state-of-the-art approaches on con-
ventional and time-aligned metrics to show the benefits of
synchronization training.

1. Introduction
Lip-to-speech (LTS) is the task of reconstructing the

speech audio of a speaker based on the lip movement in a
silent video. With the development of deep learning, many
data-driven deep network models have been proposed to
solve the LTS task.

A common assumption is made in training LTS models:
the time offset between the corresponding video and audio
data is a small constant, or zero. In other words, the au-
dio and video of the same speech are fairly synchronized in
time. However, after analyzing the synchronization errors
using the lip-sync model SyncNet [4], we find that there
exist varying time offsets between audios and videos in
the audio-visual datasets that are commonly used for train-
ing and evaluating LTS models. Some datasets, such as
GRID [5] and TCD-TIMIT [8] have small offsets within
±1 video frames, but others, such as Lip2Wav [21], may
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Figure 1. Illustration of the audio-visual asynchrony problem. The
speaker is saying the word constant.

have larger offsets of multiple video frames. Moreover,
large time offsets can also be introduced with careless data
preprocessing (e.g. using FFmpeg [26] to segment a video
file into smaller chunks1). We call this data asynchrony is-
sue (see Fig. 1a) since the synchronization error comes from
the external dataset instead of the LTS model itself.

Although the synchronization errors are, most of the
time, barely visible to the human naked eye, they can have
a non-negligible impact on LTS model optimization. The
training of LTS models usually utilizes time-wise learning
objectives (e.g. MSE between the audio mel-spectrograms)
that are sensitive to time offsets. The misalignments be-
tween videos and audios in the dataset can mislead the
model to produce asynchronous output, resulting in the
model asynchrony issue (see Fig. 1b). Besides, non-
constant time offsets can cause training instability, making
it difficult for the model to converge on large-scale datasets.

In the evaluation stage, the audio-visual asynchrony of
the test dataset can make objective evaluation difficult as
well. The commonly used objective speech intelligibility
measures, such as STOI [25] and ESTOI [12], require the
reference audio and the testing audio to be perfectly time-
aligned to produce scores that precisely reflect the outcome
of a listening test. When both model and data asynchrony

1Such segmentation exists in the preprocessing pipeline of the Lip2Wav
dataset: https://github.com/Rudrabha/Lip2Wav/blob/
master/download_speaker.sh.
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are present, misalignment between audio and video of the
same speech can lead to inaccurate evaluation if they are
not handled carefully.

In this work, we aim to solve the asynchrony issues in
both the training and evaluation stage. For training, we in-
troduce the synchronized lip-to-speech (SLTS) architecture,
which consists of an automatic synchronization mechanism
(ASM) that ensures the model and data synchronization in
the training stage. Moreover, we propose an intrusive time-
alignment frontend of the popular metrics during evalua-
tion. The proposed frontend decouples the synchronization
errors from conventional evaluation, ensuring reliable scor-
ing despite data asynchrony in the test set.

In the experiment section, we perform extensive exper-
iments on popular audio-visual datasets to show the effec-
tiveness of the proposed automatic synchronization mecha-
nism. The results show that the proposed synchronization
method can handle both the long-term asynchrony that is
visible to the human eye (e.g., more than one video frame
offsets) and subtle synchronization errors (e.g., single-
frame or sub-frame offsets). SLTS also outperforms exist-
ing SOTA models on various objective metrics and achieves
high scores in the subjective listening test.

2. Related Works
2.1. Synchronization in Lip-to-Speech Models

Lip-to-speech models usually consist of components that
provide a large temporal receptive field, such as 3D convo-
lutional stacks [21], LSTM or GRU [1, 19, 21, 29], location
sensitive attention [10,21], and self-attention layers [14,28].
The large receptive field potentially allows the model to
generate offset audio. Kim et al. [14] point out that some
existing LTS models do not explicitly process local visual
features and may produce out-of-sync speech from the in-
put video. They propose additional synchronization losses
during training to handle the model asynchrony problem.
However, their work only considers the model asynchrony
but not the data asynchrony. Our work considers both types
of asynchrony and proposes solutions to these issues.

