
Unlink to Unlearn: Simplifying Edge Unlearning in GNNs
Jiajun Tan♠,♥, Fei Sun♠, Ruichen Qiu♥, Du Su♠, Huawei Shen♠♥

♠CAS Key Laboratory of AI Safety & Security,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

♥University of Chinese Academy of Sciences, Beijing, China
{tanjiajun22s,sunfei,sudu,shenhuawei}@ict.ac.cn

ABSTRACT
As concerns over data privacy intensify, unlearning in Graph Neural
Networks (GNNs) has emerged as a prominent research frontier in
academia. This concept is pivotal in enforcing the right to be forgot-
ten, which entails the selective removal of specific data from trained
GNNs upon user request. Our research focuses on edge unlearning,
a process of particular relevance to real-world applications. Cur-
rent state-of-the-art approaches like GNNDelete can eliminate the
influence of specific edges, yet our research has revealed a critical
limitation in these approaches, termed over-forgetting. It occurs
when the unlearning process inadvertently removes excessive in-
formation beyond specific data, leading to a significant decline
in prediction accuracy for the remaining edges. To address this
issue, we have identified the loss functions of GNNDelete as the
primary source of the over-forgetting phenomenon. Furthermore,
our analysis also suggests that loss functions may not be essential
for effective edge unlearning.

Building on these insights, we have simplified GNNDelete to
develop Unlink to Unlearn (UtU), a novel method that facilitates
unlearning exclusively through unlinking the forget edges from
graph structure. Our extensive experiments demonstrate that UtU
delivers privacy protection on par with that of a retrained model
while preserving high accuracy in downstream tasks. Specifically,
UtU upholds over 97.3% of the retrained model’s privacy protection
capabilities and 99.8% of its link prediction accuracy. Meanwhile,
UtU requires only constant computational demands, underscoring
its advantage as a highly lightweight and practical edge unlearning
solution.

KEYWORDS
Machine Unlearning, Graph Neural Networks, Over-forgetting

ACM Reference Format:
Jiajun Tan, Fei Sun, Ruichen Qiu, Du Su, Huawei Shen. 2024. Unlink to Un-
learn: Simplifying Edge Unlearning in GNNs. In Proceedings of International
World Wide Web Conference (WWW ’24). ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Although Graph Neural Networks (GNNs) have achieved signif-
icant success in various tasks [20], this advancement inherently
comes with the risk of privacy leakage, as training data, rich in sen-
sitive personal information, can be implicitly “remembered” within
model parameters. In response to these privacy concerns, recent
legislation [13, 16] has granted individuals with the right to be for-
gotten, enabling them to request service provider for removing their
private data from online platforms. Consequently, the concept of
machine unlearning [3] has emerged, allowing quick and efficient
removal of specific data from a trained model, rather than retrain-
ing a new model from scratch. In addition to complying with data
owners’ requests for data removal, machine unlearning is also a
crucial technique for rectifying models affected by poisoned, noisy,
or outdated training data [18].

In this paper, we focus on edge unlearning, a key unlearning
scheme in graphs, owing to its pivotal role in real-world applications
such as safeguarding edge privacy in social networks. Consider the
scenario where individuals in online social networks may seek to
conceal certain private social connections. In these instances, GNNs
that have been trained on these graphs require timely updates to
eliminate any influence of the data intended to be forgotten, while
preserving performance on retrained edges.

Recently, GNNDelete has achieved state-of-the-art performance
in edge unlearning, however, we observed a considerable decline
in its prediction accuracy for edges in the retained training set,
especially for those resembling or closely associated with the edges
subjected to unlearning. We introduce the term over-forgetting to
describe such phenomenon, where an unlearning algorithm inad-
vertently eliminates an excessive amount of information from the
retained data. In this context, “excessive” refers to a scenario where
the performance of the unlearned model on retained data deteri-
orates significantly compared to a model retrained from scratch
using only the retained data.

