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Abstract

Spiking Neural Networks (SNNs) provide an energy-efficient deep learning option
due to their unique spike-based event-driven (i.e., spike-driven) paradigm. In
this paper, we incorporate the spike-driven paradigm into Transformer by the
proposed Spike-driven Transformer with four unique properties: i) Event-driven,
no calculation is triggered when the input of Transformer is zero; ii) Binary spike
communication, all matrix multiplications associated with the spike matrix can
be transformed into sparse additions; iii) Self-attention with linear complexity at
both token and channel dimensions; iv) The operations between spike-form Query,
Key, and Value are mask and addition. Together, there are only sparse addition
operations in the Spike-driven Transformer. To this end, we design a novel Spike-
Driven Self-Attention (SDSA), which exploits only mask and addition operations
without any multiplication, and thus having up to 87.2× lower computation energy
than vanilla self-attention. Especially in SDSA, the matrix multiplication between
Query, Key, and Value is designed as the mask operation. In addition, we rearrange
all residual connections in the vanilla Transformer before the activation functions
to ensure that all neurons transmit binary spike signals. It is shown that the Spike-
driven Transformer can achieve 77.1% top-1 accuracy on ImageNet-1K, which
is the state-of-the-art result in the SNN field. The source code is available at
Spike-driven Transfromer.

1 Introduction

One of the most crucial computational characteristics of bio-inspired Spiking Neural Networks
(SNNs) [1] is spike-based event-driven (spike-driven): i) When a computation is event-driven, it is
triggered sparsely as events (spike with address information) occur; ii) If only binary spikes (0 or 1)
are employed for communication between spiking neurons, the network’s operations are synaptic
ACcumulate (AC). When implementing SNNs on neuromorphic chips, such as TrueNorth [2], Loihi
[3], and Tianjic [4], only a small fraction of spiking neurons at any moment being active and the rest
being idle. Thus, spike-driven neuromorphic computing that only performs sparse addition operations
is regarded as a promising low-power alternative to traditional AI [5–7].

Although SNNs have apparent advantages in bio-plausibility and energy efficiency, their applications
are limited by poor task accuracy. Transformers have shown high performance in various tasks
for their self-attention [8–10]. Incorporating the effectiveness of Transformer with the high energy
efficiency of SNNs is a natural and exciting idea. There has been some research in this direction, but
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Figure 1: Comparison Vanilla Self-Attention (VSA) and our Spike-Driven Self-Attention (SDSA).
(a) is a typical Vanilla Self-Attention (VSA) [8]. (b) are two equivalent versions of SDSA. The input
of SDSA are binary spikes. In SDSA, there are only mask and sparse additions. Version 1: Spike Q
and K first perform element-wise mask, i.e., Hadamard product; then column summation and spike
neuron layer are adopted to obtain the binary attention vector; finally, the binary attention vector is
applied to the spike V to mask some channels (features). Version 2: An equivalent version of Version
1 (see Section 3.3) reveals that SDSA is a unique type of linear attention (spiking neuron layer is the
kernel function) whose time complexity is linear with both token and channel dimensions. Typically,
performing self-attention in VSA and SDSA requires 2N2D multiply-and-accumulate and 0.02ND
accumulate operations respectively, where N is the number of tokens, D is the channel dimensions,
0.02 is the non-zero ratio of the matrix after the mask of Q and K. Thus, the self-attention operator
between the spike Q, K, and V has almost no energy consumption.

all so far have relied on “hybrid computing”. Namely, Multiply-and-ACcumulate (MAC) operations
dominated by vanilla Transformer components and AC operations caused by spiking neurons both
exist in the existing spiking Transformers. One popular approach is to replace some of the neurons in
Transformer with spiking neurons to do a various of tasks [11–22], and keeping the MAC-required
operations like dot-product, softmax, scale, etc.

Though hybrid computing helps reduce the accuracy loss brought on by adding spiking neurons to the
Transformer, it can be challenging to benefit from SNN’s low energy cost, especially given that current
spiking Transformers are hardly usable on neuromorphic chips. To address this issue, we propose a
novel Spike-driven Transformer that achieves the spike-driven nature of SNNs throughout the network
while having great task performance. Two core modules of Transformer, Vanilla Self-Attention (VSA)
and Multi-Layer Perceptron (MLP), are re-designed to have a spike-driven paradigm.

The three input matrices for VSA are Query (Q), Key (K), and Value (V ), (Fig. 1(a)). Q and K
first perform similarity calculations to obtain the attention map, which includes three steps of matrix
multiplication, scale and softmax. The attention map is then used to weight the V (another matrix
multiplication). The typical spiking self-attentions in the current spiking Transformers [20, 19] would
convert Q, K, V into spike-form before performing two matrix multiplications similar to those in
VSA. The distinction is that spike matrix multiplications can be converted into addition, and softmax
is not necessary [20]. But these methods not only yield large integers in the output (thus requiring an
additional scale multiplication for normalization to avoid gradient vanishing), but also fails to exploit
the full energy-efficiency potential of the spike-driven paradigm combined with self-attention.

We propose Spike-Driven Self-Attention (SDSA) to address these issues, including two aspects
(see SDSA Version 1 in Fig. 1(b)): i) Hadamard product replaces matrix multiplication; ii) matrix
column-wise summation and spiking neuron layer take the role of softmax and scale. The former can
be considered as not consuming energy because the Hadamard product between spikes is equivalent
to the element-wise mask. The latter also consumes almost no energy since the matrix to be summed
column-by-column is very sparse (typically, the ratio of non-zero elements is less than 0.02). We also

2



observe that SDSA is a special kind of linear attention [23, 24], i.e., Version 2 of Fig. 1(b). In this
view, the spiking neuron layer that converts Q, K, and V into spike form is a kernel function.