2.2. Lip-Sync Models

The task of lip-sync aims to predict audio-visual offsets
to correct lip-sync errors. Existing works, such as [4, 15],
assume the audio-visual training data is synchronized and
design different negative pairs to train the model with con-
trastive loss. Chung et al. [4] generate negative (off-sync)
audio-video pairs by randomly shifting the audio and ap-
plies the contrastive loss from Siamese networks [3] to train
their network. Kim et al. [15] instead adopt a softmax-based
contrastive loss and treats the audio-visual features with dif-
ferent time steps as negative pairs. Our proposed data syn-
chronization module (DSM) can also be used for lip-sync.

Compared to existing lip-sync models, DSM does not as-
sume the training data to be synchronized. It processes a
set of candidate pairs and discovers the positive and neg-
ative pairs in an unsupervised manner, driven by the lip-
to-speech learning objective (e.g., MSE loss between mel-
spectrograms).

2.3. End-to-End Lip-to-Speech Models

Lip-to-speech models are often not designed to generate
waveform end-to-end since more compact acoustic repre-
sentations (e.g. mel-spectrogram) are usually sought to re-
duce the task difficulty. The compact acoustic representa-
tions are later converted to audio waveform by a vocoder,
which can be either algorithm-based, such as Griffin-Lim
used in [14,21,29], or a separately trained neural vocoder as
in [10,13,18]. Building end-to-end LTS models [19,28] that
directly generate the audio waveform has recently attracted
more attention as it produces speech with better quality than
the algorithm-based vocoder and does not require separate
training of a neural vocoder. In this work, we also inves-
tigate end-to-end modeling by jointly training a UnivNet
vocoder [11] with the proposed model.

3. Synchronized Lip-to-Speech Synthesis

We first formulate the data and model asynchrony issues
in Sec. 3.1, and then we describe the overall architecture
of the proposed synchronized lip-to-speech (SLTS) model
in Sec. 3.2. We will introduce our key contribution, the au-
tomatic synchronization mechanism (ASM), with a detailed
description on its two components: the data synchronization
module (DSM) and the self-synchronization module (SSM)
in Sec. 3.3.

3.1. Problem Formulation

For simplicity, we first consider the silent lip video
x(t) ∈ RH×W×3 and the corresponding audio y(t) ∈ R as
continuous functions of time t ∈ R. There are two kinds of
asynchrony issues that LTS task faces: the data asynchrony
issue and the model asynchrony issue.

Ideally, a lip video x(t) is expected to be accompanied
by an audio y(t) with a zero time offset. However, in
real-world datasets, a lip video can have a non-constant
time offset of od seconds from the audio (when od > 0,
video lags behind the audio), resulting in an asynchronous
video: xod(t) = x(t− od). We call this od-second data
asynchrony issue as shown in Fig. 1a.

On the other hand, an LTS model can inject its own time
offset to the reconstructed audio due to its exploitation of
temporal context when the data used to train the model is
off-sync. Given a video x(t), the LTS model may instead
reconstruct an audio ŷom(t) = ŷ(t− om) with a time shift
of om (seconds) from its ideal synchronized reconstruc-
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Figure 2. The overview of the proposed SLTS architecture. Where od is due to data asynchrony and om is due to model asynchrony; both
are measured in seconds. The two asynchrony issues are handled by DSM and SSM respectively.

tion ŷ(t). We call this the om-second model asynchrony
as shown in Fig. 1b.

Usually, if there is no data asynchrony, there may not
be model asynchrony neither as the synchronized recon-
structed audio should be the optimal among other asyn-
chronous proposals. On the other hand, data asynchrony
will bring forth model asynchrony, especially when the
audio-visual offsets vary from samples to samples.

3.2. Architecture Overview

Before delving into the solution to the asynchrony prob-
lems, we first introduce the architecture of our LTS model,
which is shown in Fig. 2. In practice, the video and au-
dio data are discrete signals in time. The silent RGB video
data is represented by X ∈ RTv×H×W×3 where Tv, H,W
are the number of video frames, frame height and width,
respectively, and 3 is the number of color channels. The
single-channel audio with Ta samples is represented by
Y ∈ RTa×1. In our work, the video data have the fre-
quency of 25 or 30 Hz depending on the dataset, and the
audio frequency is fixed to 16 kHz.

The proposed synchronized lip-to-speech (SLTS) model
aims to reconstruct an offset-corrected audio Ŷ from a
given silent video Xod which has an offset of od (seconds)
during training to match the learning target (ground truth)
audio Y . During inference, the model can either produce an
audio Ŷ od that is aligned with the offset video Xod without
using ASM, or an ASM-corrected audio Ŷ aligned with the
reference audio Y . The latter is mainly used for evaluation
which requires aligned audios.