In this study, we address the challenge of over-forgetting by
introducing Unlink-to-Unlearn (UtU). Our investigation has re-
vealed deficiencies in the design of GNNDelete’s loss functions.
The first loss function, which is designed to eliminate the influence
of forget edge, unfortunately, opts for an unsuitable optimization
objective, being the primary contributor to the phenomenon of
over-forgetting. The other, designed to alleviate the issue of over-
forgetting, fails to prevent the performance decline of retaining
edges as intended. In light of these findings, we deprecate both loss
functions in GNNDelete and derive UtU, a novel approach that facil-
itates edge unlearning exclusively by unlinking forget edges from
the original graph structure. Our method eliminates the necessity
for complex parameter optimization, thereby reducing computation
overhead by orders of magnitude. Our experimental evaluations

ar
X

iv
:2

40
2.

10
69

5v
1

 [
cs

.L
G

]
 1

6
Fe

b
20

24

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW ’24, May 13–17, 2024, Singapore Jiajun Tan, Fei Sun, et al.

indicate that UtU’s performance on downstream tasks, its efficacy
in unlearning, and its output distribution are more aligned with
those of the retrained model, which is broadly regarded as the gold
standard of unlearning.

2 PRELIMINARIES
2.1 Operation of GNNs
Consider a graph 𝐺 = (𝑉 , 𝐸) with node set 𝑉 and edge set 𝐸. Each
node 𝑣𝑖 ∈ 𝑉 is often associated with a feature vector 𝒙𝑖 . A GNN
modelM, parameterized by 𝜽 , is composed of multiple GNN layers,
which process node features and graph structural information to
generate node embeddings via the message passing mechanism [8].

Initialized by 𝒉0
𝑖
= 𝒙𝑖 for each node 𝑣𝑖 , the operation of 𝑙-th GNN

layer can be formally expressed as follows:

𝒎𝑙
𝑖 = msg(𝒉𝑙−1𝑖 , {𝒉𝑙−1𝑗 | 𝑗 ∈ N (𝑖)}), (1)

𝒉𝑙𝑖 = upd(𝒉𝑙−1𝑖 , 𝒎𝑙
𝑖) (2)

where N(𝑖) denotes neighborhood of 𝑣𝑖 , and msg(·) and upd(·)
vary among different GNN types, representing message function
and update function. The final output ofM is the node embeddings
of last layer, denoted by 𝒉 = M(𝐺, 𝜃).

2.2 Edge Unlearning on GNNs
Let M0 be a randomly initialized GNN, and let the original model
M∗ be trained using a learning algorithm A(M0,𝐺) on graph 𝐺 .
The forget set, defined as 𝐸𝑑 ⊆ 𝐸, contains the edges requested for
removal, while the retain set 𝐸𝑟 = 𝐸\𝐸𝑑 represents the remaining
edges in the training graph 𝐺 . The objective of unlearning is to
devise an unlearning process U that renders the unlearned model
M𝑢 = U(M∗,𝐺, 𝐸𝑑) indistinguishable from the retrained model
M𝑟 = A(M0,𝐺𝑟), with 𝐺𝑟 = (𝑉 , 𝐸𝑟) being the retain graph.

A variety of unlearning algorithms have been developed to ad-
dress edge unlearning requests in GNNs. [4, 17] leverage SISA
paradigm [2], where only the sub-model corresponding to the re-
moved data needs to be retrained and then aggregates its result
with other sub-models. Other strategies directly update the original
model, including leveraging the influence function [18], providing
a theoretical guarantee of unlearning via differential privacy [6, 19],
projecting parameters to irrelevant subspace [7].

2.3 GNNDelete
Recently, GNNDelete [5] surpasses various baseline methods, show-
ing a strong capability to unlearn selected edges by a learning-to-
unlearn framework. It first inserts a linear transformation 𝜙 with
learnable parameters after each GNN layer, while freezing the origi-
nal model’s parameters.𝜙 is only applied to nodes in 𝑙-hop enclosing
subgraph of forget edge 𝑒𝑢𝑣 , namely 𝑆𝑙𝑢𝑣 , by transforming each
node’s original embedding into unlearned embedding: 𝒉′𝑙

𝑖
= 𝜙𝑙 (𝒉𝑙

𝑖
);

for other nodes, their embeddings remain unchanged.
Two loss functions, Deleted Edge Consistency (DEC) loss L𝐷𝐸𝐶

and Neighborhood Influence (NI) loss L𝑁𝐼 , are then computed layer-
wise. Generally, DEC loss is intended for unlearning edges in 𝐸𝑑 ,
while the NI loss aims to repair node embeddings in 𝑆𝑙𝑢𝑣 . We will
discuss their design in more detail in 3.2. During the backward pass,
the parameters of 𝜙 are optimized based on the weighted total loss,

−0.4 −0.2 0.0 0.2
pgnndelete − poriginal

10−5

10−4

10−3

10−2

10−1

100

Pr
op

or
tio

n

(a) Unlearn by GNNDelete.

