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Abstract

Transformer-based visual trackers have demonstrated
significant progress owing to their superior modeling ca-
pabilities. However, existing trackers are hampered by low
speed, limiting their applicability on devices with limited
computational power. To alleviate this problem, we propose
HiT, a new family of efficient tracking models that can run
at high speed on different devices while retaining high per-
formance. The central idea of HiT is the Bridge Module,
which bridges the gap between modern lightweight trans-
formers and the tracking framework. The Bridge Module in-
corporates the high-level information of deep features into
the shallow large-resolution features. In this way, it pro-
duces better features for the tracking head. We also pro-
pose a novel dual-image position encoding technique that
simultaneously encodes the position information of both
the search region and template images. The HiT model
achieves promising speed with competitive performance.
For instance, it runs at 61 frames per second (fps) on the
Nvidia Jetson AGX edge device. Furthermore, HiT attains
64.6% AUC on the LaSOT benchmark, surpassing all pre-
vious efficient trackers. Code and models are available at
https://github.com/kangben258/HiT.

1. Introduction
Visual object tracking is a fundamental task in com-

puter vision, which aims to track an arbitrary object given
its initial state in a video sequence. In recent years, with
the development of deep neural networks [25, 20, 39, 42],
tracking has made significant progress. In particular, the
utilization of transformers [42] has played a pivotal role
in the development of several high-performance track-
ers [8, 50, 43, 53, 10, 52, 7]. Unfortunately, much of
the research [27, 2, 8] has concentrated solely on achiev-
ing high performance without considering tracking speed.

∗ Equal contribution.
† Corresponding authors: Dong Wang (wdice@dlut.edu.cn), Houwen
Peng (houwen.peng@microsoft.com).

Non-real-time Real-time

4.7× faster

Figure 1: Comparison of our HiT with other trackers on La-
SOT in terms of speed (horizontal axis) on the edge AI plat-
form of Nvidia Jetson AGX Xavier and success rate (AUC)
(vertical axis). Following the VOT real-time setting [23],
we set the real-time line at 20 fps. Our HiT achieves the
best real-time result, surpassing other efficient trackers.

While these trackers may achieve real-time speed on pow-
erful GPUs, they lack competitiveness and advantages on
resource-limited devices. For instance, TransT [8], which
is a high-performance tracker, only achieves a speed of 5
frames per second (fps) on the Intel Core i9-9900K CPU
and 13 fps on the Nvidia Jetson AGX. Consequently, a high-
performance tracker with fast speed is critical.

The one-stream structure has gained popularity in track-
ing applications [52, 5, 48, 10]. This structure performs
feature extraction and feature fusion jointly, leveraging the
capabilities of the backbone network [14] that has been
pre-trained for image classification. In our work, we also
adopt the one-stream architecture, leveraging a pre-trained
lightweight transformer backbone network. However, there
exists a substantial gap between the tracking field and the
image classification field. In the image classification field,
lightweight networks [18, 33, 47] frequently incorporate
a hierarchical architecture with high-stride downsampling
to decrease computational expenses. However, large-stride
downsampling often leads to a loss of critical information,
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which is crucial for accurate tracking. This naturally raises
the question of how to reconcile the need for detailed infor-
mation in tracking with the large-stride downsampling in
the hierarchical backbone network.

To tackle this problem, we introduce the Bridge Module,
which integrates features from different levels of the hier-
archical backbone. The Bridge Module fuses deep seman-
tic information with shallow detail information, mitigating
the information loss resulting from large-stride downsam-
pling. By combining the proposed Bridge Module with
lightweight hierarchical backbone LeViT [18], we develop
HiT, a new family of efficient tracking models. Moreover,
we proposed a novel relative position encoding technique,
called dual-image position encoding, to improve the posi-
tion information. This method encodes the position infor-
mation of the template and search region jointly, enhancing
the interaction between them.

Our extensive experiments validate the effectiveness and
efficiency of HiT. Specifically, compared to the high-speed
tracker FEAR [28], HiT-Base achieves an 11.1% higher
AUC score on the LaSOT benchmark while being 1.6 times
faster than FEAR on Nvidia Jetson AGX Xavier. In com-
parison to the high-performance tracker STARK-ST50 [50],
HiT-Base delivers similar performance while being 4.7
times faster on AGX, representing a significant improve-
ment over previous real-time trackers. Our main contribu-
tions are summarized as follows:
• We propose the Bridge Module, which incorporates the

high-level information of deep features into the shallow
large-resolution features, thereby mitigating the infor-
mation loss caused by the large-stride downsampling.
This approach enables the use of large-stride downsam-
pling hierarchical backbones for tracking purposes.