Additionally, existing spiking Transformers [20, 12] usually follow the SEW-SNN residual design
[25], whose shortcut is spike addition and thus outputs multi-bit (integer) spikes. This shortcut can
satisfy event-driven, but introduces integer multiplication. We modified the residual connections
throughout the Transformer architecture as shortcuts between membrane potentials [26, 27] to address
this issue (Section 3.2). The proposed Spike-driven Transformer improves task accuracy on both
static and neuromorphic event-based datasets. The main contributions of this paper are as follows:

• We propose a novel Spike-driven Transformer that only exploits sparse addition. This is the first
time that the spike-driven paradigm has been incorporated into Transformer, and the proposed
model is hardware-friendly to neuromorphic chips.

• We design a Spike-Driven Self-Attention (SDSA). The self-attention operator between spike Query,
Key, Value is replaced by mask and sparse addition with essentially no energy consumption. SDSA
is computationally linear in both tokens and channels. Overall, the energy cost of SDSA (including
Query, Key, Value generation parts) is 87.2× lower than its vanilla self-attention counterpart.

• We rearrange the residual connections so that all spiking neurons in Spike-driven Transformer
communicate via binary spikes.

• Extensive experiments show that the proposed architecture can outperform or comparable to State-
Of-The-Art (SOTA) SNNs on both static and neuromorphic datasets. We achieved 77.1% accuracy
on ImageNet-1K, which is the SOTA result in the SNN field.

2 Related Works

Bio-inspired Spiking Neural Networks can profit from advanced deep learning and neuroscience
knowledge concurrently [28, 5, 7, 29]. Many biological mechanisms are leveraged to inspire SNN’s
neuron modeling [1, 30], learning rules [31, 32], etc. Existing studies have shown that SNNs
are more suited for incorporating with brain mechanisms, e.g., long short-term memory [33, 34],
attention [35, 27], etc. Moreover, while keeping its own spike-driven benefits, SNNS have greatly
improved its task accuracy by integrating deep learning technologies like network architecture
[26, 25], gradient backpropagation [36, 37], normalization [38, 39], etc. Our goal is to combine SNN
and Transformer architectures. One way is to discretize Transformer into spike form through neuron
equivalence [40, 41], i.e., ANN2SNN, but this requires a long simulation timestep and boosts the
energy consumption. We employ the direct training method, using the first SNN layer as the spike
encoding layer and applying surrogate gradient training [42].

Neuromorphic Chips. As opposed to the compute and memory separated processors used in ANNs,
neuromorphic chips use non-von Neumann architectures, which are inspired by the structure and
function of the brain [5, 7, 28]. Because of the choice that uses spiking neurons and synapses as basic
units, neuromorphic chips [43–45, 2, 46, 3, 4] have unique features, such as highly parallel operation,
collocated processing and memory, inherent scalability, and spike-driven computing, etc. Typical
neuromorphic chips consume tens to hundreds of mWs [47]. Conv and MLP in neuromorphic chips
are equivalent to a cheap addressing algorithm [48] since the sparse spike-driven computing, i.e., to
find out which synapses and neurons need to be involved in the addition operation. Our Transformer
design strictly follows the spike-driven paradigm, thus it is friendly to deploy on neuromorphic chips.

Efficient Transformers. Transformer and its variants have been widely used in numerous tasks,
such as natural language processing [8, 49, 50] and computer vision [51–53]. However, deploying
these models on mobile devices with limited resources remains challenging because of their inherent
complexity [24, 54]. Typical optimization methods include convolution and self-attention mixing
[54, 55], Transformer’s own mechanism (token mechanism [56, 57], self-attention [58, 59], multi-
head [60, 61] and so on) optimization, etc. An important direction for efficient Transformers is linear
attention on tokens since the computation scale of self-attention is quadratic with token number.
Removing the softmax in self-attention and re-arranging the computation order of Query, Key, and
Value is the main way to achieve linear attention [59, 62, 23, 63, 64, 61, 65]. For the spiking
Transformer, softmax cannot exist, thus spiking Transformer can be a kind of linear attention.
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Figure 2: The overview of Spike-driven Transformer. We follow the network structure in [20], but
make two new key designs. First, we propose a Spike-driven Self-Attention (SDSA) module, which
consists of only mask and sparse addition operations (Fig. 1(b)). Second, we redesign the shortcuts in
the whole network, involving position embedding, self-attention, and MLP parts. As indicated by
the red line, the shortcut is constructed before the spike neuron layer. That is, we establish residual
connections between membrane potentials to make sure that the values in the spike matrix are all
binary, which allows the multiplication of the spike and weight matrices to be converted into addition
operations. By contrast, previous works [20, 19] build shortcut between spike tensors in different
layers, resulting in the output of spike neurons as multi-bit (integer) spikes.

3 Spike-driven Transformer

We propose a Spike-driven Transformer, which incorporates Transformer into the spike-driven
paradigm with only sparse addition. We first briefly introduce the spike neuron layer, then introduce
the overview and components of the Spike-driven Transformer one by one.

The spiking neuron model is simplified from the biological neuron model [66, 30]. Leaky Integrate-
and-Fire (LIF) spiking neuron [1], which have biological neuronal dynamics and are easy to simulate
on a computer, is uniformly adopted in this work. The dynamics of the LIF layer [36] is governed by

U [t] = H[t− 1] +X[t], (1)
S[t] = Hea (U [t]− uth) , (2)
H[t] = VresetS[t] + (βU [t]) (1− S[t]) , (3)

where t denote the timestep, U [t] means the membrane potential which is produced by coupling the
spatial input information X[t] and the temporal input H[t− 1], where X[t] can be obtained through
operators such as Conv, MLP, and self-attention. When membrane potential exceeds the threshold
uth, the neuron will fire a spike, otherwise it will not. Thus, the spatial output tensor S[t] contains
only 1 or 0. Hea(·) is a Heaviside step function that satisfies Hea (x) = 1 when x ≥ 0, otherwise
Hea (x) = 0. H[t] indicates the temporal output, where Vreset denotes the reset potential which is
set after activating the output spiking. β < 1 is the decay factor, if the spiking neuron does not fire,
the membrane potential U [t] will decay to H[t].