SLTS consists of a video frame encoder, a decoder, two
synchronization modules, namely DSM and SSM, and a
vocoder. The frame encoder is based on ResNet18 [9],
which produces Df -dimensional features F ∈ RTv×Df for
each individual video frame. The decoder consists of a con-
former [7] and a Conv1D-based post-net. The 25 Hz frame
features F are first concatenated with the speaker embed-
ding and then sent to the conformer to generate compact
acoustic representations based on local and global contexts.
The compact acoustic representations are then linearly up-

sampled to 100 Hz and fed into the post-net to generate 100
Hz mel-spectrograms M̂ .

Following the decoder is the ASM which consists of
two modules: DSM and SSM, the key contributions of this
work. The two modules learn and correct the data and
model asynchrony respectively during training. DSM takes
the 25 Hz video frame features F , the ground-truth mel-
spectrogram M and the reconstructed mel-spectrogram M̂
as inputs to estimate the time offset for correcting the asyn-
chrony in the audio-visual data. SSM, on the other hand,
generates a self-synchronization loss based on the video
frame features F and the reconstructed mel-spectrogram
M̂ to penalize the model asynchrony.

Finally, an UnivNet-based [11] vocoder is adopted to
generate the audio waveform. Since vocoders are usually
trained with audio segments shorter than 1.0 second, we
perform 0.6-second random segmentation on pairs of offset-
corrected mel-spectrogram and reference audio waveform.
The vocoder is trained with the whole system using multi-
resolution STFT loss and a differentiable STOI loss. We
also allow the option of adopting the multi-resolution spec-
trogram discriminator (MRSD) and the multi-period wave-
form discriminator (MPWD) to further improve subjective
speech quality at the cost of lower objective evaluation
scores.

3.3. Automatic Synchronization Mechanism

The automatic synchronization mechanism consists of
two components: DSM and SSM, both rely on a time off-
set predictor. We describe the time offset predictor first and
then introduce the details of DSM and SSM.

3.3.1 Audio-visual Time Offset Predictor

The time offset predictor (shown in Fig. 3) generates a cat-
egorical distribution for the audio-visual offsets. The range
of values in the categorical distribution of time offsets can
be set manually, usually from 150–300 ms. Different from
SyncNet [4] which predicts synchronization error in the
number of video frames (at 25 Hz in our work), the pro-
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Figure 3. The audio-visual offset predictor.

posed offset predictor predicts offsets in the number of mel-
spectrogram frames (at 100 Hz in our work) to achieve more
precise synchronization.

The offset predictor contains two local feature extractors
for video and audio, respectively. Each feature extractor
contains two Conv1D-BN-GELU blocks, a fully-connected
layer and an L2 normalization operation to generate normal-
ized local embeddings. Only the first Conv1D has a kernel
size of 3, whereas the other has a kernel size of 1. The re-
ceptive field is intentionally restricted to preserve the time
precision of the embeddings, with a slight exploitation of
temporal context to improve feature discriminability. The
video feature extractor has an additional resampling oper-
ation that linearly upsamples the input video features from
25 Hz to 100 Hz before the first Conv1D, so as to match the
sampling rate of mel-spectrograms.

After obtaining the sequence of local video em-
beddings V od =

(
vod

0 , . . . ,vod
Tm−1

)
and local audio

embeddings U = (u0, . . . ,uTm−1), cross-correlation
c = (c−K , . . . , cK) between the two sequences of embed-
dings is computed for samples within a synchronization
radius of K ∈ N+ (which is a hyper-parameter):

ck =

min(k,0)+Tm−1∑
i=max(k,0)

〈vod
i ,ui−k〉. (1)

The cross-correlation is then normalized by the softmax
function with a manually tuned temperature τ to produce
the offset distribution:
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Figure 4. The data synchronization module.

PΘ(k|F od ,M) =
exp(ck/τ)∑K

i=−K exp(ci/τ)
, (2)

where Θ is the parameters of the offset predictor (i.e., the
parameters of the local extractors).

3.3.2 Data Synchronization Module

As shown in Fig. 4, the data synchronization module
(DSM) consists of an offset predictor that first gener-
ates a categorical distribution of the audio-visual offset,
PΘD

(k | F od ,M), based on the video features F od and the
ground truth mel-spectrogram M , with a set of DSM model
parameters ΘD.