• To improve position accuracy, we introduce a dual-
image position encoding approach that jointly encodes
position information from both the template and the
search region.

• Building upon these components, we introduce HiT,
a family of efficient tracking models. HiT exhibits
promising performance while maintaining exceptionally
fast processing speeds. Empirical evaluations demon-
strate that HiT outperforms state-of-the-art efficient
tracking algorithms.

2. Related Work
Visual Tracking. Siamese-based methods [1, 40, 27, 44,

26, 49, 19, 9, 55] are popular in tracking. The Siamese-
based framework typically employs two backbone networks
with shared parameters to extract the features of the tem-
plate and the search region images, uses a correlation-based
network for feature interaction, and finally uses head net-
works for prediction. TransT [8], TMT [43], and their

follow-up works [50, 30, 32, 38, 17] further improve track-
ing performance by introducing the transformer [42] for
the feature interaction. Recently, a one-stream framework
establishes new state-of-the-art performance in tracking,
such as MixFormer [10], SBT [48], SimTrack [5], and OS-
Track [52]. The one-stream framework jointly performs
feature extraction and feature fusion with the backbone net-
work. This framework is simple yet effective by leveraging
the capabilities of the backbone network that has been pre-
trained for image classification. However, these methods
are developed for powerful GPUs, and their speeds on edge
devices are slow, limiting their applicability. In this work,
we also adopt the one-stream framework and we focus on
making this framework more efficient.

Efficient Tracking Network. Practical applications re-
quire efficient trackers that can achieve high performance
and fast speed on edge devices. Early methods ECO [11]
and ATOM [12] achieve real-time speed on edge devices,
but the performance is inferior compared with current state-
of-the-art trackers. Recently, some efficient trackers have
been developed. LightTrack [51] uses NAS to search net-
works, which entails a low computational amount and rela-
tively high performance. FEAR [4] obtains a family of effi-
cient and accurate trackers by employing a dual-template
representation and a pixel-wise fusion block. However,
there is still a large performance gap between these efficient
trackers and the popular high-performance trackers [8, 50].
In this work, the proposed HiT not only runs at high speed
on edge devices but also achieves competitive results com-
pared with high-performance trackers. For example, com-
pared with TransT [8], our method performs only 0.3%
lower (in AUC) on LaSOT but 4.7 times faster on AGX.

Vision Transformer. ViT [14] introduces the transformer
to image classification and has achieved impressive perfor-
mance. After that, a large number of vision transformer
networks [41, 54, 46, 45, 30] are developed. Transform-
ers are popular for their superior modeling capabilities but
are limited in speed. Therefore, many lightweight vision
transformers [33, 18, 47] have emerged, greatly acceler-
ating the speed of transformer-based networks. Different
from the classic vision transformer, these lightweight trans-
formers employ a hierarchical architecture with high-stride
downsampling to decrease computational expenses. In this
work, we focus on leveraging the lightweight hierarchical
vision transformer with the one-stream tracking framework.
By default, we employ LeViT [18] as the backbone net-
work. However, our method has the following fundamental
differences from LeViT. (1) The overall architectures are
different. LeViT makes predictions on the final heavily-
downsampled features. Our HiT employs a Bridge Module
to fuse features of different stages, and the predictions are
made on the fused large-resolution features. We also mod-
ify the transformer module so that it can handle the search
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Figure 2: Architecture of the proposed HiT framework. The HiT framework contains three components: a lightweight
hierarchical vision transformer for feature extraction and fusion, a Bridge Module that combines multi-stage features, and a
prediction head.

region and template simultaneously. (2) The tasks are dif-
ferent. LeViT is designed for image classification, focusing
more on high-level semantic information. Our framework
is for tracking, where detailed information is also crucial.
(3) The position encodings are different. LeViT encodes
the position information for a single image. We develop the
dual-image position encoding to encode the position infor-
mation of the template and search region jointly to enhance
the level of detail.