3.1 Overall Architecture

Fig. 2 shows the overview of Spike-driven Transformer that includes four parts: Spiking Patch
Splitting (SPS), SDSA, MLP, and a linear classification head. For the SPS part, we follow the design
in [20]. Given a 2D image sequence I ∈ RT×C×H×W , the Patch Splitting Module (PSM), i.e., the
first four Conv layers, linearly projects and splits it into a sequence of N flattened spike patches s
with D dimensional channel, where T (images are repeated T times in the static dataset as input), C,
H , and W denote timestep, channel, height and width of the 2D image sequence. Another Conv layer
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is then used to generate Relative Position Embedding (RPE). Together, the SPS part is written as:

u = PSM(I) , I ∈ RT×C×H×W , u ∈ RT×N×D (4)

s = SN (u), s ∈ RT×N×D (5)

RPE = BN(Conv2d(s)), RPE ∈ RT×N×D (6)

U0 = u+RPE, U0 ∈ RT×N×D (7)
where u and U0 are the output membrane potential tensor of PSM and SPS respectively, SN (·) denote
the spike neuron layer. Then we pass the U0 to the L-block Spike-driven Transformer encoder, which
consists of a SDSA and a MLP block. Residual connections are applied to membrane potentials
in both SDSA and MLP block. SDSA provides an efficient approach to model the local-global
information of images utilizing spike Q, K, and V without scale and softmax (see Sec. 3.3). A
Global Average-Pooling (GAP) is utilized on the processed feature from spike-driven encoder and
outputs the D-dimension channel which will be sent to the fully-connected-layer Classification Head
(CH) to output the prediction Y . The three parts SDSA, MLP and CH can be written as follows:

S0 = SN (U0), S0 ∈ RT×N×D (8)

U
′

l = SDSA(Sl−1) + Ul−1, U
′

l ∈ RT×N×D, l = 1...L (9)

S
′

l = SN (U
′

l ), S
′

l ∈ RT×N×D, l = 1...L (10)

Sl = SN (MLP(S
′

l ) + U
′

l ), Sl ∈ RT×N×D, l = 1...L (11)
Y = CH(GAP(SL)), (12)

where U
′

l and S
′

l represent membrane potential and spike tensor output by SDSA at l-th layer.

3.2 Membrane Shortcut in Spike-driven Transformer

Residual connection [67, 68] is a crucial basic operation in Transformer architecture. There are three
shortcut techniques in existing Conv-based SNNs [27]. Vanilla Res-SNN [38], similar to vanilla
Res-CNN [67], performs a shortcut between membrane potential and spike. Spike-Element-Wise
(SEW) Res-SNN [25] employs a shortcut to connect the output spikes in different layers. Membrane
Shortcut (MS) Res-SNN [26], creating a shortcut between membrane potential of spiking neurons in
various layers. There is no uniformly standard shortcut in the current SNN community, and SEW
shortcut is adopted by existing spiking Transformers [20, 12]. As shown in Eq. 7, Eq. 9 and Eq. 11,
we leverage the membrane shortcut in the proposed Spike-driven Transformer for four reasons:

• Spike-driven refers to the ability to transform matrix multiplication between weight and spike
tensors into sparse additions. Only binary spikes can support the spike-driven function. However,
the values in the spike tensors are multi-bit (integer) spikes, as the SEW shortcut builds the addition
between binary spikes. By contrast, as shown in Eq. 8, Eq. 10, Eq. 11, SN is followed by the MS
shortcut, which ensures that there are always only binary spike signals in the spike tensor.

• High performance. The task accuracy of MS-Res-SNN is higher than that of SEW-Res-SNN
[26, 27, 25], also in Transformer-based SNN (see Table 6 in this work).

• Bio-plausibility. MS shortcut can be understood as an approach to optimize the membrane potential
distribution. This is consistent with other neuroscience-inspired methods to optimize the internal
dynamics of SNNs, such as complex spiking neuron design [69], attention mechanism [27], long
short-term memory [34], recurrent connection [70], information maximization [71], etc.

• Dynamical isometry. MS-Res-SNN has been proven [26] to satisfy dynamical isometry theory [72],
which is a theoretical explanation of well-behaved deep neural networks [73, 74].

3.3 Spike-driven Self-Attention

Spike-Driven Self-Attention (SDSA) Version 1. As shown in Fig. 2(b) left part, given a spike
input feature sequence S ∈ RT×N×D, float-point Q, K, and V in RT×N×D are calculated by three
learnable linear matrices, respectively. Note, the linear operation here is only addition, because the
input S is a spike tensor. A spike neuron layer SN (·) follows, converting Q, K, V into spike tensor
QS , KS , and VS . SDSA Version 1 (SDSA-V1) is presented as:

SDSA(Q,K, V ) = g(QS ,KS)⊗ VS = SN (SUMc (QS ⊗KS))⊗ VS , (13)
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where ⊗ is the Hadamard product, g(·) is used to compute the attention map, SUMc(·) represents the
sum of each column. The outputs of both g(·) and SUMc(·) are D-dimensional row vectors. The
Hadamard product between spike tensors is equivalent to the mask operation.

