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Abstract

High-resolution representation is essential for achieving good
performance in human pose estimation models. To obtain
such features, existing works utilize high-resolution input im-
ages or fine-grained image tokens. However, this dense high-
resolution representation brings a significant computational
burden. In this paper, we address the following question:
“Only sparse human keypoint locations are detected for hu-
man pose estimation, is it really necessary to describe the
whole image in a dense, high-resolution manner?” Based on
dynamic transformer models, we propose a framework that
only uses Sparse High-resolution Representations for human
Pose estimation (SHaRPose). In detail, SHaRPose consists
of two stages. At the coarse stage, the relations between
image regions and keypoints are dynamically mined while
a coarse estimation is generated. Then, a quality predictor
is applied to decide whether the coarse estimation results
should be refined. At the fine stage, SHaRPose builds sparse
high-resolution representations only on the regions related
to the keypoints and provides refined high-precision human
pose estimations. Extensive experiments demonstrate the out-
standing performance of the proposed method. Specifically,
compared to the state-of-the-art method ViTPose, our model
SHaRPose-Base achieves 77.4 AP (+0.5 AP) on the COCO
validation set and 76.7 AP (+0.5 AP) on the COCO test-dev
set, and infers at a speed of 1.4× faster than ViTPose-Base.
Code is available at https://github.com/AnxQ/sharpose.

1 Introduction
2D human pose estimation (HPE) is a fundamental task in
the field of computer vision. Its main goal is to locate a
set of anatomical keypoints that correspond to the human
body’s joints and limbs in an image. HPE has been well
studied (Guo 2020; Zhang et al. 2021; Chang et al. 2020)
and forms the foundation for many downstream tasks such
as action recognition (Kawai, Yoshida, and Liu 2022; Chao
et al. 2017; Xu et al. 2022a; Duan et al. 2022) and abnormal
behavior detection (Tang et al. 2021; Qiu et al. 2022). Due
to its potential applications in the real world, HPE remains
an active area of research (Niemirepo, Viitanen, and Vanne
2020; Yu et al. 2021; Zhang, Zhu, and Ye 2019; Li et al.
2022, 2021c; Jiang et al. 2023).
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Figure 1: A brief view of SHaRPose. The coarse stage se-
lects image parts contributed to the keypoints, and the fine
stage builds high-resolution representations upon them.

In recent years, great progress has been made in human
pose estimation (Toshev and Szegedy 2014; Newell, Yang,
and Deng 2016; Xiao, Wu, and Wei 2018; Wang et al.
2021a; Chen et al. 2017). Most of the leading methods out-
put heatmaps and then take the peak of heatmaps as the
keypoint position. Hence, similar to other dense prediction
tasks such as semantic segmentation (Ke et al. 2022; Guo
et al. 2022) and depth estimation (Shen et al. 2021; Luo
et al. 2020), it’s necessary to obtain high-resolution repre-
sentation to ensure the inference accuracy (Badrinarayanan,
Kendall, and Cipolla 2017; Lin et al. 2017; Chen et al. 2018).
For example, Stacked Hourglass (Newell, Yang, and Deng
2016) achieves high-quality image representation by stack-
ing a symmetric encoding-decoding structure, while HR-
Net (Wang et al. 2021a) utilizes multiple parallel convolu-
tion branches to preserve high-resolution feature represen-
tations. ViTPose (Xu et al. 2022b) achieves notable perfor-
mance using an 8× 8 fine-grained patch splitting setting.

However, it is observed that increasing the resolution of
feature representation (i.e., the number of image tokens for
transformer-based methods) results in an intensive compu-
tational burden. As shown in Table.1, this is particularly
significant in Transformer-based methods because the com-
plexity of Transformers is quadratic to the number of to-
kens (Khan et al. 2022). In this paper, we aim to improve the
efficiency of transformer-based models for human pose esti-
mation, and we think about the following question: Since we
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Model Input size FPS FLOPS AP

HRNet 256×192 194 15.8 75.1
384×288 152(-21%) 35.5(+125%) 76.3

ViTPose 256×192 340 18.6 75.8
384×288 143(-58%) 44.1(+136%) 76.9

Table 1: Computational cost for high-resolution input
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Figure 2: Decoder’s response of ViTPose. Each heatmap is
generated by feeding the output of each intermediate Trans-
former layer to the heatmap decoder.

only want the keypoint locations, which are sparse relative
to the entire image, do we truly need high-resolution feature
representation for all contents?

