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ABSTRACT

In-context learning, i.e., learning from in-context samples, is an impressive ability
of Transformer. However, the mechanism driving the in-context learning is not
yet fully understood. In this study, we aim to investigate from an underexplored
perspective of representation learning. The representation is more complex for in-
context learning senario, where the representation can be impacted by both model
weights and in-context samples. We refer the above two conceptually aspects of
representation as in-weight component and in-context component, respectively. To
study how the two components affect in-context learning capabilities, we construct
a novel synthetic task, making it possible to device two probes, in-weights probe and
in-context probe, to evaluate the two components, respectively. We demonstrate that
the goodness of in-context component is highly related to the in-context learning
performance, which indicates the entanglement between in-context learning and
representation learning. Furthermore, we find that a good in-weights component
can actually benefit the learning of the in-context component, indicating that
in-weights learning should be the foundation of in-context learning. To further
understand the the in-context learning mechanism and importance of the in-weights
component, we proof by construction that a simple Transformer, which uses pattern
matching and copy-past mechanism to perform in-context learning, can match the
in-context learning performance with more complex, best tuned Transformer under
the perfect in-weights component assumption. In short, those discoveries from
representation learning perspective shed light on new approaches to improve the
in-context capacity.

1 INTRODUCTION

Transformer-based models have demonstrated remarkable capacities for language processing (Ope-
nAI, 2023; Devlin et al., 2018). Among the most astonishing aspects is their ability to rapidly learn
from context examples (Brown et al., 2020), which is refered as in-context learning. With the advan-
tage of no weight changeing, in-context learning has attracted a lot of research attentions and has been
emploied to tackle real-world issues efficiently. This trend necessitates a deeper understanding of the
underlying mechanisms behind in-context learning. Many efforts has been spent on this important
topic. For example, several recent works (von Oswald et al., 2022; Dai et al., 2023; Akyürek et al.,
2022) have described in-context learning as a form of gradient descent. Other works Li et al. (2023);
Bai et al. (2023) further interpret in-context learning as algorithm implementation and selection.

In this paper, we head for exploring in-context learning from the aspective of representation learning,
since it can often provide a deep understanding on how the internal representation related to the
final output of the models. However, most previous works on investigating the representation within
Transformer are outside of in-context learning senario (Schouten et al., 2022; Voita et al., 2019; Li
et al., 2022) . The question that how does the representation learning impact the in-context ability is
still underexplored.
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To answer this question, we first investigate the representation in the case of in-context learning.
The representation is actually impacted by not only the model weights but also in-context
samples without weights update. We thus conceptually decompose the representation into in-weight
component and in-context component, related to in-weight learning (Chan et al., 2022b;a)) and
in-context learing, respectively. We use component referring to PCA (Princeple Component Analysis).
Here by conceptually decomposing, we do not mean explicitly decompose a single represention
into two in-weight component and in-context component, phisically. Instead, we devise two probes,
in-weight probe and in-context probe, to evaluate in-weight component and in-context component,
respectively.

1.1 MAIN CONCLUSIONS

Figure 1: Test results for different train-
ing epoch and model size. Improving
in-weights component(dashed line) can
enable the emergence of in-context learn-
ing for small models. Detail in Section
3.2

With the above settings, we explore how the in-weight
component and in-context component impact the in-
context leaning capability. The experimental results reveal
that: (i) Good in-weight component is a nessessary but not
sufficent condition for strong in-context ability. (ii) The
in-context component probing score is highly related to
the in-context ability. However, it is hard to achieve strong
in-context ability by only improving in-context component
without considering in-weight conponent. (iii) By syner-
gistically improving in-weight and in-context component,
the in-context performance of a relative large model is
lifted by a larger margin (in-context learning score rising
from 0.168 to 0.885), and the in-context ability emergence
is observed for a small model, as shown in Figure 1.

The mathematical analysis is given to understand how
Transformer perform in-context learning. We proof by
construction that a simple Transformer can obtain a compa-
rable performance with best trained more complex Trans-
former model(GPT2) in experimental part with only three
layers under the assumption that the in-weights component is perfect learned in the input. This further
verifies the important of in-weights components. Our construction reveals that pattern matching, as
a supplement to copy-past mechansim(Edelman et al., 2022), is important for learning ”sentence
semantic” from in-context. The pattern matching refers to the mechanism that the Transformer will
compare the patterns in different part of ”image sentence” to obtain a global representation.