Discussion on SDSA. Since the Hadamard product among QS , KS , and VS in RN×D (we here
assume T = 1 for mathematical understanding) can be exchanged, Eq. 13 can also be written as:

SDSA(Q,K, V ) = QS ⊗ g(KS , VS) = QS ⊗ SN (SUMc (KS ⊗ VS)) . (14)

In this view, Eq.14 is a linear attention [23, 62] whose computational complexity is linear in token
number N because KS and VS can participate in calculate first. This is thanks to the softmax
operation in the VSA is dropped here. The function of softmax needs to be replaced by the kernel
function. Specific to our SDSA, SN (·) is the kernel function. Further, we can assume a special
case [61], H = D, i.e., the number of channels per head is one. After the self-attention operation is
performed on the H heads respectively, the outputs are concatenated together. Specifically,

SDSA(Qi,Ki, V i) = SN (Qi)g(Ki, V i) = SN (Qi)SN
(
SN (Qi)T ⊙ SN (V i)

)
, (15)

where Qi,Ki, V i in RN×1 are the i-th vectors in Q,K, V respectively, ⊙ is the dot product operation.
The output of g(Ki, V i) is a scalar, 0 or 1. Since the operation between SN (Qi) and g(Ki, V i) is a
mask, the whole SDSA only needs to be calculated H = D times for g(Ki, V i). The computational
complexity of SDSA is O(0 +ND), which is linear with both N and D (see Fig. 1(b) right part).
Vectors Ki and V i are very sparse, typically less than 0.01 (Table 2). Together, the whole SDSA only
needs about 0.02ND times of addition, and its energy consumption is negligible.

Interestingly, Eq. 14 actually converts the soft vanilla self-attention to hard self-attention, where the
attention scores in soft and hard attention are continuous- and binary-valued, respectively [75]. Thus,
the practice of the spike-driven paradigm in this work leverages binary self-attention scores to directly
mask unimportant channels in the sparse spike Value tensor. Although this introduces a slight loss of
accuracy (Table 6), SDSA(·) consumes almost no energy.

4 Theoretical Energy Consumption Analysis

Three key computational modules in deep learning are Conv, MLP, and self-attention. In this Section,
We discuss how the spike-driven paradigm achieves high energy efficiency on these operators.

Spike-driven in Conv and MLP. Spike-driven combines two properties, event-driven and binary
spike-based communication. The former means that no computation is triggered when the input
is zero. The binary restriction in the latter indicates that there are only additions. In summary, in
spike-driven Conv and MLP, matrix multiplication is transformed into sparse addition, which is
implemented as addressable addition in neuromorphic chips [48].

Spike-driven in Self-attention. QS , KS , VS in spiking self-attention involve two matrix multipli-
cations. One approach is to perform multiplication directly between QS , KS , VS , which is then
converted to sparse addition, like spike-driven Conv and MLP. The previous work [20] did just that.
We provide a new scheme that performs element-wise multiplication between QS , KS , VS . Since all
elements in spike tensors are either 0 or 1, element multiplication is equivalent to a mask operation
with no energy consumption. Mask operations can be implemented in neuromorphic chips through
addressing algorithms [48] or AND logic operations [4].

Energy Consumption Comparison. The times of floating-point operations (FLOPs) is often used
to estimate the computational burden in ANNs, where almost all FLOPs are MAC. Under the same
architecture, the energy cost of SNN can be estimated by combining the spike firing rate R and
simulation timestep T if the FLOPs of ANN is known. Table 1 shows the energy consumption of
Conv, self-attention, and MLP modules of the same scale in vanilla and our Spike-driven Transformer.

5 Experiments

We evaluate our method on both static datasets ImageNet [76], CIFAR-10/100 [77], and neuromorphic
datasets CIFAR10-DVS [78], DVS128 Gesture [79].

Experimental Setup on ImageNet. For the convenience of comparison, we generally continued
the experimental setup in [20]. The input size is set to 224 × 224. The batch size is set to 128 or
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Table 1: Energy evaluation. FLConv and FLMLP represent the FLOPs of the Conv and MLP models
in the ANNs, respectively. RC , RM , R, R̂ denote the spike firing rates (the proportion of non-zero
elements in the spike matrix) in various spike matrices. We give the strict definitions and calculation
methods of these indicators in the Supplementary due to space constraints.

Vanilla Spike-driven Transformer
Transformer [51] (This work)

SPS First Conv EMAC · FLConv EMAC · T ·RC · FLConv

Other Conv EMAC · FLConv EAC · T ·RC · FLConv

Self-attention

Q,K, V EMAC · 3ND2 EAC · T ·R · 3ND2

f(Q,K, V ) EMAC · 2N2D EAC · T · R̂ ·ND
Scale EM ·N2 -

Softmax EMAC · 2N2 -
Linear EMAC · FLMLP0 EAC · T ·RM0 · FLMLP0

MLP Layer 1 EMAC · FLMLP1 EAC · T ·RM1 · FLMLP1

Layer 2 EMAC · FLMLP2 EAC · T ·RM2 · FLMLP2

256 during 310 training epochs with a cosine-decay learning rate whose initial value is 0.0005. The
optimizer is Lamb. The image is divided into N = 196 patches using the SPS module. Standard data
augmentation techniques, like random augmentation, mixup, are also employed in training. Details
of the training and experimental setup on ImageNet are given in the supplementary material.

Accuracy analysis on ImageNet. Our experimental results on ImageNet are given in Table 3. We first
compare our model performance with the baseline spiking Transformer (i.e., SpikFormer [20]). The
five network architectures consistent with those in SpikFormer are adopted by this work. We can see
that under the same parameters, our accuracies are significantly better than the corresponding baseline
models. For instance, the Spike-driven Transformer-8-384 is 2.0% higher than SpikFormer-8-384.
It is worth noting that the Spike-driven Transformer-8-768 obtains 76.32% (input 224×224) with
66.34M, which is 1.5% higher than the corresponding SpikFormer. We further expand the inference
resolution to 288×288, obtaining 77.1%, which is the SOTA result of the SNN field on ImageNet.