3. Method

This section presents the HiT method in detail. First, we
briefly overview our HiT framework. Then, we depict the
model architecture, including the lightweight hierarchical
vision transformer with our dual-image position encoding,
the proposed Bridge Module, and the head network. Finally,
we introduce the training and inference pipelines.

3.1. Overview

As shown in Figure 2, HiT is a one-stream tracking
framework consisting of three components: the lightweight
hierarchical transformer, the proposed Bridge Module, and
the head network. The image pair (including the search
region and template images) are fed into the lightweight
hierarchical transformer for feature extraction and feature
fusion. The core modules of the hierarchical vision trans-
former are the Multi-Head Attention (MHA), the Shrink At-
tention (SA), and the dual-image position encoding. MHA

extracts and fuses the features of the search and template
images, SA downsamples the features, and dual-image po-
sition encoding encodes the position information of the
search and template images jointly. From each stage of the
hierarchical transformer, we obtain a sequence of features
with different resolutions. From the last stage of the hierar-
chical transformer, we obtain a global vector by averaging
the final output features. The feature sequence is input to
the Bridge Module, in which features are fused to obtain
enhanced features. Finally, the global vector and the en-
hanced features are input into the prediction head to obtain
the tracking result.

3.2. Lightweight Hierarchical Vision Transformer

Hierarchical Backbone. We use LeViT [18], a
lightweight hierarchical vision transformer as the backbone
of HiT. We adapt it into our tracking framework. Specif-
ically, the input of the transformer is the template im-
age Z ∈ R3×Hz×Wz and the search region image X ∈
R3×Hx×Wx . First, downsample the image pair by a factor
of 16 through patch embedding to get Zp ∈ RC×Hz

16 ×Wz
16

and Xp ∈ RC×Hx
16 ×Wx

16 . Then Zp and Xp are flat-
tened and concatenated in the spatial dimension and then
fed into the following hierarchical transformer. The hi-
erarchical transformer consists of three stages. The i−th
stage has Li blocks (L1=L2=L3=4, by defaut). Each
block consists of a Multi-Head Attention and an MLP in
the residual form. Shrink Attention modules are used to
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Figure 3: Detailed architectures of MHA and SA.

connect each stage, and it downsamples the features by a
factor of 4 in the spatial dimension. For the output fea-
tures of each stage, we get the partial features correspond-
ing to the search image. For the final stage, we also av-
erage its output features and get a global vector G. Af-
ter the transformer backbone, we obtain a global vector
G ∈ R1×Cmin and a feature sequence with three fea-
ture maps of different size: Smax ∈ RHmax×Wmax×Cmax ,
Smid ∈ RHmid×Wmid×Cmid , Smin ∈ RHmin×Wmin×Cmin ,
where Cmax = 384, Cmid = 512, Cmin = 768.

Multi-Head Attention (MHA). The structure of MHA is
shown in Figure 3a. The number of channels of Q and K
is half of V to reduce the amount of calculation. Following
the LeViT, we use the attention bias as a relative position
encoding rather than the absolute position encoding. We
generate the attention bias in the way of our dual-image po-
sition encoding, and the details will be introduced later. The
mechanism of MHA can be summarized as:

Attn(Q,K,V,Bi) = softmax(
QK⊤
√
dk

+Bi)V,

Hi = Hardswish(Attn(XWQ
i ,XWK

i ,XWV
i ,Bi)),

MultiHead(X) = Concat(H1, ...,HN )WO,

(1)

where X ∈ RHW×C is the input, Bi ∈ RHW×HW is the
attention bias, and WQ

i ∈ RC×D, WK
i ∈ RC×D, WV

i ∈
RC×2D, and WO ∈ R2ND×C are parameter matrices.

Shrink Attention (SA). The structure of SA is shown in
Figure 3b. The SA connects the stages of the hierarchical
transformer and downsamples the features. The architecture
of SA is the same as MHA except for the following modifi-
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Figure 4: Comparison of our dual-image position encoding
and the previous position encoding.

cations: 1) To generate the Query Q, we split the 2D input
features into template features (denoted as T) and search
region features (denoted as S) based on their location. We
reshape them to 3D features and subsample them by a factor
of 2 in each spatial direction. Then we re-flatten the features
and concatenate them in the spatial dimension. In this way,
the size of Q is down-sampled by a factor of 4 in total, thus
the final output of SA is also down-sampled. 2) The num-
ber of channels of V is doubled to alleviate the information
loss caused by downsampling, and the number of channels
of output features is also increased.