1.2 CONTRIBUTIONS

Our main contributions can be summarized as following:

• From a representation learning perspective, we propose a new synthetic task to enable the
study of the impact of in-context component and in-weights component on in-context ability
seperately.

• The experimental results uncover the relationship between the quality of representations and
in-context learning ability.

• Mathematical analysis is given to further understand the the in-context learning mechanism
and importance of in-weights component.

2 EXPERIMENTAL DESIGN.

In this section, we will talk about the experimental design, including dataset construction, model and
training object, and the exploration framework.

Principles for Experimental Design 1) The prediction of the query example should adapt to the
in-context example. 2) The evolution of in-weights and in-context components can be tracked. 3)
The learning of in-weights and in-context components should be controllable.
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Figure 2: Experimental setup. We train Transformers by given sequence of image and lable pairs
and training the model to predict labels of each image. Then, during inference, we evaluate the
model’s ability to predict accurately on new, unseen sequence. The images from 3D Shapes dataset
are synthesized from six factors. The output factor is determined by the context. Here, we give the
two sequences of factor ”object color” and ”object shape”, respectively.

2.1 DATASET CONSTRUCTION

In general tasks, the impacts of model weights and context are entangled, and it is hard to design
the above probes. Thus we propose a task on Shapes3D (Kim & Mnih, 2018) dataset to enable the
study of in-weight an in-context components with two probes, respectively. The experimental setting
is shown in Fig. 2. Specifically, given a sequence of image and label pairs as context, the task is to
predict the label of the query image. For each image, there are six different factors: object color,
object shape, object scale, background color, floor color and pose. We denote the factor as e and
factor value of factor e as V (e) For each sequence, we randomly choose a factor to generate the labels
of the images. We refer this factor as hidden factor for this sequence. For the two context seqences
in Fig. 2, the factor of Seq #1 is object color, and the correct label for the qurey image is 1 (object
color is green). In Seq #2, for the same query image, the correct label is 3 (object shape is cube).

To make the correct prediction, the network needs not only to recognize the values of six factors from
the query image (related to in-weight component), but also to identify the correct factor to output
from the contexts (related to in-context component). Therefore, the in-weight probe is to predict the
values of six factors, only given the query image. The in-context probe is to identify the factor of the
context, given the full sequence.

To study the relationship between how well the in-weight/context components is learnt and how
strong the in-context learning ability is, we control the difficulty in learning the representation
components by designing two label assignment settings during training phase:

• Dfix: the mapping between labels and factor values is fixed across all the sequence.

• Drnd: the mapping is fixed only inside one single sequence, and randomly shuffled for
different sequences.

The model is expected to better learning in-weights component in Dfix setting and is expected to learn
better in-context component in Drnd. To further analysis the interplay between these components, we
further consider the two composite setting:

• Dfix→rnd: In this setting, we first train the model on Dfix for a specific epoch, and then, we
train the model on Drnd.

• Dfix∧rnd: The 50% data in the training set uses Dfix and the rest uses Drnd.

Given two data settings D1 and D2, we use D1 ⇒ D2 to denote the evaluation result of model
on data setting D2 after the model is trained on data setting D1. Fig. 3 gives the correspondings
between the relations we want to explore within in-weights components, in-context components and
in-context learning. When tesing the in-context ability during inference, we prefer the Drnd setting,
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Figure 3: Illustration of task design. C, W and P are in-context component, in-weights component
and in-context performance of Transformer respectively. A: All possible relations. B: The relations
that we want to explore in each experiments setting. The red line denotes that the explored relation
and the black line denoted that the non-removed relations.

referring to Wei et al. (2023); Min et al. (2022), which point out that the label shufffuled case can
better distinguish in-context ability.

2.2 MODEL AND TRAINING

Based on the proposed task, we want to explore the properties of Transformer. We leverage the
causal Transformer, where every token can only attend to the other tokens previous to it. Without
specific, we implement the Transformer f as GPT2 model with 12 layers, 4 heads and embedding
size 128. To simulate the auto-regression training framework, we calculate the loss for the sequence
s = {(x1, y1), . . . , (xL, yL)} as:

L(θ, s) = 1

L

L∑
i=1

l(f({x1, y1, · · · ,xi}), yi), (1)

where l denotes the loss function. x will be tokenized by VAE before being passed to Transformer.
The training loss in the dataset S is calculated as the average of loss over all training sequence, i.e.,

L(θ, S) = 1

n

n∑
i=1

L(θ, si). (2)

Here, we leverage the Adam(Kingma & Ba, 2014) and mini-batch training to optimize Loss(θ, S).
The batch size used here is 128 and the learning rate is set to 0.0001.