The generated offset distribution is flipped along time
to obtain a correction convolution kernel, which is
used to correct the offset mel-spectrogram. A soft-
corrected mel-spectrogram M̂ s =

(
m̂s

0, . . . , m̂
s
Tm−1

)
is

produced by convolving the reconstructed mel-spectrogram
M̂od+om =

(
m̂od+om

0 , . . . , m̂od+om
Tm−1

)
with the kernel:

m̂s
i =

min(K,i)∑
k=max(−K,i−T+1)

PΘe
(−k | F od ,M)sg(m̂od+om

i−k ),

(3)
where sg(·) is the gradient stopping operation. Then, a
soft-DSM loss is computed between the ground-truth mel-
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spectrogram and the soft-corrected mel-spectrogram:

Ls
DSM (M ,M̂ s) := ‖M − M̂ s‖22. (4)

When generating the soft-corrected mel-spectrogram,
the gradient stop operation on the reconstructed mel-
spectrogram is critical. The soft-corrected mel-spectrogram
is a combination of numerous offset proposals, which may
include some wrong proposals. These wrong proposals may
cause erroneous gradients backpropagated to the decoder,
forcing it to learn several wrong targets at once, hence caus-
ing convergence problems.

To ensure that the decoder only learns from the most
probable offset proposal, alongside the soft-corrected
mel-spectrogram, a hard-corrected mel-spectrogram
M̂h = (m̂h

0 , . . . , m̂
h
T−1) is computed by convolving the

reconstructed mel-spectrogram with another correction
kernel that suppresses the less likely offsets, giving the
following result:

m̂h
i =

{
m̂od+om

i−k̂
, i ≥ k̂

0, i < k̂
, (5)

where k̂ = arg max
k

P (k | F od ,M̂), and the out-of-bound

frames i < k̂ are set to zero and excluded in the loss com-
putation. Similar to the soft-DSM loss, we adopt the MSE
loss on the hard-corrected mel-spectrogram:

Lh
DSM (M ,M̂h) := ‖M − M̂h‖22. (6)

Ideally, after the DSM is trained to convergence, a shift of
−k̂ frames on the reconstructed mel-spectrogram will cor-
rect the od-second data asynchrony.

3.3.3 Self-Synchronization Module

Besides the od-second data asynchrony, there can also
be om-second model asynchrony due to the large recep-
tive field of the audio decoder. We introduce a self-
synchronization module (SSM) that tries to minimize the
potential model asynchrony.

Similar to the DSM, SSM also contains an independent
offset predictor parameterized by ΘS to generate an offset
distribution, PΘS

(k | F od ,M̂od+om). Unlike DSM, SSM
focuses on reducing the offsets between the video features
F od and the reconstructed mel-spectrogram M̂od+om by
minimizing the following SSM loss:

LSSM (F od ,M̂od+om) := − logPΘS
(k = 0 | F od ,M̂od+om).

(7)
Empirically, we find that SSM improves the training sta-

bility of DSM. Without SSM, DSM sometimes does not
learn effective offsets, and the predicted offset collapses to
a constant. We hypothesize that this may be attributed to
the propagation of noisy gradients from the otherwise un-
controlled soft DSM loss.
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Figure 5. Offsets produced by SyncNet. The figures under speaker
names are confidence scores produced by SyncNet. A higher score
means SyncNet has greater confidence in its outputs. Only the
offsets having confidence greater than 3.0 are counted.

Dataset Speakers Train / Val / Test Samples Train / Val / Test Hours

GRID-4S [5] 4 3,600 / 200 / 200 2.98 / 0.17 / 0.17
TCD-TIMIT-LS [8] 3 1,017 / 57 / 57 1.64 / 0.09 / 0.09
Lip2Wav [21] 5 15,894 / 376 / 487 115.16 / 2.48 / 3.37

Table 1. Statistics for dataset splits used in our experiments. All
speakers from the same dataset are present in all training, valida-
tion, and test splits.

4. Datasets, Metrics and Training Details

4.1. Datasets Overview

GRID-4S is a four-speaker subset of the GRID audio-
visual corpus [5]. The subset consists of two male speakers
(s1, s2) and two female speakers (s4, s29), and is commonly
used in the literature [14,21] to evaluate lip-to-speech mod-
els. The corpus is recorded in the laboratory condition. It
has a small vocabulary and an artificial grammar.