−0.4 −0.2 0.0 0.2
pretrained − poriginal

10−5

10−4

10−3

10−2

10−1

100

Pr
op

or
tio

n

(b) Retrain from scratch.

Figure 1: An intuitive demonstration of over-forgetting, com-
paring the difference of retaining edge predictions before
and after forgetting. The x-axis represents the change in pre-
dicted probabilities after unlearning, and the y-axis shows
the distribution of these changes across the retain set 𝐸𝑟 .

which is represented as:

L𝑙 = 𝜆L𝑙
𝐷𝐸𝐶 + (1 − 𝜆)L𝑙

𝑁 𝐼 , (3)

GNNDelete uses 𝜆 = 0.5 to report its performance, claiming this
setting can achieve the best overall performance.

3 UTU: UNLINK TO UNLEARN
While GNNDelete reports prominent unlearning ability, it suffers
from the issue of over-forgetting. In this section, we first provide a
formal introduction to the over-forgetting problem, subsequently
revealing the connection between DEC loss and over-forgetting. By
removing inappropriate loss functions in GNNDelete, we further
introduce our simplified approach, UtU, aiming at alleviating the
issue of over-forgetting.

3.1 Over-forgetting in Edge Unlearning
As previously introduced, over-forgetting refers to the phenomenon
where the performance of samples in the retained set significantly
deteriorates after unlearning. Figure 1 shows the over-forgetting ob-
served onGNNDelete. Despite only 5% of the edges being unlearned,
a substantial 92.4% of the retained edges experience performance
decrement. Conversely, the retrained model’s predictions for the
majority of retained edges remain mostly unchanged. In order to
quantitatively assess over-forgetting, we compare performance of
unlearned model against a retrained model to gauge the impact of
the forgetting procedure.

For link prediction task, the probability of the existence of the
edge between nodes (𝑣𝑖 , 𝑣 𝑗) is predicted by integrating their final
embeddings 𝒉𝐿

𝑖
,𝒉𝐿

𝑗
using a score function 𝜑 (·), as 𝑝𝑖 𝑗 = 𝜑 (𝒉𝐿

𝑖
,𝒉𝐿

𝑗
).

For 𝑒𝑖 𝑗 ∈ 𝐸𝑟 , we identify over-forgetting if the predicted probability
of 𝑒𝑖 𝑗 in M𝑢 decreases compared to M𝑟 , i.e., Δ𝑝𝑖 𝑗 = 𝜑 (𝒉′

𝑖
,𝒉′

𝑗
) −

𝜑 (𝒉𝑟
𝑖
,𝒉𝑟

𝑗
) < 0, where 𝒉′ and 𝒉𝑟 represent embeddings generated

by models M𝑢 and M𝑟 , respectively. Typically, our focus is on the
overall performance decline across 𝐸𝑟 , which can be measured as
Δ𝑝𝑟 = mean(Δ𝑝𝑖 𝑗),∀𝑒𝑖 𝑗 ∈ 𝐸𝑟 .

3.2 Analysis on Unlearning Target
Now we discuss the design of GNNDelete’s loss functions to find
out the source of over-forgetting. The Deleted Edge Consistency
(DEC) loss minimizes the difference between predictions of forget

Unlink to Unlearn: Simplifying Edge Unlearning in GNNs WWW ’24, May 13–17, 2024, Singapore

edges 𝑒𝑢𝑣 and random-chosen node pairs:
L𝑙
DEC = mse({[𝒉′𝑙𝑢 ;𝒉′𝑙𝑣] | 𝑒𝑢𝑣 ∈ 𝐸𝑑 }, {[𝒉𝑙𝑝 ;𝒉𝑙𝑞] | 𝑝, 𝑞 ∈𝑅 𝑉 }), (4)

where [·; ·] denotes the concatenation of two vectors.mse refers to
Mean-Squared Error.