Dual-image Position Encoding. Following LeViT, we
use attention bias to inject the relative position information
into attention maps. To better encode the joint position in-
formation of the template and the search region, we gener-
ate the attention bias in the way of our dual-image position
encoding. Specifically, attention bias is a set of parameters
that can be learned. We calculate the relative positions be-
tween every two pixels, use the relative positions as indexes
to find the corresponding learned parameters, and add them
to the attention map to introduce the position information.
It is calculated as

Biash = Bh(|x− x
′ |, |y − y

′ |) , (2)

where (x, y) and (x
′
, y

′
) ∈ [H] × [W ] are the two pix-

els on the feature map. Bh is the learned parameters, and
Biash is the indexed learned parameters. As shown in Fig-
ure 4a, the previous position encoding encodes the template
and the search region separately, and the positions of the
two images partially overlap, causing information confu-



sion. More concretely, the position of the template and the
upper left portion of the search region is the same. To ad-
dress this problem, in our dual-image position encoding, we
diagonally arrange the template and the search region and
encode their position information jointly as shown in Fig-
ure 4b. The diagonal arrangement encodes unique horizon-
tal and vertical coordinates for each pixel of the template
and search region, avoiding the confusion of detailed posi-
tion information.

3.3. Bridge Module and Head

Bridge Module. The Bridge Module fuses features of
different stages of the hierarchical transformer to obtain the
enhanced feature that contains rich detailed and semantic
information. It bridges the lightweight hierarchical trans-
former and the tracking framework. To ensure the efficiency
of the model, we expect the Bridge Module to be a mini-
mal architecture, that is, it should be as concise as possible
while being effective. To this end, we employ a very sim-
ple architecture for the Bridge Module and find it provides
compelling results. As shown in the red box in Figure 2, the
transformer outputs three 2D features with different sizes.
We reshape these 2D features to 3D feature maps, denoted
as Smin, Smid, and Smax. First, we upsample Smin and
add it to Smid. Then, we upsample the obtained feature
and add it to Smax, getting the final enhanced feature. We
employ a transpose convolutional layer with stride 2 for all
upsampling. The mechanism of the Bridge Module can be
summarized as

Os = Smax +Upsample(Smid +Upsample(Smin))
(3)

where Os ∈ RHmax×Wmax×Cmax is the output of the
Bridge Module; Smax ∈ RHmax×Wmax×Cmax , Smid ∈
RHmid×Wmid×Cmid and Smin ∈ RHmin×Wmin×Cmin are
feature maps output by the lightweight hierarchical trans-
former. The Bridge Module combines the deep semantic
information and the shallow detail information, alleviating
the information loss caused by the large-stride downsam-
pling. This minimal network provides compelling results
while remaining efficient.

Head. We employ the corner head [50] for prediction.
First, we calculate the attention map between G and Os.
Then, we re-weight Os with the attention map. In this way,
the local features are enhanced or suppressed according to
global information. Finally, Os is fed to a fully-convolution
network, obtaining the coordinates of the target.

3.4. Training objective and Inference

We combine the ℓ1 loss and the generalized GIoU
loss [36] as the training objective. The loss function can
be formulated as

L = λGLGIoU (bi, b̂i) + λlLl(bi, b̂i). (4)

Model HiT-Base HiT-Small HiT-Tiny

PyTorch GPU 175 192 204

Speed (fps) CPU 33 72 76
AGX 61 68 77

ONNX GPU 274 400 455

Speed (fps) CPU 42 98 125
AGX 75 119 145

Macs(G) 4.34 1.13 0.99

Params(M) 42.14 11.03 9.59

Table 1: Details of our HiT model variants.

where bi represents the groundtruth, and b̂i represents the
predicted box. λG and λl are weights, in experiments, we
set λG = 2 and λl = 5. During inference, the template is
initialized in the first frame of a video sequence. For each
subsequent frame, the search region is cropped based on
the target’s bounding box of the previous frame. The whole
framework is end-to-end. The template and search images
are input into our tracker, and the output of the model is the
final result. We do not use any additional post-processing
methods, such as window penalty and scale penalty [27].