TCD-TIMIT-LS [8] is another audio-visual corpus pro-
duced in the laboratory condition using real English sen-
tences with a larger vocabulary. The original TCD-
TIMIT dataset is produced by three professionally-trained
lip speakers and 59 normal-speaking volunteers. Following
the literature [14,21], we adopt only the data from the three
professionally-trained lip speakers.

Lip2Wav [21] is a large-scale audio-visual dataset col-
lected from YouTube lecture videos. The dataset includes
five different speakers, all of whom are used in our experi-
ments.

4.1.1 Data Preparation

For GRID-4S and TCD-TIMIT-LS datasets, we follow the
convention [17,21,27] and randomly select 90% of the data
samples from each speaker for training, 5% for validation,
and 5% for testing. For Lip2Wav, we adopt the official data
split2. We adopt S3FD [30] face detector to obtain the facial
region of the videos for all three datasets. Before face detec-
tion, the long videos in the Lip2Wav datasets are segmented
into chunks with a maximum duration of 30 seconds, fol-

2Official Lip2Wav splits: https://github.com/Rudrabha/
Lip2Wav/tree/master/Dataset.
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Dataset Model STOI ↑ ESTOI ↑ PESQ ↑ MCD ↓ a-STOI ↑ a-ESTOI ↑ a-PESQ ↑ a-MCD ↓ Offset-R2 (F) ↑ Offset-R2 (SN) ↑ w-WER (%) ↓ k-WER (%) ↓

GRID-4S
VCA-GAN 0.688 0.500 1.917 29.720 0.732 0.552 1.910 28.437 -0.002† -0.030† 23.67 8.50
SLTS w/o ASM 0.698 0.519 1.906 27.438 0.753 0.582 1.903 25.684 -0.001† -0.030† 15.33 4.92
SLTS 0.703 0.525 1.932 27.327 0.761 0.592 1.933 25.404 0.862 0.383 12.83 2.92

TCD-TIMIT-LS
VCA-GAN 0.577 0.398 1.373 33.450 0.593 0.412 1.376 33.175 -0.038† -0.164† 79.96 -
SLTS w/o ASM 0.622 0.460 1.480 30.334 0.650 0.496 1.482 29.667 -0.585 † -0.164† 50.40 -
SLTS 0.606 0.445 1.480 30.818 0.664 0.511 1.480 29.430 0.796 0.525 38.06 -

Lip2Wav chem
VCA-GAN 0.543 0.364 1.363 37.827 0.659 0.477 1.365 34.600 -0.000† -2.725† 48.20 -
SLTS w/o ASM 0.603 0.445 1.478 34.104 0.736 0.578 1.481 30.291 -0.005 † -2.725† 33.03 -
SLTS 0.215 0.049 1.520 49.481 0.760 0.616 1.515 29.130 0.982 0.704 24.69 -

Table 2. Comparison between VCA-GAN [14], SLTS without ASM during training, and SLTS. a-: metrics with the time alignment
frontend. †: results computed with a dummy offset predictor (i.e., always predicts 0). By default, the reference text used to compute WER
is from the dataset, except for Lip2Wav, where the reference text is obtained by applying the Whisper ASR on the reference speech.

lowing the official Lip2Wav preprocessing pipeline. The
statistics of the preprocessed datasets are shown in Tab. 1.

4.1.2 Asynchrony Analysis

To study the asynchrony in the datasets, we use a pretrained
SyncNet3 [4] to estimate the degree of asynchrony on the
three audio-visual datasets. SyncNet takes a 25 FPS video
and 16 kHz audio as inputs and produces the audio-visual
offsets with a resolution of 40 ms. The statistics of the Sync-
Net results are shown in Fig. 5. Except for a few outliers,
the audio-visual offsets of the GRID-4S and TCD-TIMIT-
LS data samples center around 0 ms, with some slightly
off-sync by one video frame (i.e.,±40 ms). In the Lip2Wav
dataset, offsets of the chess speaker center around -200∼-
250 ms, while offsets from other speakers center around
-80 ms. The audio lag of Lip2Wav data is mainly caused
by video segmentation during data preprocessing, except
for those from the chess speaker, whose original videos are
generally ahead of time.

4.2. Evaluation Metrics Overview

PESQ [23]: evaluates the perceptual quality of a gen-
erated speech compared to a clean reference speech. We
follow [14, 21] to report the narrow-band MOS-LQO score
of PESQ.