However, the use of random node pairs 𝑝, 𝑞 ∈𝑅 𝑉 as optimization
targets for the forget set 𝐸𝑑 is not suitable. The optimization of DEC
loss will introduce structural noise by encouraging embeddings
of nodes in 𝐸𝑑 to reflect random connections rather than actual
graph topology, leading to inaccurate representations and predic-
tion results. Moreover, this noise propagates to neighboring nodes
by message passing mechanism as pointed out in Sec. 2.1, degrading
the embedding quality on a broader scale and exacerbating the is-
sue of over-forgetting. Besides, connected nodes in a graph tend to
share similar attributes or belong to the same class according to the
homophily hypothesis [11]. Despite being removed due to unlearn-
ing requests, the samples in 𝐸𝑑 originate from pre-existing edges
in the graph, implying that their end nodes ought to exhibit strong
homophily, and should not be equated with arbitrarily selected
node pairs.

Neighborhood Influence (NI) loss base on the idea that removing
𝑒𝑢𝑣 should not affect the predictions of its enclosing subgraph 𝑆𝑢𝑣 :
L𝑙
NI = mse(∥𝑤{[𝒉′𝑙𝑤] | 𝑤 ∈ 𝑆𝑙𝑢𝑣/𝑒𝑙𝑢𝑣}, ∥𝑤{[𝒉𝑙𝑤] | 𝑤 ∈ 𝑆𝑙𝑢𝑣}), (5)

where ∥ signifies the concatenation of multiple vectors.
NI loss guides the adaptation of the unlearned embedding 𝒉′𝑙𝑤 to

the original embedding, acting as a regularization term for node
embeddings in 𝑆𝑙𝑢𝑣 to mitigate the structural noise induced by DEC
loss.

However, note that node features and edges are combined as
GNN’s input, the original embedding is generated using original
graph without removing 𝑒𝑢𝑣 ’s influence. That means the unlearned
embedding will still contain structural information of edges in the
forget set, which weakens its ability to repair over-forgetting.

3.3 UtU: a Minimalist Approach
Given the preceding analysis, we propose to eliminate the DEC loss
due to its selection of an unsuitable target for forgetting. Following
the removal of DEC loss, the NI loss, initially serving as a corrective
measure for DEC loss, is also deemed unnecessary. We then propose
that edge unlearning can be effectively achieved by only altering
the input edge indexes to that of retain graph 𝐺𝑟 , which can be
named Unlink to Unlearn:

𝒉′ = M∗ (𝐺𝑟 ;𝜃∗), (6)
where 𝜃∗ denotes parameters of original modelM∗.

This approach is grounded on the insights of GNN operations.
The edges in the graph mainly facilitate message passing between
node features, as delineated in Eq. 1. Most GNNmodels’ parameters
are located during the node features’ update step, as specified in
Eq. 2, which does not involve edge utilization. Therefore, removing
a forgotten edge during inference can effectively block message
propagation from neighboring nodes linked to the forget set. This
action alone suffices to eliminate the edge’s influence from the
model, thereby achieving our unlearning objective.

It is worth noting that UtU is remarkably efficient through its
minimalistic design. Deleting an edge from the graph structure only
requires O(1) time complexity, making UtU a nearly “zero-cost”
edge unlearning solution.

Table 1: Statistical Overview of the Datasets.

Dataset # Nodes # Edges # Features # Classes
CoraFull 19,793 126,842 8,710 70
PubMed 19,717 88,648 500 3
CS 18,333 163,778 6,805 15
OGB-collab 235,868 2,238,104 128 N/A

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We conduct the experiments on four real-world datasets,
including citation networks: CoraFull [1] and PubMed [1], and
collaboration networks: CS [14] and OGB-collab [9]. Table 1 shows
details of these datasets. In accordance with previous work, we split
90% edges for the training set, 5% for validation, and 5% for test.

Baselines. For GNN backbones, we choose themost widely-used
2-layer GNNs: GCN [10], GAT [15], and GIN [21]. For unlearning
methods, we consider the following baseline methods: Retrain from
scratch, Gradient Ascent, GIF [18], and GNNDelete [5]. We also
set a variant of GNNDelete by only removing DEC loss, namely
GNNDelete-NI, for comparison.