Based on this thinking, we conduct experiments using
ViTPose (Xu et al. 2022b), as shown in Fig.2. Each heatmap
is obtained by redirecting the intermediate layer’s output to
the decoder. These heatmaps provide an intuitive visualiza-
tion of the image regions that the decoder is focusing on. We
can observe that only in the first few layers, the output of the
Transformer causes a global response on the decoder, while
in the subsequent layers, the decoder’s response is clearly
concentrated on the sparse local areas containing keypoints.
This means that during the inference, a large part of the im-
age tokens like those only containing background informa-
tion do not provide effective context information. Thus, Fo-
cusing solely on keypoint-related image regions may be suf-
ficient to achieve accurate estimation results. And this can
significantly reduce the computation costs.

Inspired by this idea, we propose a method that only needs
Sparse High-resolution Representation to do human Pose es-
timation, named SHaRPose. The framework is based on pure
transformers and makes use of the correlation mining capa-
bilities of Transformer (Bach et al. 2015; Chefer, Gur, and
Wolf 2021; Liang et al. 2022) to identify significant image
regions for keypoint detection.

An overview of our framework is illustrated in Fig.1. The
inference process is divided into two stages: The initial stage
of our network processes coarse-grained patches as inputs,
leading to diminished computational expenses owing to the
decreased token count. Then a quality predictor module is
applied to judge the roughly predicted pose. If the module
yields a high confidence score, the network inference ter-
minates. If not, the input image is split into finer-grained
patches and fed into the fine stage to get refined results.
To avoid computational burden on redundant patches, only
the image patches with strong correlations to keypoints are
split into finer-grained patches, while patches with weaker
correlations are retained in the coarse-grained state. Hence,

the proposed approach prevents heavy computational loads
caused by processing unnecessary high-resolution image
patches.

Overall, the main contributions of this paper are as fol-
lows:

• SHaRPose proposes to use sparse high-resolution repre-
sentations, which is the first time that a dynamic opti-
mization strategy has been introduced into the pose esti-
mation task as far as our knowledge goes.

• SHaRPose greatly improves the efficiency of pure trans-
former models in the task of pose estimation. We reduce
25% of GFLOPs and achieve a 1.4× higher FPS com-
pared to ViTPose-Base.

• SHaRPose shows competitive performance with much
higher throughput than the existing state-of-the-art mod-
els on the MS COCO dataset. We achieve 77.4 AP (+0.5
AP) on COCO validation set and 76.7 AP (+0.5 AP) on
COCO test-dev set compared to ViTPose-Base.

2 Related Works
2.1 Vision Transformer for Pose Estimation
Vision Transformers (ViT) crop and map 2D images or im-
age feature representations into token tensors to model long-
range dependencies. With the overwhelming performance of
Transformers in various computer vision tasks (Dosovitskiy
et al. 2021; Liu et al. 2021; Xia et al. 2022; Liu et al. 2022;
Carion et al. 2020; Wang et al. 2021b), some works have
introduced Transformers to pose estimation, because the ca-
pability of ViT to capture long-range dependencies is of no-
table value in modeling the structure of the human body (Ra-
makrishna et al. 2014; Tompson et al. 2014; Wei et al. 2016).
PRTR (Li et al. 2021a) proposes a cascaded transformer
structure to achieve end-to-end keypoint coordinate regres-
sion. TransPose (Yang et al. 2021) utilizes a transformer en-
coder to process feature maps and to produce interpretable
heatmap responses. HRFormer (Yuan et al. 2021) adopts the
structure of HRNet (Wang et al. 2021a) and inserts atten-
tion blocks into branches to achieve larger receptive fields.
On the other hand, TFPose (Mao et al. 2021) uses a set
of keypoint queries to regress coordinates from transform-
ers, while TokenPose (Li et al. 2021b) proposes token-based
heatmap representations to model the body parts explicitly.
ViTPose (Xu et al. 2022b) explores the feasibility of using
a plain transformer as the backbone network for pose esti-
mation and achieves excellent prediction accuracy with the
help of masked image modeling (He et al. 2022) and multi-
dataset training.