STOI [25] & ESTOI [12]: predicts the results of in-
telligibility listening tests based on the correlation of the
short-time temporal envelopes between the generated and
clean speech. Both metrics assume that the audios are time-
aligned.

MCD: is another alignment-sensitive metric that mea-
sures the differences between two sequences of mel cepstra
extracted from the generated audio and reference audio.

WER: counts the word errors in the transcriptions of the
generated audios. We use the medium version of Whis-
per [22] to obtain the transcriptions, and the WER computed
from them is denoted as w-WER. GRID-4S utterances are

3Implementation and model checkpoint of SyncNet obtained here:
https://github.com/joonson/syncnet_python.

generated by an artificial grammar with a constrained vo-
cabulary. Whisper, however, is a general large-vocabulary
speech recognizer. It produces a lot of homophones (e.g.,
‘red’ → ‘read’, ‘blue’ → ‘blew’) on GRID-4S which are
counted as errors, resulting in inaccurate evaluation. Thus,
we train an ad-hoc Kaldi ASR model [20] with the GRID-
4S training set to recognize the generated GRID-4S audios,
and denote the resulting WER as k-WER.

Offset-R2: is the coefficient of determination between
the offsets produced by DSM and another approach, such
as the metrics frontend (see Sec. 4.3). It is denoted as
Offset-R2 (F) and Offset-R2 (SN) if the other approach is
the metrics frontend and SyncNet, respectively.

4.3. Time Alignment Metric Frontend

Alignment-sensitive metrics, such as STOI, ESTOI, and
MCD, can produce inaccurate scores when the two input
audios are not time-aligned (details discussed in Sec. 5.2).
We propose a time alignment frontend to address the issue
by first computing mel-spectrograms from both the gener-
ated and reference audios with a window size of 640 and
a hop length of 160, and then normalizing them along the
channel dimension. Sixty-one alignment proposals are then
created by shifting the generated audio from −300 ms to
300 ms with a step size of 10 ms. The shift that produces
the minimum mean squared error between the two normal-
ized mel-spectrograms is selected to correct the generated
audio before scoring. The negative of the optimal shift is
called the front-end offset, denoted as of .

4.4. Implementation and Training Details

We limit the video clip length to a maximum of 3 sec-
onds via random chunking and adopt a batch size of 32 to
train our SLTS models. Adam optimizer [16] with a lin-
ear warm-up and cosine annealing learning rate is adopted,
where the number of warm-up steps is 1k and the maxi-
mum learning rate of 5× 10−4. We choose conformer (S)
for GRID and TCD-TIMIT models and conformer (M) for
Lip2Wav models. All SLTS models are trained for a max-
imum of 50k iterations (each taking around 1 day on an
RTX 2080-Ti). To fit the model into the VRAM, we adopt
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Offset STOI ↑ ESTOI ↑ MCD ↓
0 ms 1.000 1.000 0.000
4 ms 0.916 0.869 11.651
8 ms 0.770 0.708 15.605
12 ms 0.660 0.594 18.712

Table 3. The impact of offsets on the alignment-sensitive metrics.
The results are computed on two copies of the same audio (bbaf2n
from GRID-4S) with one shifted to simulate asynchrony.

the gradient checkpointing [2] on the frame encoder to re-
duce VRAM consumption. For comparison, we also train
the SOTA VCA-GAN model [14] for a maximum number
of 70k iterations with the Adam optimizer and a fixed learn-
ing rate of 1× 10−4. A smaller batch size of 24 is adopted
due to the larger memory consumption of the model.

5. Experimental Results and Discussion
Unless otherwise stated, the reported results are obtained

from models with the best time-aligned STOI scores on
the validation set throughout training. The time-aligned
STOI is computed after every 1k iterations for GRID-4S
and TCD-TIMIT-LS, and 5k iterations for Lip2Wav. The
results are computed on the original test set without apply-
ing an additional lip-sync method by default.

5.1. Effectiveness of Synchronization Training

Regardless of the severity of the asynchrony prob-
lems in the datasets, SLTS models score higher than its
non-synchronized competing models (i.e., VCA-GAN and
SLTS without ASM) according to the time-aligned met-
rics (see Tab. 2). The results show that the synchroniza-
tion training benefits the speech intelligibility, perceptual
quality, and mel cepstra similarity of the reconstructed au-
dios when appropriately evaluated. Moreover, the con-
tent correctness of the reconstructed audio is also improved
with synchronization training, measured by WER. Com-
pared to the GRID-4S and TCD-TIMIT-LS datasets, the
Lip2Wav chem dataset, which has a more severe data asyn-
chrony issue, achieves a more significant performance gain,
especially on intelligibility and content correctness. This
suggests that the severe asynchrony in the dataset does not
only produce off-sync generated audios but also the quality
of the generated speech.