Table 2: Spike Firing Rate (SFR) of Spike-driven
Self-attention in 8-512. Average SFR is the mean
of SFR over T = 4, and 8 SDSA blocks.

SDSA Average SFR

QS 0.0091
KS 0.0090

g(QS ,KS) 0.0713
VS 0.1649

Output of SDSA(·), V̂S 0.0209

We then compare our results with existing Res-
SNNs. Whether it is vanilla Res-SNN [38], MS-
Res-SNN [26] or SEW-Res-SNN [25], the accu-
racy of Spike-driven Transformer-8-768 (77.1%)
is the highest. Att-MS-Res-SNN [27] also
achieves 77.1% accuracy by plugging an ad-
ditional attention auxiliary module [80, 81] in
MS-Res-SNN, but it destroys the spike-driven
nature and requires more parameters (78.37M
vs. 66.34M) and training time (1000epoch vs.
310epoch). Furthermore, the proposed Spike-
driven Transformer outperforms by more than 72% at various network scales, while Res-SNNs have
lower performance with a similar amount of parameters. For example, Spike-driven Transformer-
6-512 (This work) vs. SEW-Res-SNN-34 vs. MS-Res-SNN-34: Param, 23.27M vs. 21.79M vs.
21.80M; Acc, 74.11% vs. 67.04% vs. 69.15%.

Power analysis on ImageNet. Compared with prior works, the Spike-driven Transformer shines
in energy cost (Table 3). We first make an intuitive comparison of energy consumption in the SNN
field. Spike-driven Transformer-8-512 (This work) vs. SEW-Res-SNN-50 vs. MS-Res-SNN-34:
Power, 4.50mJ vs. 4.89mJ vs. 5.11mJ; Acc, 74.57% vs. 67.78% vs. 69.42%. That is, our model
achieves +6.79% and +5.15% accuracy higher than previous SEW and MS Res-SNN backbones
with lower energy consumption. What is more attractive is that the energy efficiency of the Spike-
driven Transformer will be further expanded as the model scale grows because its computational
complexity is linear in both token and channel dimensions. For instance, in an 8-layer network, as the
channel dimension increases from 384 to 512 and 768, SpikFormer [20] has 1.98×(7.73mJ/3.90mJ),
2.57×(11.57mJ/4.50mJ), and 3.52×(21.47mJ/6.09mJ) higher energy consumption than our Spike-
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Table 3: Evaluation on ImageNet. Power is the average theoretical energy consumption when
predicting an image from the test set. The power data in this work is evaluated according to Table 1,
and data for other works were obtained from related papers. Spiking Transformer-L-D represents a
model with L encoder blocks and D channels. *The input crops are enlarged to 288×288 in inference.
The default inference input resolution for other models is 224×224.

Methods Architecture Spike
-driven

Param
(M)

Power
(mJ)

Time
Step Acc

Hybrid training [82] ResNet-34 ✓ 21.79 - 250 61.48
TET [83] SEW-ResNet-34 ✗ 21.79 - 4 68.00

Spiking ResNet [84] ResNet-50 ✓ 25.56 70.93 350 72.75
tdBN [38] Spiking-ResNet-34 ✗ 21.79 6.39 6 63.72

SEW ResNet [25]

SEW-ResNet-34 ✗ 21.79 4.04 4 67.04
SEW-ResNet-50 ✗ 25.56 4.89 4 67.78

SEW-ResNet-101 ✗ 44.55 8.91 4 68.76
SEW-ResNet-152 ✗ 60.19 12.89 4 69.26

MS ResNet [26]
MS-ResNet-18 ✓ 11.69 4.29 4 63.10
MS-ResNet-34 ✓ 21.80 5.11 4 69.42

MS-ResNet-104* ✓ 77.28 10.19 4 76.02

Att MS ResNet [27]
Att-MS-ResNet-18 ✗ 11.87 0.48 1 63.97
Att-MS-ResNet-34 ✗ 22.12 0.57 1 69.15

Att-MS-ResNet-104* ✗ 78.37 7.30 4 77.08
ResNet Res-CNN-104 ✗ 77.28 54.21 1 76.87

Transformer Transformer-8-512 ✗ 29.68 41.77 1 80.80

Spikformer [20]

Spiking Transformer-8-384 ✗ 16.81 7.73 4 70.24
Spiking Transformer-6-512 ✗ 23.37 9.41 4 72.46
Spiking Transformer-8-512 ✗ 29.68 11.57 4 73.38
Spiking Transformer-10-512 ✗ 36.01 13.89 4 73.68
Spiking Transformer-8-768 ✗ 66.34 21.47 4 74.81
Spiking Transformer-8-384 ✓ 16.81 3.90 4 72.28
Spiking Transformer-6-512 ✓ 23.37 3.56 4 74.11

Spike-driven Spiking Transformer-8-512 ✓ 29.68 1.13 1 71.68
Transformer (Ours) Spiking Transformer-8-512 ✓ 29.68 4.50 4 74.57

Spiking Transformer-10-512 ✓ 36.01 5.53 4 74.66
Spiking Transformer-8-768* ✓ 66.34 6.09 4 77.07

driven Transformer. At the same time, our task performance on these three network structures has
improved by +2.0%, +1.2%, and +1.5%, respectively.

Table 4: Energy Consumption of Self-attention.
E1 and E2 (including energy consumption to
generate Q,K, V ) represent the power of self-
attention mechanism in ANN and spike-driven.