Tasks. Following the common practice in [5, 19], we train all
models on link prediction task and then perform edge unlearning.
Forget edges are randomly chosen from the training set.We vary the
proportion of forget edges from 0.1% to 5% to examine algorithm
performance under different scenarios. There are few scenarios
where more than 5% of edges need to be unlearned simultaneously.

Metrics. We adopt ROC-AUC to evaluate downstream tasks
for link prediction. To assess the effectiveness of unlearning, we
compare the unlearned model against the retrained model using JS
divergence and ROC-AUC of MI Attack. Additionally, we use Δ𝑝 ,
introduced in Sec. 3.1, to compare over-forgetting.

Implementation.We follow the default hyper-parameter set-
ting of all baselines, and metrics are reported across an average of
five independent runs1.

4.2 Experiment Result and Anlysis
4.2.1 Downstream Task. In this part, we compare the utility of
unlearned models obtained by different unlearning methods, as
we anticipate that unlearning will not harm the performance of
GNN on downstream tasks. ROC-AUC was used to determine the
model’s ability to predict hidden test edges. Results are shown in
Table 2, where UtU performs the best in most settings, with the
closest gap of 0.001 on average compared to retraining.

4.2.2 Unlearning Efficacy. The model after unlearning should treat
the forget edges as if it had never seen them before. Hence, we
expect the predictions on these edges to be similar to those of a
model that has been retrained from scratch.

Following [20], we use the activation distance measured by JS
divergence, along with membership inference (MI) attack [12] to
assess whether themodel has truly achieved the effect of unlearning.
Figure 2 illustrates that the outputs of forget edges from UtU closely
mirror those from a model retrained from scratch. Table 3 shows
that the resistance to MI Attack of UtU is generally more aligned
with retraining than baseline methods.
1The code will be released after acceptance.

WWW ’24, May 13–17, 2024, Singapore Jiajun Tan, Fei Sun, et al.

Table 2: AUC (↑) on Link Prediction. Forget Set: 5.0% edges.
Dataset Model Retrain GradAscent GIF GNNDelete GNNDelete-NI UtU

CoraFull
GCN 0.967 0.563 0.964 0.922 0.967 0.965
GAT 0.963 0.766 0.926 0.934 0.947 0.964
GIN 0.961 0.596 0.742 0.897 0.958 0.960

PubMed
GCN 0.970 0.375 0.924 0.934 0.968 0.969
GAT 0.936 0.766 0.774 0.890 0.927 0.933
GIN 0.939 0.545 0.842 0.887 0.938 0.942

CS
GCN 0.968 0.786 0.950 0.947 0.968 0.970
GAT 0.963 0.846 0.941 0.943 0.958 0.963
GIN 0.960 0.583 0.520 0.900 0.959 0.960

OGB-collab
GCN 0.985 0.406 0.971 0.925 0.981 0.987
GAT 0.971 0.755 0.744 0.924 0.960 0.971
GIN 0.925 0.683 0.500 0.805 0.912 0.913

Table 3: AUC on MI Attack. Forget Set: 5.0% edges.
Dataset Model Retrain GradAscent GIF GNNDelete GNNDelete-NI UtU

CoraFull
GCN 0.580 0.500 0.529 0.712 0.531 0.528
GAT 0.582 0.500 0.547 0.719 0.543 0.541
GIN 0.586 0.510 0.508 0.721 0.586 0.605

PubMed
GCN 0.616 0.500 0.555 0.652 0.555 0.551
GAT 0.624 0.500 0.574 0.708 0.576 0.578
GIN 0.603 0.519 0.552 0.752 0.662 0.625

CS
GCN 0.593 0.500 0.580 0.566 0.573 0.577
GAT 0.574 0.500 0.543 0.615 0.540 0.542
GIN 0.580 0.653 0.497 0.666 0.592 0.590

OGB-collab
GCN 0.515 0.500 0.538 0.542 0.528 0.547
GAT 0.560 0.500 0.533 0.484 0.478 0.554
GIN 0.571 0.502 0.500 0.511 0.555 0.556

Avg Diff. with Retrain (%) 6.67 4.40 5.53 2.21 1.58

GCN GAT GIN

10−5

10−4

10−3

10−2

10−1

A
ct

iv
at

io
n

JS
D

iv
.

Cora

GCN GAT GIN

PubMed

GCN GAT GIN

CS

GCN GAT GIN

OGB-Collab

Gradient Ascent GIF GNNDelete GNNDelete-NI UtU

Figure 2: Activation distance (↓) on forget set (5.0% edges).