In general, compared with the pure CNN-based meth-
ods (Wang et al. 2021a; Newell, Yang, and Deng 2016; To-
shev and Szegedy 2014), the transformer-based models are
more likely to achieve good results with the help of global
attention. However, this also leads to a larger computation
cost. In this paper, a sparse high-resolution representation
mechanism is explored, which saves considerable compu-
tation while retaining the global modeling advantages and
high precision of the transformer-based methods.
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Figure 3: The overall structure of SHaRPose. The attention maps yielded by the transformer in the coarse stage is used for
selecting keypoint-related patches in the fine stage. Only these keypoint-related patches are processed in finer granularity in the
fine stage. The parameters of the Transformer blocks and the keypoint decoder are shared between the two stages.

2.2 Dynamic Vision Transformer
To mitigate the issue of computational resource consump-
tion resulting from global feature interaction in Transform-
ers, many methods have been proposed, among which dy-
namic optimization is one of the major categories.

The simplest approaches involve reducing the number
of input tokens to Transformer by pruning them: Dynam-
icViT (Rao et al. 2021) uses a lightweight detector to deter-
mine which tokens to keep, ToMe (Bolya et al. 2023) fuses
similar tokens based on their similarity, and EviT (Liang
et al. 2022) evaluates the importance of image blocks
based on class attention. On the other hand, some methods
gradually adjust the input granularity from a coarse level.
QuadTree (Tang et al. 2022) obtains attention from differ-
ent scales at each layer and performs cross-scale weighting
to capture comprehensive representations, thus reducing the
number of tokens involved in attention. DVT (Wang and Tor-
resani 2022) uses adaptive patch size to reduce the calcula-
tion on easy samples. CF-ViT (Chen et al. 2023) designs two
stages using different granularity patches and reorganizes
the specific fine-grained tokens with the coarse-grained to-
kens to refine the prediction in the second stage.

The above-mentioned works have achieved good trade-
offs between accuracy and performance. However, the suc-
cess of these methods is mainly demonstrated in the classi-
fication task. In this work, we adapt dynamic transformers
to the pose estimation task. Because retaining global context
is helpful for human pose estimation, and discarding tokens
may cause the model to produce biased predictions, we fol-
low the second category of dynamic transformer methods,
designing the framework in a coarse-to-fine manner.

3 Method
3.1 Overall structure
As depicted in Fig.3, SHaRPose contains two stages with
a shared keypoint decoder. The coarse stage consists of a
Transformer and a quality predictor module. The fine stage
includes a keypoint-related patch selection module and a

Transformer sharing the same parameters as the one in the
coarse stage.

In this section, we will present our framework stage-by-
stage and give a detailed introduction to each module.

3.2 Coarse-inference stage
The goal of this stage is to capture relations between im-
age regions and keypoints, as well as give a coarse in-
ferred heatmap and decide whether the heatmap is accurate
enough. To accomplish the objective, a set of keypoint to-
kens and a quality token are introduced as the queries.

Token Input Denote the input image X ∈ RH×W×C ,
given the specific patch size ph, pw and an input scaling fac-
tor sc, we compose the input token sequence as follows:

Xc = Resample(X) ∈ RH·sc×W ·sc×C

Xc
0 =

[
v10 ; v

2
0 ; . . . v

Nc
0 ; k10; k

2
0; . . . k

M
0 ; q0

]
,

(1)

where vi0 is the visual token, obtained from the Re-sampled
image Xc. First, Xc is split into Nc =

H·sc
ph

× W ·sc
pw

patches,
then a linear projection f : p → v ∈ RD is applied to get the
corresponding vi0. M is the number of keypoints, and {ki0 ∈
RD}Mi=1 are keypoint tokens from M learnable embeddings,
representing the query of keypoints. q0 ∈ RD is a quality
token also from a learnable embedding, which will be used
to estimate the quality of the predicted human pose.