Models E1 (pJ) E2 (pJ) E1/E2

8-384 6.7e8 1.6e7 42.6
8-512 1.2e9 2.1e7 57.2
8-768 2.7e9 3.1e7 87.2

Then we compare the energy cost between Spike-
driven and ANN Transformer. Under the same
structure, such as 8-512, the power required by
the ANN-ViT (41.77mJ) is 9.3× that of the spike-
driven counterpart (4.50mJ). Further, the energy
advantage will extend to 36.7× if we set T = 1 in
the Spike-driven version (1.13mJ). Although the
accuracy of T = 1 (here we are direct training)
will be lower than T = 4, it can be compensated
by special training methods [85] in future work.
Sparse spike firing is the key for Spike-driven Transformer to achieve high energy efficiency. As
shown in Table 2, the Spike Firing Rate (SFR) of the self-attention part is very low, where the SFR
of QS and QK are both less than 0.01. Since the mask (Hadamard product) operation does not
consume energy, the number of additions required by the SUMc (QS ⊗KS) is less than 0.02ND
times. The operation between the vector output by g(QS ,KS) and VS is still a column mask that
does not consume energy. Consequently, in the whole self-attention part, the energy consumption of
spike-driven self-attention can be lower than 87.2× of ANN self-attention (see Table 4).
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Table 5: Experimental Results on CIFAR10/100, DVS128 Gesture and CIFAR10-DVS.

Methods Spike-driven
CIFAR10-DVS DVS128 Gesture CIFAR-10 CIFAR-100

T Acc T Acc T Acc T Acc

tdBN [38] ✗ 10 67.8 40 96.9 6 93.2 - -
PLIF [86] ✓ 20 74.8 20 97.6 8 93.5 - -

Dspike [87] ✗ 10 75.4 - - 6 94.3 6 74.2
DSR [88] ✓ 10 77.3 - - 20 95.4 20 78.5

Spikformer [20] ✗ 16 80.9 16 98.3 4 95.5 4 78.2

DIET-SNN[89] ✗ - - - - 5 92.7 5 69.67
ANN(ResNet19) ✗ - - - - 1 94.97 1 75.4

ANN(Transformer4-384) ✗ - - - - 1 96.7 1 81.02

This Work ✓ 16 80.0 16 99.3 4 95.6 4 78.4

Table 6: Studies on Spiking Transformer-2-512.

Model CIFAR-10 CIFAR-100

Baseline [20] 93.12 73.17

+ SDSA 93.09 (-0.03) 72.83 (-0.34)
+ MS 93.93 (+0.81) 74.63 (+1.46)

This work 93.82 (+0.73) 74.41 (+1.24)

Experimental results on CIFAR-10/100,
CIFAR10-DVS, and DVS128 Gesture are
conducted in Table 5. These four datasets are
relatively small compared to ImageNet. CIFAR-
10/100 are static image classification datasets.
Gesture and CIFAR10-DVS are neuromorphic
action classification datasets, which need to
convert the event stream into frame sequences
before processing. DVS128 Gesture is a gesture recognition dataset. CIFAR10-DVS is a
neuromorphic dataset converted from CIFAR-10 by shifting image samples to be captured by the
DVS camera. We basically keep the experimental setup in [20], including the network structure,
training settings, etc., and details are given in the supplementary material. As shown in Table 5, we
achieve SOTA results on Gesture (99.3%) and CIFAR-10 (95.6%), and comparable results to SOTA
on other datasets.

Input 
Image

Attention 
Map 1

Attention 
Map 2

Block 1 Block 2 Block 3 Block 4

𝑉!

"𝑉!

Figure 3: Attention Map Based on Spike Firing Rate (SFR). VS is
the Value tensor. V̂S is the output of SDSA(·). The spike-driven self-
attention mechanism masks unimportant channels in VS to obtain V̂S .
Each pixel on VS and V̂S represents the SFR at a patch. The spatial
resolution of each attention map is 14× 14 (196 patches). The redder
the higher the SFR, the bluer the smaller the SFR.

Ablation study. To im-
plement the spike-driven
paradigm in Transformer,
we design a new SDSA
module and reposition the
residual connections in the
entire network based on the
SpikFormer [20]. We orga-
nize ablation studies on CI-
FAR10/100 to analyze their
impact. Results are given
in Table 6. We adopt spik-
ing Transformer-2-512 as
the baseline structure. It can
be observed that SDSA in-
curs a slight performance
loss. As discussed in Section 3.3, SDSA actually masks some unimportant channels directly. In Fig. 3,
we plot the attention maps (the detailed drawing method is given in the supplementary material),
and we can observe: i) SDSA can optimize intermediate features, such as masking background
information; ii) SDSA greatly reduces the spike firing rate of V̂S , thereby reducing energy cost.
On the other hand, the membrane shortcut leads to significant accuracy improvements, consistent
with the experience of Conv-based MS-SNN [26, 25]. Comprehensively, the proposed Spike-driven
Transformer simultaneously achieves better accuracy and lower energy consumption (Table 3).

6 Conclusion

We propose a Spike-driven Transformer that combines the low power of SNN and the excellent
accuracy of the Transformer. There is only sparse addition in the proposed Spike-driven Transformer.
To this end, we design a novel Spike-Driven Self-Attention (SDSA) module and rearrange the
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location of residual connections throughout the network. The complex and energy-intensive matrix
multiplication, softmax, and scale in the vanilla self-attention are dropped. Instead, we employ mask,
addition, and spike neuron layer to realize the function of the self-attention mechanism. Moreover,
SDSA has linear complexity with both token and channel dimensions. Extensive experiments are
conducted on static image and neuromorphic datasets, verifying the effectiveness and efficiency of the
proposed method. We hope our investigations pave the way for further research on Transformer-based
SNNs and inspire the design of next-generation neuromorphic chips.
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S1 Energy Consumption Analysis Details

We show the theoretical energy consumption estimation method of the proposed Spike-driven
Transformer in Table 1 of the main text. Compared to the vanilla Transformer counterpart, the spiking
version requires information on timesteps T and spike firing rates (R). Therefore, we only need to
evaluate the FLOPs of the vanilla Transformer, and T and R are known, we can get the theoretical
energy consumption of spike-driven Transformer.