4. Experiments
4.1. Implementation Details

Model. We develop three variants of HiT models with
different lightweight transformers, as elaborated in Tab. 1.
We adopt LeViT-384 [18], LeViT-128, and LeViT-128S for
HiT-Base, HiT-Small, and HiT-Tiny, respectively. In addi-
tion, Tab. 1 reports model parameters, FLOPs, and inference
speed on multiple devices. All the models are implemented
with Python 3.8 and PyTorch 1.11.0.

Training. The training datasets for our model include
the train-splits of TrackingNet [35], GOT-10k [21], La-
SOT [16], and COCO2017 [29]. The input of the network
is an image pair consisting of a template image and a search
image. For video datasets, we sample the image pair from a
random video sequence. For the image dataset COCO, we
randomly select an image and apply data augmentations to
generate an image pair. Common data augmentations such
as scaling, translation, and jittering are applied on the image
pair. The search region and the template are obtained by ex-
panding the target box by a factor of 4 and 2, respectively.
The search and template images are resized to 256 × 256
and 128 × 128, respectively. The transformer is initialized
with ImageNet [37] pretrained LeViT [18], and the other
parameters of HiT are initialized randomly. The optimizer
is the AdamW optimizer [31], with the weight decay of 1e-
4. The initial learning rate of HiT is 5e-4. We use 4 Nvidia
RTX 3090 GPUs to train our model for 1500 epochs with
a batch size of 128. Each epoch contains 60,000 sampling
pairs. The learning rate is reduced by 10× at epoch 1200.

Inference. As stated in Sec. 3.4, the HiT framework is



Table 2: State-of-the-art comparison on TrackingNet [35], LaSOT [16], and GOT-10k [21] benchmarks. We use gray color
to denote our trackers. The best three real-time results are shown in red, blue and green fonts, and the best non-real-time
results are shown in underline font.

Method TrackingNet LaSOT GOT-10k PyTorch Speed (fps)
AUC PNorm P AUC PNorm P AO SR0.5 SR0.75 GPU CPU AGX

R
ea

l-
tim

e

HiT-Base 80.0 84.4 77.3 64.6 73.3 68.1 64.0 72.1 58.1 175 33 61
HiT-Small 77.7 81.9 73.1 60.5 68.3 61.5 62.6 71.2 54.4 192 72 68
HiT-Tiny 74.6 78.1 68.8 54.8 60.5 52.9 52.6 59.3 42.7 204 76 77
FEAR [4]1 - - - 53.5 - 54.5 61.9 72.2 - 105 60 38
HCAT [6] 76.6 82.6 72.9 59.3 68.7 61.0 65.1 76.5 56.7 195 45 55
E.T.Track [3] 75.0 80.3 70.6 59.1 - - - - - 40 47 20
LightTrack [51] 72.5 77.8 69.5 53.8 - 53.7 61.1 71.0 - 128 41 36
ATOM [12] 70.3 77.1 64.8 51.5 57.6 50.5 55.6 63.4 40.2 83 18 22
ECO [11] 55.4 61.8 49.2 32.4 33.8 30.1 31.6 30.9 11.1 240 15 39

N
on

-r
ea

l-
tim

e

OSTrack-256 [52] 83.1 87.8 82.0 69.1 78.7 75.2 71.0 80.4 68.2 105 11 19
MixFormer-L [10] 83.9 88.9 83.1 70.1 79.9 76.3 75.6 85.7 72.8 18 - -
Sim-B/16 [5] 82.3 - 86.5 69.3 78.5 - 68.6 78.9 62.4 87 10 16
STARK-ST50 [50] 81.3 86.1 - 66.6 - - 68.0 77.7 62.3 50 7 13
TransT [8] 81.4 86.7 80.3 64.9 73.8 69.0 72.3 82.4 68.2 63 5 13
TrDiMP [43] 78.4 83.3 73.1 63.9 - 61.4 68.8 80.5 59.7 41 5 10
TrSiam [43] 78.1 82.9 72.7 62.4 - 60.6 67.3 78.7 58.6 40 5 10
PrDiMP [13] 75.8 81.6 70.4 59.8 68.8 60.8 63.4 73.8 54.3 47 6 11
DiMP [2] 74.0 80.1 68.7 56.9 65.0 56.7 61.1 71.7 49.2 77 10 17
SiamRPN++ [26] 73.3 80.0 69.4 49.6 56.9 49.1 51.7 61.6 32.5 56 4 11

end-to-end, and we do not involve any hyper-parameters
during inference.