Transformer encoder After the composition of the input
token sequence, a K-layers transformer V (Dosovitskiy et al.
2021) is applied to obtain the output sequence:

Xc
K = V(Xc

0) =
[
v1K ; v2K ; . . . vNc

K ; k1K ; k2K ; . . . kMK ; qK

]
.

(2)

Keypoint Decoder The keypoint decoder builds heatmaps
from M output keypoint tokens {kiK}Mi=1 through an unified
multiple linear projection module:

Hc
i = D(kiK) ∈ RĤ×Ŵ , (3)
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Figure 4: Compose the input of the fine stage. The attention scores Âh;k between visual tokens and keypoint tokens are just
part of the full attention matrix Ah;k. Only high-score image patches (blue) are further split into fine-grained patches. An MLP
is applied to incorporate the coarse-stage information into the fine stage.

where Ĥ × Ŵ is the heatmap size, Ĥ and Ŵ are both 1/4
of the original image size H and W . Through the decoder,
the coarse-predicted heatmaps {Hc

i}Mi=1 are acquired.

Quality Predictor Inspired by (Zhao et al. 2021; Fang
et al. 2017), we use a learnable quality embedding q0 to ob-
tain the quality of the predicted keypoints by grubbing infor-
mation from both visual tokens and keypoint tokens. Then,
the quality predictor module produces the quality score of
the prediction through the information fused in the quality
token:

Q = MLP(qK). (4)

With the estimated quality score Q, we set a threshold
Qthres. Only if Q < Qthres, the image will be split into
finer-grained patches and processed in the fine stage. This
allows the model to dynamically distinguish hard and easy
samples. Therefore, the number of images that go through
the fine stage can be reduced, which can further increase the
throughput.

3.3 Fine-inference stage
In this stage, the model generates sparse high-resolution rep-
resentations and makes high-precision predictions of poses
by leveraging the attention obtained in the coarse stage.

Keypoint-Related Patch Recognition In order to decide
which image regions need high-resolution feature represen-
tations, a kind of relevance score between image patches and
keypoints is required. As shown in Fig.4, consider a slice of
the attention matrix in a layer of the Transformer V , which
is defined as follows:

Âh;k =
[
âN

c+1
h;k ; âN

c+2
h;k ; . . . ; âN

c+M
h;k

]
∈ RM×Nc

, (5)

where âN
c+i

h;k is the attention score vector between the
keypoint token kik−1 and all coarse-grained image tokens
{vik−1}N

c

i=1 at head h. This vector reflects the interaction be-
tween the keypoint token and the visual tokens. Following
(Chen et al. 2023), we also use exponential moving average
(EMA) to combine attentions from each Transformer layer:

Ah;k = β ·Ah;k−1 + (1− β) · Âh;k, (6)

in which we set β = 0.99. Then we take the accumulated
attention matrix of the last layer Ah;K and mix the attention
vector of each keypoint and different heads in the following
form to get the final visual token correlation score:

s =
1

HM

H∑
h=1

M∑
i=1

aN
c+i

h;K , (7)

where aN
c+i

h;K is the ith column of the matrix Ah;K , H and
M denote the number of heads and the number of key-
points, respectively. According to s, we can rank and select
the image patches which are important to estimate human
pose. As shown in Fig.4, We select a set Xhigh consisting of
Nh = ⌊α · N c⌋ patches with higher scores from {viK}Nc

i=1,
while the remaining patches form the set Xlow.

Fine inference To perform the fine stage inference, we
first need to construct high-resolution representations. Sim-
ilar to Eq.1 in Section 3.2, given the scaling ratio in the
fine stage sf , the full visual tokens can be obtained as
Xf

full = {vif}
Nf

i=0, where Nf =
H·sf
ph

· W ·sf
pw

is the num-
ber of all fine-grained image tokens.