2.3 EXPLORATION FRAMEWORK

Here we give the metrics to give numeral evaluation of the components, and in-context learning
performance. Since the components are hidded in the representation, we rely on the probe method
(Alain & Bengio, 2016). The probe classifier consists of a single linear layer, and the loss is calculated
using softmax and cross-entropy. The probe classifer is trained for one epoch.

In-context comp. score (Fig. 4A) The in-context comp. score is calculated as 1
n

∑n
i=1 1êi=ei , where

1expr is 1 when the expr is true else it is 0. ei is the hidden factor of the i-th ”image sentence” and êi
is the prediction of probe classifier. We use the e to evaluate, because e can only be learned through
in-context learning.

in-weights comp. score (Fig. 4B) To remove the influence in-context components, we dis-
able the attention layer in the Transformer. Then the in-weights comp score is calculated as∑n

i=1

∑L
j=1

∑|E|
k=1 1v̂

(Ek)

k =v
(Ek)

k

, where v̂
(Ek)
k is the prediction of probe classifier.

In-context learning score (Fig. 4C) Let ai and aj be the accuracies of the Transformer on the
i-th and j-th samples, respectively. Following Olsson et al. (2022), the in-context learning score is
calculated as ai − aj . Here we choose i = 40, j = 0 by defailt.

Rationale to leverage hidden factor prediction as probe task. To solve the task on Drnd, we
need to obtain two informations from in-context, that is the hidden factors and the mapping between
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Figure 4: Illustraction of calculation of in-context comp. score(A), in-weights comp score(B) and
in-context learning score(C).

factor values and labels. Therefore, we can only choose the probe task for in-context component
from these two candidates. The mapping of the factor values and labels can not be used as probe
task because 1) the number all possible mapping is much larger than the size of dataset, which means
we cannot learn the probe classifier. 2) The information of mapping is not neccessary stored in
representation. Section 3.3 gives a solution of the model that no information of mapping stored in
representation. Hidden factors prediction is suitable for probe task because 1) Hidden factor is the
sequence level information that can only be learned from in-context example. 2) It is neccesary for
solving the tasks and its information is stored in representation (Section 3.1).

2.4 COMPARISON OTHER EXPLORATION WITH SYNTHETIC TASKS

Table 1: Comparison with other papers that explore in-context learning using synthetic dataset.

Garg et al. (2022) Chan et al. (2022a) Ours
Synthetic task Simple functions Image data Image data

Sentence Semantic No No Yes
Perspective Algorithm implementing Data properties Representation

In-weights learning No Trade off with in-context learning Complex relations with in-context learning

There are two kinds of synthetic tasks are common used in the exploration of in-context learning:

• (ST1, simple functions) In this task, a simple function is sampled for each sentence (an
input sequence for the Transformer). Then, xi is generated by sampling from a specific
distribution, and yi is produced using the sampled simple function with xi as input.

• (ST2, image sequence) In this task, xi is a randomly sampled image from the image dataset,
and yi is generated using the original label values.

(ST1) is investigated in the works by Garg et al. (2022); von Oswald et al. (2022); Akyürek et al.
(2022). (ST2) is examined in the studies by Chan et al. (2022a); Kirsch et al. (2022); Chan et al.
(2022b). (ST1) researches in-context learning at a more abstract level, leading to the conclusion
that in-context learning implements algorithms, such as gradient descent(von Oswald et al., 2022).
However, their tasks are significantly distant from real applications because 1) The input token x
consists of numbers without any evident pattern or semantics, while most tokens in NLP tasks are
words with clear meanings. 2) The tangible forms of their results is hard to be found in practice. The
resolution of real NLP tasks is difficult to be expressed as straightforward, comprehensible algorithms,
such as gradient descent or ridge regression. In contrast, (ST2) is closer to real applications since
the image data used has semantic meaning. Thus, it is feasible to investigate how data properties
influence in-context learning (Chan et al., 2022a). Our synthetic task belongs to the (ST2) category.
The primary distinction between our synthetic task and the previous tasks in (ST2) is that ”sentence
semantics” are considered in our approach. In the following, we provide a detailed comparison
between our work and that of Chan et al. (2022a).