5.2. Limitation of Non-aligned Metrics

Though models trained with the ASM achieve better in-
telligibility, perceptual quality, and content correctness as
measured by the alignment insensitive metrics (e.g., PESQ
and WER) and the metrics with alignment frontend, they
may not consistently score better on vanilla STOI, ESTOI,
and MCD. For these metrics, we notice that a slight offset
between the testing and reference audios can have a large

Method a-STOI ↑ a-ESTOI ↑ a-PESQ ↑ a-MCD ↓ w-WER (%) MOS (I) ↓ ↑ MOS (N) ↑
VCA-GAN 0.659 0.477 1.365 34.600 48.20 3.250± 0.225 2.042± 0.179
SLTS 0.760 0.616 1.515 29.130 24.69 3.633± 0.228 1.858± 0.171
SLTS w/ dis 0.738 0.583 1.405 31.856 26.55 4.483 ± 0.139 4.267 ± 0.153

Real Voice 1.000 1.000 4.549 0.000 0.00 4.808± 0.100 4.975± 0.028

Table 4. Results on Lip2Wav chem. w/ dis: trained with discrim-
inators to generate audio waveforms. MOS scores are listed with
their 95% confidence interval computed from their t-distribution.

negative impact (see Tab. 3). The problem is that our SLTS
model is trained to correct data asynchrony in the training
data, when it is used for testing, if the reference test audio
and test video are off-sync, the audio reconstructed by our
SLTS model from the test video (perhaps with a perfect zero
offset) will also be off-sync with the reference test audio. As
a result, the SLTS models score lower on STOI, ESTOI and
MCD. This shows the limitation of the alignment-sensitive
metrics. Without proper alignment, lower scores can be pro-
duced even for a better performing model.

5.3. Accuracy of the Data Synchronization Module

Since there are no available ground truths for the audio-
visual offsets in the test set, we evaluate the accuracy of
DSM by comparing the offsets produced by different ap-
proaches. R2 scores between the offsets predicted by DSM
and the metrics frontend or SyncNet are also shown in
Tab. 2. The high R2 scores between the offsets predicted
by DSM (i.e., ôd) and the metrics frontend (i.e., of =
od + om, om ≈ 0) show that DSM can predict the data
asynchrony od accurately. On the other hand, the offsets
produced by DSM can explain more variance of the Sync-
Net offsets than a dummy offset predictor that assumes all
offsets to be 0. On the datasets with a more severe data
asynchrony issue (e.g., Lip2Wav chem), the R2 score be-
comes more prominent due to the high total variance of the
audio-visual offsets.

5.4. Impact of Discriminators on Vocoder

To demonstrate the superiority of the model trained with
discriminators (i.e., MRSD and MPWD) on audio genera-
tion, we conduct mean opinion score (MOS) tests by ask-
ing 12 volunteers to score 10 samples randomly selected
from the Lip2Wav chem test set. Both intelligibility and
naturalness are assessed. Each volunteer rates four versions
(i.e., VCA-GAN, SLTS, SLTS w/ dis, and real voice) of
the 10 samples. Results in Tab. 4 show significant MOS
gains on both intelligibility and naturalness after adopting
the discriminators. However, we notice that the objective
scores are lower on both training and test samples after
adopting the discriminators. For instance, after including
the discriminators, the a-STOI score drops from 0.760 to
0.738 on the test set of Lip2Wav chem, and from 0.855 to
0.825 on a training subset of 200 samples. We hypothe-
size that the lower objective scores are caused by the non-
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Figure 6. An example from Lip2Wav chem showing how ASM
works. The left side shows the reconstructed, ground-truth and
hard-corrected mel-spectrograms from top to bottom.

intrusive nature of GAN training. The discriminators en-
courage the generated audios to match a distribution of real
audios rather than the corresponding target audios, render-
ing it harder to meet the intrusive learning objectives, such
as MSE, multi-resolution STFT, and STOI, and resulting in
lower scores on intrusive metrics.