The initial visual tokens of the fine stage {v̂i0}
N̂f

i=0 can be
constructed as follows: The first part is composed of tokens
not closely associated with keypoints, which can be directly
taken from Xlow. The second part comprises tokens gen-
erated from Xhigh, which are more relevant to keypoints.
Denote a singular visual token from Xhigh as vjK , which is
further split into N = (sf/sc)

2 fine-grained tokens. The
computation of the new input visual tokens is formulated as
{MLP(vjK)+vcif }Ni=0, where{vcif }Ni=0 are fine image tokens
from Xf

full at the corresponding location of vjK . Thus, the
input token sequence can be formed by:

Xf
0 =

[
v̂10 ; v̂

2
0 ; . . . v̂

N̂f

0 ; k10; k
2
0; . . . k

M
0

]
, (8)

where N̂f = N · ⌊α ·Nc⌋+ ⌊(1−α) ·Nc⌋ is the number of
visual tokens, ki0 is the same initial keypoint token embed-
ding as in Eq.1. We present the process of building the fine
stage visual tokens in Fig.4.



Model Input Size Feat. Dim. Depth Patch Size sc sf α FPS Params GFLOPs

SHaRPose-Small 256×192 384 12 16×16 0.5 1.0 0.5 498.3 28.4M 4.9
SHaRPose-Small 384×288 384 12 16×16 0.5 1.0 0.5 395.3 48.3M 11.0
SHaRPose-Base 256×192 768 12 16×16 0.5 1.0 0.4 392.8 93.9M 17.1
SHaRPose-Base 384×288 768 12 16×16 0.5 1.0 0.3 196.6 118.1M 32.9

Table 2: Configurations of the instantiated SHaRPose models. We provide the detailed parameters for constructing both the
Base and the Small models. And the specific model sizes are presented in the last columns of the table.

Then, similar to Eq.2, a transformer sharing the same pa-
rameters as the one in the coarse stage is applied to get the
output of the fine stage by Xf

K = V(Xf
0 ). Finally, the key-

point tokens are fed into a shared decoder defined in Eq.3 to
get the fine inferred heatmaps Hf

i = D(kiK).

3.4 Loss Function
For training the network, we impose supervision both on
the output heatmaps and the pose confidence that the quality
predictor infers:

L = Lheatmap + λLqp, (9)

in which λ is a hyper-parameter to balance the loss terms.
Lheatmap is the heatmap mean square error loss, including
the coarse stage and the fine stage:

Lheatmap =
1

M

M∑
i

(
Lmse(H

c
i ,H

gt
i ) + Lmse(H

f
i ,H

gt
i )

)
,

(10)
in which Hgt

i is the ground-truth heatmap. Lqp is an L2-
norm loss between the quality predictor’s output Q and the
coarse stage’s ground-truth OKS, which denotes the object
keypoint similarity:

Lqp =
∥∥Q−OKSgt

∥∥
2
. (11)

4 Experiments
4.1 Experiment setup
Datasets We conduct experiments on COCO (Lin et al.
2014) and MPII (Andriluka et al. 2014) datasets. Following
the customary strategy of Top-Down methods (Xiao, Wu,
and Wei 2018; Wang et al. 2021a; Newell, Yang, and Deng
2016), we utilize the COCO 2017 dataset, which comprises
200k images and 250k person instances. The dataset is seg-
regated into three subsets: train, valid, and test-dev, contain-
ing 150k, 5k, and 20k samples, respectively. We train our
model on the train subset and test it on the valid and test-dev
subsets. The MPII dataset, which comprises over 40k person
instances and 25k images, is also employed for training and
evaluation.