4.2. State-of-the-art Comparisons

According to the speed on edge device Nvidia Jetson
AGX Xavier, we divide trackers into real-time trackers and
non-real-time trackers. Following the VOT real-time set-
ting [23], we set the real-time line at 20 fps. We compare
HiT with the state-of-the-art real-time trackers and non-
real-time trackers on six tracking benchmarks. We evaluate
these trackers’ speed on three platforms: Nvidia GeForce
RTX 2080 GPU, Intel Core i9-9900K @ 3.60GHz CPU,
and Nvidia Jetson AGX Xavier edge device. Tables 2 and 3
show the results.

TrackingNet. TrackingNet [35] is a large-scale dataset
containing a variety of situations in natural scenes and
multiple categories, and its test set includes 511 video se-
quences. As reported in Table 2, HiT-Base and HiT-small
achieve competitive results compared with the previous
real-time trackers. HiT-Base gets the best AUC of 80.0%,
surpassing the previous best real-time tracker HCAT [6]
by 3.4%. Compared to non-real-time tracker STARK-
ST50 [50], HiT-Base achieves comparable performance to
it in AUC (80.0 vs. 81.3) while being 3.5× faster on the
GPU, 4.7× faster on the CPU, and 4.7× faster on the AGX.

LaSOT. LaSOT [16] is a large-scale, long-term dataset

1Due to limitations in access to the FEAR-L model, we compare our
method with FEAR-XS in this table. Nevertheless, our model also per-
forms better than FEAR-L. For example, HiT-Base performs 6.7% higher
than FEAR-L (in AUC) on LaSOT.

containing 1400 video sequences, with 1120 training videos
and 280 test videos. The results on LaSOT are shown in Ta-
ble 2. HiT-Base achieves the best real-time results of 64.6%,
73.3%, and 68.1% in AUC, PNorm, and P, respectively.
HiT-Small achieves the second-best AUC score. Compared
with the recent efficient tracker FEAR [4], HiT-Base and
HiT-Small outperform it by 11.1% and 7.0% in AUC. More-
over, HiT-Base and HiT-Small surpass the third-best real-
time tracker HCAT [6] by 5.3% and 1.2% in AUC. Com-
pared with the non-real-time tracker TransT [8], HiT-Base
performs only 0.3% lower but has a much faster speed.

GOT-10k. GOT-10k [21] is a large-scale and challenging
dataset that contains 10k training sequences and 180 test se-
quences. As shown in Table 2, HiT-Base obtains the second
best real-time results of 64.0% AO score. HiT-Small ob-
tains the third-best AO score of 62.6%. HiT-Base surpasses
the recent efficient tracker FEAR [4] by 2.1% .

Speed. Table 2 reports the speeds of trackers. On the
GPU, HiT-Base, HiT-Small, and HiT-Tiny run at 175 fps,
192 fps, and 204 fps, which are 1.66×, 1.82×, and 1.94×
faster than FEAR [4]. On the AGX edge device, HiT-Base,
HiT-Small, and HiT-Tiny run at 61 fps, 68 fps, and 77 fps,
which are 1.61×, 1.79×, and 2.03× faster than FEAR. On
the CPU, HiT-Base, HiT-Small, and HiT-Tiny run at 33 fps,
72 fps, and 76 fps. Only HiT-base is slower than FEAR but
still achieves real-time speed. Overall, HiT achieves fast
speeds on multiple devices. We believe that the fast speed
is beneficial for the applicability of tracking.

NFS. NFS [22] is a challenging dataset with fast-moving
objects, which includes 100 video sequences. Table 3 shows



Method NFS UAV123 LaSOText

R
ea
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e

HiT-Base 63.6 65.6 44.1
HiT-Small 61.8 63.3 40.4
HiT-Tiny 53.2 58.7 35.8
HCAT [6] 63.5 62.7 -
FEAR [4] 61.4 - -
E.T.Track [3] 59.0 62.3 -
LightTrack [51] 55.3 62.5 -
ATOM [12] 58.4 64.2 37.6
ECO [11] 46.6 53.2 22.0

N
on

-r
ea

l-
tim

e

OSTrack-256 [52] 64.7 68.3 47.4
TransT [8] 65.7 69.1 -
TrDiMP [43] 66.5 67.5 -
TrSiam [43] 65.8 67.4 -
PrDiMP [13] 63.5 68.0 -
DiMP [2] 62.0 65.3 39.2
SiamRPN++ [26] 50.2 61.6 34.0

Table 3: Comparison with state-of-the-art methods on addi-
tional benchmarks in AUC score.