4.2.3 Over-forgetting evaluation. Figure 3 shows the trend of Δ𝑝
as the size of the forget set changes. As described in 3.1, Δ𝑝 repre-
sents the average difference of the edge predictions of the retain
set, compared with that of retrained. Lower Δ𝑝 indicates more seri-
ous over-forgetting. The results indicate that our method remains
unaffected by over-forgetting, regardless of the forget set’s size.
Furthermore, its predictions of retain set are also highly consistent
with those of the retrained model.

5 CONCLUSION
In this work, we address the issue of over-forgetting in the state-of-
the-art edge unlearningmethod, GNNDelete. Our analysis identifies
a correlation between its loss functions and the over-forgetting prob-
lem. To mitigate this, we introduce a simplified approach named
Unlink to Unlearn (UtU). UtU effectively eliminates the influence
of forgotten edges by merely modifying the structure of the input
graph, thus obstructing the corresponding message-passing paths
in GNN during the inference stage. Experimental results demon-
strate that UtU acts on par with the retrained model with near-zero
computational overhead. Our findings suggest that removing a

0.1 0.5 1.0 2.5 5.0
Unlearn ratio (%)

−0.4

−0.2

0.0

R
et

ai
n

se
t∆

p

Cora

0.1 0.5 1.0 2.5 5.0
Unlearn ratio (%)

−0.4

−0.2

0.0

R
et

ai
n

se
t∆

p

PubMed

0.1 0.5 1.0 2.5 5.0
Unlearn ratio (%)

−0.4

−0.2

0.0

R
et

ai
n

se
t∆

p

CS

0.1 0.5 1.0 2.5 5.0
Unlearn ratio (%)

−0.4

−0.2

0.0

R
et

ai
n

se
t∆

p

OGB-Collab

Gradient Ascent GIF GNNDelete GNNDelete-NI UtU

Figure 3: Comparison of over-forgetting on GAT backbone.

small number of edges might have little influence on the model pa-
rameters, highlighting an avenue for future research to investigate
this phenomenon.

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.
[2] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine Unlearning. In IEEE S&P. 141–159.

[3] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine
unlearning. In IEEE S&P. 463–480.

[4] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In SIGSAC. 499–513.

[5] Jiali Cheng, George Dasoulas, Huan He, Chirag Agarwal, and Marinka Zitnik.
2022. GNNDelete: A General Strategy for Unlearning in Graph Neural Networks.
In ICLR.

[6] Eli Chien, Chao Pan, and Olgica Milenkovic. 2023. Efficient Model Updates for
Approximate Unlearning of Graph-Structured Data. In ICLR.

[7] Weilin Cong and Mehrdad Mahdavi. 2023. Efficiently Forgetting What You Have
Learned in Graph Representation Learning via Projection. In ICAIS. 6674–6703.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for QuantumChemistry. In ICML. 1263–1272.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NIPS, Vol. 33. 22118–22133.

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[11] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[12] Iyiola EOlatunji,WolfgangNejdl, andMegha Khosla. 2021. Membership inference
attack on graph neural networks. In TPS-ISA. IEEE, 11–20.

[13] Stuart L Pardau. 2018. The california consumer privacy act: Towards a european-
style privacy regime in the united states. J. Tech. L. & Pol’y 23 (2018), 68.

[14] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[15] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[16] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[17] Cheng-Long Wang, Mengdi Huai, and Di Wang. 2023. Inductive Graph Unlearn-
ing. arXiv preprint arXiv:2304.03093 (2023).

[18] Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan
He. 2023. GIF: A General Graph Unlearning Strategy via Influence Function. In
TheWebConf. 651–661.

[19] Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang. 2023. Certified
edge unlearning for graph neural networks. In SIGKDD. 2606–2617.

[20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
TNNLS 32, 1 (2021), 4–24.

[21] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Operation of GNNs
	2.2 Edge Unlearning on GNNs
	2.3 GNNDelete

	3 UtU: Unlink to Unlearn
	3.1 Over-forgetting in Edge Unlearning
	3.2 Analysis on Unlearning Target
	3.3 UtU: a Minimalist Approach

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment Result and Anlysis

	5 Conclusion
	References