5
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Comparison with Chan et al. (2022a) Regarding dataset setting: The primary difference in our
task setting compared to that of Chan et al. (2022a) lies in the consideration of ”sentence semantics.”
Specifically, if we remove certain factors or only consider one factor, our constructed synthetic data
would degenerate to that of Chan et al. (2022a). The importance of considering ”Sentence Semantic”
lies in the following: 1) Understanding sentence semantics plays a crucial role in practical applications,
as evidenced by various studies (Zheng et al., 2021; Bowerman, 1976; Reimers & Gurevych, 2019).
2) Without sentence semantics, the function of in-context learning would degenerate into a simple
copy-paste mechanism, wherein the Transformer can predict the label of a query image by searching
for context images with the same label and then copying the label of the in-context image to the
prediction of the query image. Regarding the division of in-weights/in-context: At a high level,
the meanings of ”in-context” and ”in-weights” are consistent across our work and that of Chan et al.
(2022a). However, our paper advances further by: 1) Analyzing the complex relationship between
in-weights and in-context components from a representation perspective, leading to a more realistic
conclusion. Chan et al. (2022a) concludes that in-context learning and in-weights learning are in
a tradeoff relationship in their exploration, but large language models can exhibit both capacities
Brown et al. (2020), which is acknowledged by Chan et al. (2022a) in the discussion at the end of
their paper. 2) While Chan et al. (2022a) devises two tasks to evaluate in-context and in-weights
learning, our work leverages a task that requires both in-context and in-weights information to solve.
This setting is more closely aligned with practical applications, as real tasks often require both types
of information (Brown et al., 2020; Alayrac et al., 2022).

3 RESULTS

In this part, we give our experimental findings. In section 3.1, we will explore how in-weights
component and sequence representation contribute to the in-context learning ability individually.
In section 3.2, we will explore the joint effect of in-weights component and in-context component.
Finally, we want to explore how Transformers solve this problem in section 3.3

3.1 INDIVIDUAL IMPACT OF IN-CONTEXT COMPONENT AND IN-WEIGHTS COMPONENT

Key points We design experiments to solely improve in-context component or in-weight component,
we find that 1) the in-context component is highly related to in-context learning and 2) solely
improve in-weights component cannot affect in-context learning perfomance.

To verify the effective of task deign, we first conduct experiments to explore the evolving of represen-
tation learning when applied data setting Dfix and Drnd. We find that

• Drnd struggles to learn effective in-weights component, while Dfix excels in this task.
We evaluate the in-weights component of Dfix and Drnd during the training process in Fig.
5A. The in-weights component quality of Dfix significantly surpasses that of Drnd. And
during training, the in-weights component of Dfix improves, while the in-weights component
of Drnd fluctuates below the initial level.

• The in-context learning components learned from Drnd can be applied to Dfix, but the
reverse does not hold true. When trained on Drnd,Drnd ⇒ Drnd and Drnd ⇒ Dfix have a
similar in-context comp score in Fig. 5A. On the other hand, model trained on Dfix shows
exciting in-context comp score when evaluate on Dfix, but on Drnd, we cannot observe a
obvious increase in in-context comp score.

Based on the information of transfer ability of different components between Drnd and Dfix, we
further explore the problem of concern that how the representation impacts in-context learning. The
following observations are obtained,

• In-context component is high correlated with the in-context learning ability. In Fig.
5B, we evaluate the in-context components and the in-context learning performance during
the training process with different task settings. In all these setting, the in-context comp
score has a similar trend with the in-context learning performance. The results indicate that
in-context learning of Transformer relies on its inner representation and the increase of the
in-context learning performance may come from the representation learning.
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𝐷rnd ⇒ 𝐷fix

𝐷fix ⇒ 𝐷fix𝐷fix ⇒ 𝐷rnd

𝐷rnd ⇒ 𝐷rnd

A B C

𝐷fix ⇒ 𝐷rnd

Figure 5: Investivation of in-context representation, in-weights component and in-context learning
performance in different data settings. A: The in-context learning ability learned from Drnd can be
applied to Dfix, but the reverse does not hold true. And the in-context learning representation is highly
related to the in-context learning performance. B: The in-weights representation will diminish when
trained on Drnd, while it will enhance when trained on Dfix.

• In-weights component cannot direct impact the in-context learning performance. We
take a closer look at Dfix ⇒ Drnd, and the results are given in Fig. 5C. Because the in-context
component learned from Dfix cannot transfer to Drnd, only the in-weights component is
improved. No obvious improvement is observed and this means that in-weights component
doesn’t dirrectly affect the in-context learning performance.