Evaluation Metrics Following (Wang et al. 2021a; Yuan
et al. 2021; Xu et al. 2022b; Li et al. 2021b), we use the
standard average precision (AP) as evaluation metric on the
COCO dataset, which is calculated based on OKS. On the
other hand, we perform head-normalized percentage of cor-
rect keypoint (PCKh) (Andriluka et al. 2014) on the MPII
dataset and report the PCKh@0.5 score.

Implementation Details The SHaRPose framework of-
fers variability on three aspects: 1) the embedding size,
which specifies the number of features carried by each to-
ken; 2) the parameter α, which determines the proportion
of image patches utilized for generating high-resolution rep-
resentations; 3) the threshold of the predicted pose quality
Qthres, which controls the number of samples that enter the
fine stage. In this paper, we instantiate SHaRPose with two
different sizes by scaling the embedding size. Other config-
urations like the depth (the number of Transformer blocks)
are set the same. The detailed configurations of the instanti-
ated SHaRPose models are presented in Table.2.

Training Details To ensure a fair comparison, all experi-
ments presented in this paper are conducted using the MM-
Pose framework (Contributors 2020) on four NVIDIA RTX
3090 GPUs. The default data pipelines of MMPose are uti-
lized. The masked autoencoder pretrain (He et al. 2022) is
used as in (Xu et al. 2022b) for the purpose of exploring
the potential capabilities of pure Transformers. UDP (Huang
et al. 2020) is used for post-processing. The model is trained
for 210 epochs with a learning rate of 5e-4, which is de-
creased to 5e-5 and 5e-6 at the 170th and 200th epochs, re-
spectively. In particular, we aim to predict the confidence
values as accurately as possible with the quality predic-
tor. Because the convergence rate of the quality predictor
is much faster than that of the heatmap (Zhao et al. 2021),
we set λ = 0 in the first 180 epochs and λ = 0.03 in the
subsequent epochs based on empirical analysis.

4.2 Results
Comparison to state-of-the-art methods on COCO We
compare the performance and efficiency of our proposed
method with several state-of-the-art (SOTA) approaches.
Validation set As shown in Table.3, under the input reso-
lution 256 × 192, our SHaRPose-Small model achieves an
AP of 74.2, which is a significant improvement of +8.6 AP
over the TokenPose-T model and a +0.4 AP improvement
over ViTPose-Small, while maintaining a faster inference
speed. Furthermore, our SHaRPose-Base model achieves an
AP of 75.5, which is a +0.4 AP improvement over HRNet-
W48 and is 1.9× faster than it. Notably, our model also
demonstrates faster inference speed than TokenPose-L/D6,
HRFormer, and ViTPose-Base, with comparable accuracy.
At the higher input resolution of 384 × 288, our model’s
advantages become even more pronounced. The SHaRPose-
Base model achieves a SOTA performance of 77.4 AP while
maintaining lower GLOPs and higher throughput compared
to other methods.



Method Input AP AP 50 AP 75 APL APM AR FPS ↑ GFLOPs ↓
TokenPose-T(Li et al. 2021b)† 256×192 65.6 86.4 73.0 71.5 63.1 72.1 348.1 1.2
ViTPose-Small(Xu et al. 2022b)† 256×192 73.8 90.3 81.3 75.8 67.1 79.1 360.3 5.7
SHaRPose-Small† 256×192 74.2↑0.4 90.2 81.8 80.3 71.2 79.5 498.3↑38% 4.9↓14%

SimpleBaseline(Xiao, Wu, and Wei 2018) 256×192 73.6 90.4 81.8 80.1 70.1 79.1 195.1 12.8
HRNet-W48(Wang et al. 2021a) 256×192 75.1 90.6 82.2 81.8 71.5 80.4 193.5 15.8
HRFormer-Base(Yuan et al. 2021) 256×192 75.6 90.8 82.8 82.6 71.7 80.8 122.3 14.7
TokenPose-L/D6(Li et al. 2021b) 256×192 75.4 90.0 81.8 82.4 71.8 80.4 348.2 9.9
ViTPose-Base(Xu et al. 2022b) 256×192 75.8 90.7 83.2 78.4 68.7 81.1 340.2 18.6
SHaRPose-Base 256×192 75.5 90.6 82.3 82.2 72.2 80.8 392.8↑15% 17.1↓10%