The FLOPs of the n-th Conv layer in ANNs [90] are:

FLConv = (kn)
2 · hn · wn · cn−1 · cn, (S1)

where kn is the kernel size, (hn, wn) is the output feature map size, cn−1 and cn are the input and
output channel numbers, respectively. The FLOPs of the m-th MLP layer in ANNs are:

FLMLP = im · om, (S2)

where im and om are the input and output dimensions of the MLP layer, respectively.

The spike firing rate is defined as the proportion of non-zero elements in the spike tensor. In Table S1,
we present the spike firing rates for all spiking tensors in spike-driven Transformer-8-512. In addition,
R in Table 1 indicates the average of the spike firing rates of QS , KS , and VS . R̂ is the sum of the
spike firing rates of QS and KS .

Refer to previous works[91, 70, 92, 27], we assume the data for various operations are 32-bit floating
point implementation in 45nm technology [93], in which EMAC = 4.6pJ and EAC = 0.9pJ .
Overall, for the same operator (Conv, MLP, Self-attention), as long as EAC × T × R < EMAC ,
SNNs are theoretically more energy efficient than counterpart ANNs. EAC × T is usually a constant,
thus sparser spikes (smaller R) result in lower energy cost.

S2 Experiment Details

Datasets. We employ two types of datasets: static image classification and neuromorphic classifica-
tion. The former includes ImageNet-1K [76], CIFAR-10/100 [77]. The latter contains CIFAR10-DVS
[78] and DVS128 Gesture [79].

ImageNet-1K is the most typical static image dataset, which is widely used in the field of image
classification. It offers a large-scale natural image dataset of 1.28 million training images and 50k
test images, with a total of 1,000 categories. CIFAR10 and CIFAR100 are smaller datasets in image
classification tasks that are often used for algorithm testing. The CIFAR-10 dataset consists of 60,000
images in 10 classes, with 6,000 images per class. The CIFAR-100 dataset has 60,000 images divided
into 100 classes, each with 600 images.

CIFAR10-DVS is an event-based neuromorphic dataset converted from CIFAR10 by scanning each
image with repeated closed-loop motion in front of a Dynamic Vision Sensor (DVS). There are a
total of 10,000 samples in CIFAR10-DVS, with each sample lasting 300ms. The temporal and spatial
resolutions are µs and 128×128, respectively. DVS128 Gesture is an event-based gesture recognition
dataset, which has the temporal resolution in µs level and 128 × 128 spatial resolution. It records
1342 samples of 11 gestures, and each gesture has an average duration of 6 seconds.

Data Preprocessing. SNNs are a kind of spatio-temporal dynamic network that can naturally deal
with temporal tasks. When working with static image classification datasets, it is common practice in
the field to repeatedly input the same image at each timestep. As our results in Table 3 show, multiple
timesteps lead to better accuracy, but also require more training time and computing hardware
requirements, as well as greater inference energy consumption.

By contrast, neuromorphic datasets (i.e., event-based datasets) can fully exploit the energy-efficient
advantages of SNNs with spatio-temporal dynamics. Specifically, neuromorphic datasets are produced
by event-based (neuromorphic) cameras, such as DVS [94]. Compared with conventional cameras,
DVS poses a new paradigm shift in visual information acquisition, which encode the time, location,
and polarity of the brightness changes for each pixel into event streams with a µs level temporal
resolution. Events (spike signals with address information) are generated only when the brightness of
the visual scene changes. This fits naturally with the event-driven nature of SNNs. Only when there
is an event input, some spiking neurons of SNNs will be triggered to participate in the computation.
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Typically, event streams are preprocessed into frame sequences as input to SNNs. Details can be
referred to previous work [35].

Experimental Steup. The experimental setup in this work generally follows [20]. The experimental
settings of ImageNet-1K have been given in the main text. Here we mainly give the network settings
on four small datasets. As shown in Table 5, we employ timesteps T = 4 on static CIFAR-10 and
CIFAR-100, and T = 16 on neuromorphic CIFAR10-DVS and Gesture. The training epoch for these
four datasets is 200. The batch size is 32 for CIFAR10/100, 16 for Gesture and CIFAR10-DVS. The
learning rate is initialized to 0.0005 for CIFAR10/100, 0.0003 for Gesture, and 0.01 for CIFAR10-
DVS. All of them are reduced with cosine decay. We follow [20] to apply data augmentation on
Gesture and CIFAR10-DVS. In addition, the network structures used in CIFAR-10, CIFAR-100,
CIFAR10-DVS, and Gesture are: spike-driven Transformer-2-512, spike-driven Transformer-2-512,
spike-driven Transformer-2-256, spike-driven Transformer-2-256.

S3 Attention Map

Spike-Driven Self-Attention (SDSA). Here we first briefly review the proposed spike-driven self-
attention. Given a single head spike input feature sequence S ∈ RT×N×D, float-point Q, K, and
V in RT×N×D are calculated by three learnable linear matrices, respectively. A spike neuron layer
SN (·) follows, converting float-point Q, K, V into spike tensor QS , KS , and VS . Spike-driven
self-attention is presented as:

V̂S = SDSA(Q,K, V ) = g(QS ,KS)⊗ VS = SN (SUMc (QS ⊗KS))⊗ VS , (S3)

where ⊗ is the Hadamard product, g(·) is used to compute the attention map, SUMc(·) represents the
sum of each column. The outputs of both g(·) and SUMc(·) are D-dimensional row vectors. The
Hadamard product between spike tensors is equivalent to the mask operation. We denote the output
of SDSA(Q,K, V ) as V̂S .