3.2 JOINT IMPACT OF IN-CONTEXT COMPONENT AND IN-WEIGHTS COMPONENT

Key points We explore the cooperation between in-context component and in-weights component,
and we find that 1) Good in-weights component can help the learning of in-context component 2)
Simultaneously improve in-weights component and in-context component is more effective.

We consider the setting Dfix→rnd ⇒ Drnd. The model is first trained on the Dfix to improve the
in-weights component and then we transfer to Drnd to improve its in-context component. In this way,
we can explore how the in-weights component affects the in-context components. We observe that:

• Better in-weights component can accelerate the learning of in-context component In
Fig. 6A (Dfix→rnd ⇒ Drnd), we observe a sudden increase of in-context comp score at the
point when we switch from Dfix to Drnd. This results indicate that if we can quicker learn
the in-context component based on a representation with better in-weights component.

Then, we further explore the collective effect of in-weights and in-context components on in-context
learning by simutainously improve the in-weights and in-context components using the task setting
Dfix∧rnd ⇒ Dfix. We find that

• Learning in-weights component and in-context component simultaneously is more
effective than learning them separately. Compared with training on Dfix⇒rnd, model
trained on Dfix∧rnd learns much faster. What’s more, Dfix∧rnd can achieve better in-context
performance with similar in-context comp score, which indicates that learning in-weights
components and sequence representations simultaneously is more powerful.

3.3 HOW TRANSFORMER SOLVE THIS PROBLEM?

Key points We explore the mechanism of in-context learning by construction. We find 1) The
importance of in-weights component conclude in the experiments is further verified by the
fact that a simple Transformer can learn powerful in-context learning results based on perfect in-
weights component assumption. 2) The Transformer may rely on pattern matching and copy-past
mechanism for in-context learning.
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Figure 6: Improve in-weights component and in-context component by combining Dfix and Drnd. A:
Better in-weights component can accelerate the learning of in-context component. The green dash
line denotes point when switch from Dfix to Drnd. B: Improving in-weights component can enable
the emergency of in-context learning ability in small model. The dashed line denotes the task setting
Dfix∧rnd ⇒ Drnd while the solid line denotes the setting Drnd ⇒ Drnd.

We consider the naive Transformer(Vaswani et al., 2017). The hidden representation of token i
in Transformer is denoted as hi ∈ Rd. The whole hidden state of the sequence is denoted as
H = [h1, · · · ,h2L]

T ∈ R2L×d. The hidden representation of l-th layer is denoted as H(l).
Definition 3.1. (Transformer) One layer of Transformer contains one attention layer and one MLP
layer. The calculation of Attention Layer is

Attn(l)(H(l)) = H(l) +

C∑
c=1

σ
(
H(l)W

(l,c)
Q (H(l)W

(l,c)
K )T

)
H(l)W

(l,c)
V W

(l,c)
O . (3)

And the calculation of MLP layer is

H(l+1) = Attn(l)(H(l)) +W
(l)
2 Relu(W

(l)
1 Attn(l)(H(l))). (4)

Here we consider relaxed case where σ = Id .

The relaxion of Transformer is discussed by many previous works. Press et al. (2019) discover using
the Relu in fead forward layer can acheiver comparable results in original one. Wiegreffe & Pinter
(2019); Brunner et al. (2019); Richter & Wattenhofer (2020) points that softmax operation may not
actually needed for Transformer.
Definition 3.2. (Perfect in-weights component) If feature h has a perfect in-weights component, then
for all factor e, exists We ∈ Rd×|Ve| such that f (e)x1 · f (e)x2 = 1 only when v

(e)
x1 = v

(e)
x2 , else we have

f
(e)
x1 · f (e)x2 = 0.

Based on the perfect in-weights component assumption, we can construct a Transformer with
additional three layers to learn the in-context component and achieve comparable performance
compared with the best trained GPT2 model in previous experiments.
Proposition 3.3. We consider the data with ne factors and each factor has nv values in Drnd
setting. For causal Transformer with the number of heads larger or equal the number of fac-
tors with the hidden size O(nenv + L), if the Transformer can learn a perfect in-weights com-
ponent in layer k, then it can learn a feature given i in-context samples with sequence repre-
sentation score srsi = (1 − srsi−1)si + srsi−1 and srs0 = s0 at layer k + 2, where si =

1−
∑i

j=0

(
i
j

)∑|E|
k=2

(|E|
k

)
k−1
k

(
(nv−1)i−j

ni
v

)k (
1− (nv−1)i−j

ni
v

)|E|−k

, and we can obtain in-context

learning score as clsi =
(nv−1)(ni−1

v −(nv−1)i−1)
ni
v

srsi at k + 3 layers.