Method EAO Accuracy Robustness

HiT-Base 0.252 0.447 0.688

FEAR [4] 0.250 0.436 0.655
STARK-S [50] 0.237 0.407 0.631
STARK-Lightning [50] 0.204 0.391 0.565
LightTrack [51] 0.225 0.391 0.641
E.T.Track [3] 0.224 0.372 0.631

Table 4: VOT real-time experiment on NVidia Jetson AGX.

that HiT-Base and HiT-Small achieve the best and the third-
best real-time performance, respectively.

UAV123. The UAV123 dataset [34] is constructed with
low-altitude UAVs and contains 123 video clips. As shown
in Table 3, HiT-Base achieves the best results compared
to the other real-time trackers, achieving an AUC score
of 65.6%. HiT-Base performs superior to HCAT [6] and
E.T.Track [3] with 2.9% and 3.3%, respectively.

LaSOText. LaSOText [15] is a recently released tracking
dataset consisting of 150 videos from 15 object classes. It
is an extension of LaSOT. The results of HiT on LaSOText

are shown in Table 3. HiT-Base, HiT-Small, and HiT-Tiny
achieve competitive results with 44.1%, 40.4%, and 35.8%
AUC scores, respectively.

VOT. We also conduct VOT real-time experiments on
NVidia Jetson AGX using the VOT2021 benchmark [24].
The results are shown in the Table 4. HiT-Base achieves the
best results compared to the other real-time trackers, achiev-
ing an EAO score of 25.2%.

4.3. Ablation Study and Analysis

In this section, we provide detailed ablation experiments
to analyze our HiT method. For the ablation study, we use
HiT-Base as the baseline model. All models in ablation ex-
periments are trained for 500 epochs.

Different combinations of features. To verify the effec-

# Max Mid Min LaSOT TrackingNet GOT-10k

1 ✓ ✓ ✓ 63.7 78.9 65.4
2 ✓ 62.1 78.3 63.4
3 ✓ 61.9 78.1 64.1
4 ✓ 57.9 73.0 62.1
5 ✓ ✓ 62.6 78.7 63.0
6 ✓ ✓ 58.8 77.2 60.4
7 ✓ ✓ 60.3 78.4 63.6

Table 5: Comparison with different feature combining man-
ners in AUC. We use gray color to denote the default setting.
The best results are shown in the red fonts. Max, Mid, and
Min denote the features of the transformer’s first, second,
and third stages.

Bridge Max-Min Max-Mid Max Mid Min Mid-MinInput

Figure 5: Visualization of the attention maps in the corner
head of different feature combining manners. Bridge means
our default manner, Max-Min means combining the Max
and the Min features, Max-Mid means combining the Max
and the Min features, Max, Mid, and Min mean only using
the Max feature, Mid feature, and Min feature, respectively.

tiveness of the Bridge Module and explore which features
are important, we compare different feature combinations
in the Bridge Module. Table 5 shows the results. Max,
Mid, and Min denote the features of the transformer’s first,
second, and third stages, respectively. For a fair compari-
son, the features are upsampled to the same resolution in the
comparison. The first row (#1) is our default setting. First,
we do not use our Bridge Module and make predictions on
the independent Max, Mid and Min features. Table 5 (#2,
#3, and #4) shows these methods lead to inferior results,
demonstrating the effectiveness of feature fusing with our
Bridge Module. Second, Table 5 (#5, #6, and #7) reports
the results of other candidate combination manners, and our
default method works best. In our default method, using all
three features bring more semantic and detailed informa-
tion, leading to better results.