HRNet-W48(Wang et al. 2021a) 384×288 76.3 90.8 82.9 83.4 72.3 81.2 152.3 35.5
ViTPose-Base(Xu et al. 2022b) 384×288 76.9 90.9 83.2 83.9 73.1 82.1 143.3 44.1
SHaRPose-Small† 384×288 75.2 90.8 83.0 81.2 72.0 80.9 395.3 11.0
SHaRPose-Base 384×288 77.4↑0.5 91.0 84.1 84.2 73.7 82.4 196.6↑37% 32.9↓25%

Table 3: Comparison on COCO validation set. The same detection results with 56AP are used for human instances. No extra
training data is involved for all results. The FPS(frame-per-second) is evaluated under an identical environment. † denotes the
small-scale models. The underlined numbers emphasize the compared results. The best results are highlighted in bold.

Methods Input AP AP 50 AP 75 APL APM AR FPS ↑ GFLOPs ↓
SimpleBaseline(Xiao, Wu, and Wei 2018) 384×288 73.7 91.9 81.1 70.3 80.0 79.0 153.5 28.7
UDP-HRNet-W48(Huang et al. 2020) 384×288 76.5 92.7 84.0 73.0 82.4 81.6 152.3 35.5
DARK-HRNet-W48(Zhang et al. 2020) 384×288 76.2 92.5 83.6 72.5 82.4 81.1 150.4 32.9
TokenPose-L/D24(Li et al. 2021b) 384×288 75.9 92.3 83.4 72.2 82.1 80.8 117.2 22.1
ViTPose-Base(Xu et al. 2022b) 384×288 76.2 92.7 83.7 72.6 82.3 81.3 143.3 44.1
SHaRPose-Base 384×288 76.7↑0.5 92.8 84.4 73.2 82.6 81.6 196.6↑37% 32.9↓25%

Table 4: Comparison on COCO test-dev set, same detection results with 60.9AP is used for human instaces. We only report
single dataset training results at resolution 384× 288.

Test-dev set Table.4 demonstrates the results of the SOTA
methods on COCO test-dev. SHaRPose-Base with 384×288
as input achieves 76.7AP . Compared to HRNet with UDP
and DARK post-processing, our model achieves +0.2 AP
and +0.5 AP higher accuracy and nearly 1.3x faster infer-
ence speed. Compared to ViTPose-Base, our model has a
+0.5 AP improvement and nearly 1.4× higher throughput.

Comparison to state-of-the-art methods on MPII The
results on MPII test set evaluated by PCKh@0.5 are dis-
played in Table.5. The input resolution is 256 × 256, and
the ground-truth bounding boxes are used by default. Our
SHaRPose-Base model achieves a PCKh score of 91.4, out-
performing other methods while also demonstrating 2-3
times higher throughput.

4.3 Ablation Study
Influence of α The parameter α is crucial in controlling
the sparsity level of the high-resolution representation, and
it impacts the calculation consumed by the fine stage.

As shown in Table.6, for 256x192 input resolution, aug-
menting alpha from 0 to 0.4 can bring significant accuracy
improvement, but a marginal gain is observed with subse-
quent increments. Thus, considering the balance of accuracy
and efficiency, we set α = 0.4. For 384x288 input resolu-
tion, increasing α from 0.3 to 0.5 has little effect on accuracy
but significantly increases computational costs. Therefore,
setting α to 0.3 is sufficient to achieve accurate results.

Model Simple
Baseline

HRNet
W48

TokenPose
L/D24 OKDHP SHaRPose

Base

Mean↑ 89.0 90.1 90.2 90.6 91.4
FPS↑ 66.9 47.1 65.5 - 212.4

Table 5: Comparison on MPII val set. SHaRPose demon-
strates a significant advantage.