Proof Sketch The constuction of weights can be divided into two steps: 1. Estimate the factor
in this sequence.According to the perfect in-weights component assumption, we can project the
token feature into the space fe. The factor is chosed by find e such that (f ie)

Tf je can match yTi yj 2.
Estimate y. Based on the discovered factor in previous step, we choose the corresponding We to
map the distribution in its corresponding space and assign the label of new sample to the label of its
nearest sample.
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Figure 7: A: The constructed Transformer can match the performancce of best trained GPT2. B: Two
mechanisms for the constructed Transformer to learn in-context.

The in-context learning can be easily obtained based on a good in-weights component Fig. 7
shows that the performance of constructed simple Transformer can match the best tuned GPT2 model
under the perfect in-weights component assumption. Due to the limited capacity of three simple
Transformer layers, we can infer that the in-context learning can be easily obtained based on a good
in-weights component.

Pattern matching and copy-past may be a possible mechansim for in-context learning. The
constructed Transformer relies on two mechanism (shown in Fig. 7B) to obtain in-context information.
The first is pattern matching to learn the hidden factor of each image sentence. The pattern matching
compare the product value between the factor feature fe and labels to determine which factor generates
the labels in this sequence. Another mechanism is copy and past. Instead to learn the mapping
between factor value and labels, the Transformer simply copy the label of in-context sample with a
same value of hidden factor. The similar performance between the constructed Transformer and the
best trained GPT2 model implies that the two mechanism may applied in trained GPT2. Olsson et al.
(2022) also finds that copy-past mechanism plays an important role for in-context learning.

Comparison with previous work in analyzing the in-context learning mechanism The key con-
tribution of our analysis is to analysis how the in-context learning learn the ”sentence semantic”,i.e.
hidden factor, from in-context samples. Previous works investigate the mechanism of in-context
learning mainly focus on the pair-wise relation between the query tokens and in-context tokens, and
they reveals that copy-past is a important mechanism for in-context learning. In this paper, we want
to analyze how Transformer learn the ”Sentence Semantic”. In our construction, we find that model
may rely on the comparison of information within ”Sentence” (i.e., pattern matching).

4 LIMITATION

This paper investigates the relationship between representation and in-context learning using a
synthetic dataset. Although some discrepancies exist between our synthetic task and real-world appli-
cations, directly exploring practical tasks is challenging due to their complexity and uncontrollability.
Nonetheless, previous studies on synthetic tasks have provided valuable insights into in-context
learnings(Garg et al., 2022; Chan et al., 2022a;b; von Oswald et al., 2022). Compared to previous
synthetic tasks, our work is more closely aligned with practical applications, as discussed in Section
2.4.

5 CONCLUSION

This paper analyze the relation between representation and in-context learning by decomposite the
representation into in-weights and in-context components. Our experiments reveal that the in-context
component is directly related to the in-context learning ability. Further exploration reveal that in-
weights component is essential for the learning of in-context component. The discoveries are further
explored by constructing a simple Transformer to match the performance of best trained GPT2 model.
In short, this paper reveals how representation impacts in-context learning under a synthetic dataset.
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A DATASET DETAIL

3dshapes1 is a dataset of 3D shapes procedurally generated from 6 ground truth independent latent
factors. These factors are floor colour, wall colour, object colour, scale, shape and orientation.

All possible combinations of these latents are present exactly once, generating N = 480000 total
images.

Latent factor values floor hue: 10 values linearly spaced in [0, 1] wall hue: 10 values linearly spaced
in [0, 1] object hue: 10 values linearly spaced in [0, 1] scale: 8 values linearly spaced in [0, 1] shape:
4 values in [0, 1, 2, 3] orientation: 15 values linearly spaced in [-30, 30] We varied one latent at a time
(starting from orientation, then shape, etc), and sequentially stored the images in fixed order in the
images array. The corresponding values of the factors are stored in the same order in the labels array.

B OTHER RELATED WORK

We discuss the most related work in the main part of paper. Here, we list other works that are weaker
related to us.

Analysis of Transformer The analysis of Transformers can be broken down into two main compo-
nents: examining the expressibility of Transformers and comprehending the mechanisms of learned
Transformers. To analyze the expressibility of Transformers, a common approach is to determine
if they can solve specific problems by constructing appropriate weights. Giannou et al. (2023)
demonstrates that Transformers can function as Turing machines, while Liu et al. (2022) shows
that they can learn shortcuts to solve automata problems. In addition to expressibility, researchers
have also investigated the mechanisms behind learned Transformers. Bietti et al. (2023) examines
Transformers from a memory standpoint, and Tian et al. (2023) focuses on single-layer Transformers.
While the analysis of Transformers is crucial to our work, our ultimate goal differs; we aim to bridge
the gap between representation learning and in-context learning.