To further understand the Bridge Module, we visualize
the attention map in the corner head of these features com-
bining manners in Figure 5. In the visualization results,
first, we find a collapse phenomenon in the methods that do
not use the Max feature. Taking the Mid manner as an ex-
ample, the final feature is from the second stage of the trans-
former, and it is up-sampled by a factor of 2. In this way,
one pixel on the feature map is up-sampled to four pixel



# PE LaSOT TrackingNet GOT-10k

1 DI 63.7 78.9 65.4
2 Abs 60.2 77.2 61.2
3 Sep 62.4 77.6 63.1
4 Ver 61.1 78.4 63.5
5 Hor 61.0 78.5 63.7

Table 6: Comparison of different Position Encoding (PE) in
AUC score. DI denotes our dual-image PE. Abs denotes the
absolute PE. Sep denotes the relative PE which encodes the
template and search region separately. Ver and Hor denote
the joint encoding of the template and search images in a
vertical and horizontal arrangement, respectively.

points. In the visualization result, we can see that the atten-
tion collapses to a relatively fixed distribution for every four
upsampling grids. The Min column and the Mid-Min col-
umn are similar to the Mid column. This shows that even if
the deep feature is up-sampled to a larger resolution, it does
not bring more detailed information. Therefore, it is cru-
cial to involve the shallow large-resolution feature to sup-
plement the information. Second, we find the attention map
of our default method is more accurate than the methods
that do not use the Min feature. This demonstrates that us-
ing deep features to supplement semantic information helps
to improve the discriminative ability.

Different Position Encoding. Previous transformer-based
trackers [8, 50] encode the position information of the
search image and the template image separately. In our
dual-image position encoding method, we assign a unique
position for each image and jointly encode their position
information. Here, we compare our method with four po-
tential encoding methods, and the results are reported in Ta-
ble 6. First, we compare our method with the absolute posi-
tion encoding (denoted as Abs) and the relative position en-
coding which encodes the search and template images sep-
arately (denoted as Sep). Table 6 (#1 and #2) shows these
methods perform inferior to our dual-image position encod-
ing. The separate encoding does not model the positional
relationship between the search and template images, and
introduces overlapping positions of them, leading to inferior
performance. Second, in our dual-image position encoding,
we also explore different arrangements of the template and
search region. By default, we diagonally arrange the tem-
plate and the search region, as shown in Figure 4b. Here
we compare it with two other arrangements: the vertical ar-
rangement (denoted as Ver) and the horizontal arrangement
(denoted as Hor). Table 6 (#1, #4 and #5) shows the default
diagonally arrangement achieves the best performance. In
the vertical and horizontal arrangements, the horizontal and
vertical positions of the template and the search region are
overlapping, leading to information loss. The diagonal ar-
rangement assigns unique horizontal and vertical positions
for the template and the search region, which is more infor-
mative. Therefore, we choose the diagonal arrangement.

LeViT-384 [18] PVT-Small [45]

Benchmarks
LaSOT 63.7 63.9

TrackingNet 78.9 78.4
GOT-10k 65.4 64.8

PyTorch Speed (fps)
GPU 175 91
CPU 33 22
AGX 61 30

ONNX Speed (fps)
GPU 274 133
CPU 42 25
AGX 75 32

Table 7: HiT with different lightweight hierarchical vision
transformers.

Different Backbones. To evaluate the generalization of
our HiT framework. We expand our framework with an-
other hierarchical vision transformer PVT [45], the results
are shown in Table 7. We employ PVT-Small[45] as the
transformer backbone, and the other parts are consistent
with HiT-Base. From Table 7, we can see that HiT with
PVT-Small obtains a 63.9% AUC score on LaSOT, 78.4%
AUC score on TrackingNet, and 64.8% AO score on GOT-
10k, while the speed on all three platforms is real-time. This
is also a competitive result compared with our base model
with LeViT-384 and other efficient trackers. This demon-
strates a superior generalization ability of our framework.

5. Conclusion
This work proposes a new family of efficient

transformer-based tracking models, named HiT. HiT
alleviates the gap between the tracking framework and the
lightweight hierarchical transformers through our Bridge
Module and dual-image position encoding. Extensive
experiments demonstrate HiT achieves promising per-
formance compared to state-of-the-art efficient trackers
while running at a very fast speed. We hope this work
could facilitate the practical applicability of visual tracking
and narrow the gap between the tracking and lightweight
transformer research.

Limitation. One limitation of HiT is that, despite
achieving good performance, it shows the difficulty in
dealing with distractors, since the method does not employ
an explicit distractor-handling module. Moreover, this
work focuses on bridging the gap between lightweight
hierarchical transformers and the tracking framework.
Therefore, we only make minimal adjustments to the
existing hierarchical transformer but do not design a
new transformer. In future work, we will investigate the
lightweight transformer customized for tracking, and we
hope this work could provide a basis for this.
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