α 0.0 0.3 0.4 0.5 1.0

AP 68.4 74.8 75.5 75.5 75.7
GFLOPs 13.3 15.8 17.1 18.2 24.9

(a) 256×192

α 0.3 0.5

AP 77.4 77.5
GFLOPs 32.9 38.9

(b) 384×288

Table 6: The effect of α at different settings

Effect of quality predictor To evaluate the impact of the
quality predictor, we adjust the value of Qthres based on the
same SHaRPose-Base model on COCO dataset, using the
ground-truth bounding boxes. Fig.6 illustrates the number of
samples that terminate inference after the coarse stage and
how the overall AP varies with different values of Qthres.
We observe that as the value of Qthres decreases, the model
tends to skip more samples in the fine stage, resulting in a de-
crease in AP , but the AP 50 and AP 75 only change a little.
Therefore, the appropriate choice of Qthres depends on the
specific application scenario and the required level of accu-
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Figure 5: Visualization of keypoint-related regions. Three samples are chosen as examples. The first column gives the input
image, the second column presents the accumulated attention map, and the third column shows the selected image regions.
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Figure 6: AP and the ratio of dropped samples on differ-
ent settings of Qthres. Each bar demonstrates the ratio of
dropped samples with the Qthres given, and the red line de-
notes the accuracy.

Method AP AP 50 FPS GFLOPs

DynamicViT 71.8 89.4 182.8 12.8
EViT 72.7 90.1 424.1 12.8
SHaRPose-S 74.2 90.2 498.3 4.9
SHaRPose-B 75.5 90.6 392.8 17.1

Table 7: Comparison with pruning-based dynamic Trans-
formers

racy. In the experiments of section 4.2, we set Qthres = 0.95
for comparison with other SOTA methods.

Necessity of the coarse-to-fine design To demonstrate the
necessity of the coarse-to-fine architecture for pose esti-
mation, we analyze from two perspectives: firstly, we per-
form comparative experiments on two pruning-based dy-
namic Transformers, namely DynamicViT(Rao et al. 2021)
and EViT (Liang et al. 2022). We introduce keypoint tokens
and employ a processing pipeline consistent with SHaR-
Pose. As shown in Table.7, although EViT exhibits higher
efficiency, its accuracy is compromised. This indicates that
dynamic pruning in localization tasks limits the model’s
ability to generate precise outcomes. Secondly, we individ-
ually remove components of our framework, as shown in
Table.8. The fine stage is indispensable for accuracy im-

Method AP AP 50 FPS GFLOPs

Coarse-None 67.9 88.8 453.4 5.7
None-Fine 74.7 90.6 302.9 17.5
Coarse-Coarse 68.4 89.0 417.7 13.3
Coarse-NoSel-Fine 75.7 89.0 239.5 24.9
Coarse-Sel-Fine 75.5 90.6 392.8 17.1

Table 8: Comparison of different configurations of the pro-
posed two stage framework

provement, while the coarse stage, responsible for identify-
ing keypoints-related image patches, plays a crucial role in
reducing FLOPs.

4.4 Visualization
Selected keypoint-related image patches Fig.5 presents
some samples to visualize the keypoint-related regions. The
second column exhibits the attention map that is accumu-
lated between keypoint tokens and image patches, while the
third column shows the keypoint-related regions, which are
responsible for generating the high-resolution representa-
tion. It can be observed that the attention mechanism is pri-
marily focused on the human instance, which aligns with the
original design objective. Moreover, the attention intensity is
particularly noticeable on the head since the COCO dataset
contains more keypoints on the head.

5 Conclusion
In this paper, we provide an efficient pose estimation frame-
work using only sparse high-resolution representations,
named SHaRPose. Specifically, we introduce token-based
keypoint representations into the coarse-to-fine framework
to explicitly capture image parts that require high-resolution
representations. In addition, we introduce a quality eval-
uation module, so that the model can quickly complete
the inference of simple samples. Our quantitative experi-
ments demonstrate the high accuracy and efficiency of our
model. The visualization results also show the effectiveness
of the proposed modules. This work provides directions for
enhancing the computational efficiency of pose estimation
methods using dynamic optimization strategies.
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