Exploration of representation within Transformer. Owing to the widespread use of Transformers,
numerous studies (Li et al., 2022; Voita & Titov, 2020) seek to investigate their internal representations
as a means of comprehending their functionality. The most prevalent approach involves utilizing
probe models and tasks to discern the information stored within these representations (Voita & Titov,
2020; Schouten et al., 2022). Taking a different perspective, Voita et al. (2019) explores the flow
of information across Transformer layers and how this process is influenced by the selection of
learning objectives. Our work shares similarities with these studies in that we employ the probe
method to examine representations. However, our focus differs in that we do not concentrate on
the semantic meaning within the representation. Instead, we investigate how the in-weights and
in-context information impact representation.

C PROOF OF PROPOSITION C.3

We consider the position embedding as pi = (0, · · · 0, 1, 0, · · · )T, where we only have value 1 at i-th
position and 0 others.
Lemma C.1. The attention module can implement copy and past behavior.

Proof. According to the definition of pi, we have pi ·pj = 0 if i ̸= j, otherwise, we have pi ·pj = 1.
We denote

M =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

1https://github.com/deepmind/3d-shapes
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Then we have piM = pi−1. For j > i, we denote the value of j-th token as hj = (0,pj) and i-th
token as hi = (h′

i,pi). If we want to copy the value of i-th token to the value of j-th token, we
can set the query matrix as WQ = (0,Mj−i), the key matrix as WK = (0, I) and value matrix as
WV = (W′

V ,0). Then we have

hT
j WQ · hT

aWK = pi · pa =

{
1 a ̸= j
0 a = j

(5)

Therefore, the j-th token can only attend to i-th token. Then we have the value of hj after attention as
hattn
j = ((h′

i)
TWV ,pj). By setting WV as different value, we can copy different part information

of i-th to j-th token. Then the lemma is held.

Lemma C.2. For the input h = [h1, h2, h3], where hi ∈ Rdi and d1 + d2 + d3 = d, for all
MLPs(h) = W ′

2Relu(W ′
1h2) : Rd2 → Rd2 , there exists MLPs(h) = W2Relu(W1h) : Rd → Rd,

such that MLP (h) = [h1,MLPs(h2), h3].

Proof. Obviously, for any W ′
1, there exists W1, such that W1 h(1) = W1h =

[h1,−h1,W
′
1h2, h3,−h3].

Obviously, for any W ′
2, There exists W2, such that h(2) = W2Relu(h(1)) = [Relu(h1) +

Relu(−h1),W
′
2Relu(W ′

1), Relu(h3) +Relu(−h3)] = [h1,MLPs(h2), h3]

Proposition C.3. We consider the data with ne factors and each factor has nv values in Drnd
setting. For causal Transformer with the number of heads larger or equal the number of fac-
tors with the hidden size O(nenv + L), if the Transformer can learn a perfect in-weights com-
ponent in layer k, then it can learn a feature given i in-context samples with sequence repre-
sentation score srsi = (1 − srsi−1)si + srsi−1 and srs0 = s0 at layer k + 2, where si =

1 −
∑i

j=0

(
i
j

)∑|E|
k=2

(|E|
k

)
k−1
k

(
(v−1)i−j

vi

)k (
1− (v−1)i−j

vi

)|E|−k

, and we can obtain in-context

learning score as clsi =
(v−1)(vi−1−(v−1)i−1)

vi srsi at k + 3 layers.

Proof. Without loss of generality, we assume the representation of Transformer in layer k is in a
form that h(k)

2i−1 = (fi,0,0,0,0,p
T
i )

T and h
(k)
2i = (0, li,0,0,0,p

T
i )

T. Because the representation
usually lays in low dimension space, a simple linear layer can transfer the representation in our
defined sparse form. What’s more, it is nature to assume that the position information is stored in the
representation, since it is given in the input and it is essential for attention.

The consider the operations of Transformer in different layers.

Layer 1

Because we assume that h(k)
2i−1 is a perfect token representation, then there exists We, such that

h
(k)
2i−1We = fei , where f

(e)
i satisfies that ∀e, i, we have f

(e)
j · f (e)i = 1 only when v

(e)
i = v

(e)
j else

f
(e)
j · f (e)i = 0.