5.5. Qualitative Study

To demonstrate how ASM works, we show a real train-
ing example in Fig. 6. In this example, the reconstructed au-
dio is earlier than the reference mel-spectrogram by 80 ms.
DSM assigns most of the probability mass to the offsets
around -80 ms. After the reconstructed mel-spectrogram
is convolved with the hard-correction kernel, the result-
ing mel-spectrogram precisely aligns with the ground-truth
mel-spectrogram, allowing more accurate loss computation
between the reconstructed and reference mel-spectrograms.

5.6. Comparison with Other SOTA Results

Tables 5 to 7 compare our results with SOTA results re-
ported in existing work. Since SLTS models produce audio
synchronized with the input video, they can have low scores
on the vanilla metrics when data asynchrony in the test set
is severe (e.g., the chem, as shown in Tab. 2). For reason-
able comparisons, we report the results on the test set that is
lip-synced by the DSM of the corresponding SLTS model.
SLTS achieves similar or superior results compared to other
SOTA works. On GRID-4S, SLTS has the best STOI and
MCD, and outperforms other methods on all metrics except
for the PESQ of work [24] on TCD-TIMIT-LS. For the ma-
jority of the speakers in Lip2Wav (i.e., chem, chess and hs),
SLTS achieves much better intelligibility, and comparable
(or superior) perceptual quality. On dl and eh, SLTS per-
forms similarly or slightly worse than the SOTA work [10].
We notice that videos from dl and eh have relatively smaller
mouth regions, making recognition of visemes difficult.
This agrees with the SyncNet results (Fig. 5c) which also
has lower confidence in its performance on dl and eh.

Method STOI ↑ ESTOI ↑ PESQ ↑ MCD ↓
E2E-V2AResNet [24] 0.627 - 2.030 27.790
Yadav et al. [29] 0.724 0.540 1.932 -
VCA-GAN [14] 0.724 0.609 2.008 -
Lip2Wav [21] 0.731 0.535 1.722 -
Kim et al. [10, 13] 0.738 0.579 1.984 -

SLTS 0.757 0.588 1.931 25.491

Table 5. Comparison between SOTA results on GRID-4S dataset.

Method STOI ↑ ESTOI ↑ PESQ ↑ MCD ↓
E2E-V2AResNet [24] 0.472 - 1.540 36.190
Ephrat et al. [6] 0.487 0.310 1.231 -
GAN-based [27] 0.511 0.321 1.218 -
Lip2Wav [21] 0.558 0.365 1.350 -
VCA-GAN [14] 0.584 0.401 1.425 -

SLTS 0.661 0.507 1.474 29.689

Table 6. Comparison with SOTA results on TCD-TIMIT-LS.

Speaker Method STOI ↑ ESTOI ↑ PESQ ↑

chem
Lip2Wav [21] 0.416 0.284 1.300
Hong et al. [10] 0.566 0.429 1.529
SLTS 0.757 0.612 1.514

chess
Lip2Wav [21] 0.418 0.290 1.400
Hong et al. [10] 0.506 0.334 1.503
SLTS 0.680 0.451 1.604

dl
Lip2Wav [21] 0.282 0.183 1.671
Hong et al. [10] 0.576 0.402 1.612
SLTS 0.565 0.320 1.513

hs
Lip2Wav [21] 0.446 0.311 1.290
Hong et al. [10] 0.504 0.337 1.366
SLTS 0.590 0.394 1.402

eh
Lip2Wav [21] 0.369 0.220 1.367
Hong et al. [10] 0.463 0.304 1.362
SLTS 0.482 0.268 1.428

Table 7. Comparison between the SOTA work and the proposed
model on the Lip2Wav dataset. Unlike other datasets, we follow
convention to train speaker-specific models for each speaker.

6. Conclusion
In this work, we have identified two types of asyn-

chronies that occur during lip-to-speech synthesis train-
ing: data asynchrony and model asynchrony. To ad-
dress these asynchronies, we propose a synchronized lip-
to-speech model (SLTS). During training, the SLTS actively
learns audio-visual time offsets to correct data asynchrony
via DSM. The model synchronization is also ensured us-
ing SSM. In addition, we have introduced a time alignment
frontend that separates the evaluation of synchronization
and audio quality from conventional time-alignment sen-
sitive metrics, such as STOI, ESTOI, and MCD. We have
conducted extensive experiments using these new metrics
to demonstrate the advantages of the proposed model. Our
method achieves comparable or superior results across mul-
tiple tasks compared to existing state-of-the-art works.
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