Then, assign W
(l,i)
Q = W

(l,i)
K = Wei and W

(l,i)
V = (0,0,0,0,0, I)T so that (h(l)

i )TW
(l,i)
V = pi.

be =

i−1∑
a=i

(hT
i WQ · hT

aWK)hT
i WV =

∑
pa1(v

e
a = vei ) (6)

base = (20, 21, · · · , 2L)T and u = ({base ·bej}
|E|
j=1). Obvious, there is WO such that

∑
beWO =

(0,0,u,0,0,0,0).

For embedding of y, using the copy past of Lemma C.1, we can obtain h2i =

(0, li,u2i−1,u2i,0,pi). According to Lemma C.2, there exists W
(l)
1 ,W

(l)
2 , such that we have

h2i = (0, li,u2i−1,u2i,m2i,pi), where m2i = Relu(u2i−1 − u2i) + Relu(u2i − u2i−1).

Layer2
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In this layer, for y token, we apply Lemma C.1 to copy m2i−2 from h2i−2 to h2i. Therefore, we
have h2i = (0, li,u2i−1,u2i,m2i +m2i−2,pi)

For each x, copy corresponding m from its previous y and yielding the result that h2i−1 =
(fi,0,u2i−1,0,m2i−2,pi).

In MLP, we calculate fi = Relu(hT
2i−1W

(l)′

1 ) = Relu([{f (ej)2i−1 −Mm2i−2[j]}|E|
j=1,0]).

Layer3

Setting WQ = WK = (I,0,0,0,0,0), we have hT
i WQ = hT

i WK = fyi . Setting WV such that
hT
i WV = li.

According to Lemma C.2, there exists MLP such that we transfer the ly to the output form, which
served as the prediction.

Performance analysis

Here, we will analyze the sequence representation score and the in-context learning accuracy of our
constructed model.

Sequence representation score

The probability for a example having same value of a factor as query sample is 1
nv

and the probability
for having different values is nv−1

nv
. Therefore, the probability for the in-context examples have j

samples have a same value of a factor is
(
i
j

) (nv−1)i−j

ni
v

. We cannot distinguish k factors to decide
which one is the hidden factor if the k factors shared a similar pattern matching results. The probility
for this is that (

i
j

)(|E|
k

)( (nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

.

When we cannot distinguish the hidden factor from k factors, the probability to predict wrong results
is k−1

k . Combining the results above, we obtain the error that

i∑
j=0

(
i
j

) |E|∑
k=2

(|E|
k

)k − 1

k

(
(nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

.

The probability to give a right prediction is

si = 1−
i∑

j=0

(
i
j

) |E|∑
k=2

(|E|
k

)k − 1

k

(
(v − 1)i−j

vi

)k (
1− (v − 1)i−j

vi

)|E|−k

.

If we autogressing predict the hidden factor value and combining the results of the previous prediction,
we have:

srsi = (1− srsi−1)si + srsi−1,

where srs0 = s0.

In-context learning score

The copy-past mechanism is used to predict the answer of the query example. For the copy-past
mechanism, have a in-context example with same prediction result as the query example is neccesary.
When we correct predict the hidden factor, the probility to predict correctly is 1− (v−1

v )i. When we
predict a wrong hidden factor, the probility is 1

v . Combine the two above, we obtain the accuracy

(1− (
v − 1

v
)i) srsi +

1

v
(1− srsi).

Because when no in-context example is given, the accuracy is 1
v . Therefore we obtain the in-context

learning score

clsi =
(v − 1)(vi−1 − (v − 1)i−1)

vi
srsi .
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Figure 8: Comparison between the LSTM(Hochreiter & Schmidhuber, 1997) and Transformer.

D COMPARISION BETWEEN LSTM AND TRANSFORMER

In Section 3, our primary focus is on discussing the results of the Transformer. In this section, we aim
to compare the in-context learning abilities of the Transformer and LSTM models. The LSTM model
consists of 6 layers with 768 hidden dimensions, while the Transformer has 4 heads, 6 layers, and 64
hidden dimensions. We examine the scenario where Dfix → Dfix. Unfortunately, we are unable to
train the LSTM model for all other cases. During the comparison, we employ a larger hidden size for
the LSTM model, as it tends to fail when using a smaller hidden size.

Our conclusion is

• LSTM is much harder for training than Transformer.
• LSTM has potential to obtain better in-context learning ability.
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