Self-attention mechanism allows the model to capture long-range dependencies by attending to
relevant parts of the input sequence regardless of the distance between them. In Eq. S3, SDSA adopts
hard attention. The output of attention map g(QS ,KS) is a vector containing only 0 or 1. Therefore,
the whole spike-driven self-attention can be understood as masking unimportant channels in the Value
tensor VS . Note, instead of scale and softmax operations, we exploit Hadamard product, column
element sum, and spiking neuron layer to generate binary attention scores. QS and KS are very
sparse (typically less than 0.01, see Table S1), the value of summing QS ⊗KS column by column
does not fluctuate much, thus the scale operation is not needed here.

Attention Map. In a spike-driven self-attention layer, the VS and V̂S of T timesteps and H heads are
averaged. The new VS and V̂S output is the spike firing rate, which we plot in Fig. S1. This allows us
to observe how the attention score modulates spike firing.

17



Table S1: Spike Firing Rates in Spike-driven Transformer-8-512.

T = 1 T = 2 T = 3 T = 4 Average

SPS

Conv1 0.0665 0.1260 0.1004 0.1451 0.1095

Conv2 0.0465 0.0689 0.0597 0.0541 0.0573

Conv3 0.0333 0.0453 0.0368 0.0394 0.0387

Conv4 0.0948 0.1864 0.1792 0.1885 0.1622

Block 1

SDSA

Input 0.2873 0.3590 0.3630 0.3625 0.3430

VS 0.2629 0.3094 0.3011 0.3104 0.2959

QS 0.0142 0.0202 0.0218 0.0219 0.0195

KS 0.0144 0.0227 0.0234 0.0246 0.0213

g(QS ,KS) 0.0792 0.1143 0.1294 0.1328 0.1139

Output of SDSA(·), V̂S 0.0297 0.0414 0.0456 0.0508 0.0419

MLP
Layer 1 0.3675 0.4263 0.4505 0.4555 0.4250

Layer 2 0.0463 0.0532 0.0520 0.0541 0.0514

Block 2

SDSA

Input 0.3493 0.4002 0.4320 0.4391 0.4051

VS 0.2582 0.2761 0.2476 0.2237 0.2514

QS 0.0147 0.0191 0.0195 0.0190 0.0181

KS 0.0128 0.0172 0.0186 0.0199 0.0171

g(QS ,KS) 0.1033 0.1347 0.1357 0.1202 0.1235

Output of SDSA(·), V̂S 0.03318 0.04373 0.03913 0.0324 0.0371

MLP
Layer 1 0.3484 0.3944 0.4259 0.4340 0.4007

Layer 2 0.0317 0.0404 0.0417 0.0433 0.0393

Block 3

SDSA

Input 0.3454 0.3890 0.4240 0.4292 0.3969

VS 0.3018 0.3055 0.2614 0.2193 0.2720

QS 0.0108 0.0151 0.0158 0.0160 0.0144

KS 0.0113 0.0152 0.0151 0.0144 0.0140

g(QS ,KS) 0.1273 0.1600 0.1569 0.1375 0.1454

Output of SDSA(·), V̂S 0.0446 0.0562 0.0462 0.0344 0.0453

MLP
Layer 1 0.3436 0.3825 0.4147 0.4203 0.3903

Layer 2 0.0261 0.0334 0.0347 0.0352 0.0323

Block 4

SDSA

Input 0.3458 0.3855 0.4191 0.4283 0.3947

VS 0.2112 0.2241 0.1941 0.1728 0.2005

QS 0.0062 0.0101 0.0113 0.0117 0.0099

KS 0.0061 0.0095 0.0107 0.0120 0.0096

g(QS ,KS) 0.0762 0.0979 0.0981 0.0967 0.0922

Output of SDSA(·), V̂S 0.0214 0.0289 0.0245 0.0220 0.0242

MLP
Layer 1 0.3460 0.3837 0.4146 0.4228 0.3918

Layer 2 0.0208 0.0258 0.0261 0.0259 0.0247

Continued on next page
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Table S1 – continued from previous page

T = 1 T = 2 T = 3 T = 4 Average

Block 5

SDSA

Input 0.3491 0.3908 0.4228 0.4306 0.3984

VS 0.1493 0.1654 0.1491 0.1395 0.1508

QS 0.0048 0.0080 0.0090 0.0093 0.0078

KS 0.0042 0.0071 0.0081 0.0082 0.0069

g(QS ,KS) 0.0473 0.0698 0.0740 0.0749 0.0665

Output of SDSA(·), V̂S 0.0102 0.0169 0.0157 0.0147 0.0144

MLP
Layer 1 0.3541 0.3935 0.4231 0.4302 0.4002

Layer 2 0.0169 0.0205 0.0205 0.0206 0.0196

Block 6

SDSA

Input 0.3614 0.3957 0.4201 0.4258 0.4007

VS 0.0729 0.0791 0.0767 0.0778 0.0766

QS 0.0012 0.0021 0.0027 0.0032 0.0023

KS 0.0008 0.0018 0.0024 0.0026 0.0019

g(QS ,KS) 0.0128 0.0227 0.0260 0.0286 0.0225

Output of SDSA(·), V̂S 0.0018 0.0040 0.0043 0.0045 0.0036

MLP
Layer 1 0.3690 0.4027 0.4264 0.4317 0.4074

Layer 2 0.0147 0.0180 0.0183 0.0186 0.0174

Block 7

SDSA

Input 0.3619 0.4069 0.4192 0.4218 0.4025

VS 0.0379 0.0359 0.0371 0.0406 0.0379

QS 0.0001 0.0002 0.0003 0.0004 0.0003

KS 0.0001 0.0003 0.0004 0.0005 0.0003

g(QS ,KS) 0.0022 0.0046 0.0058 0.0073 0.0050

Output of SDSA(·), V̂S 0.0001 0.0005 0.0005 0.0006 0.0004

MLP
Layer 1 0.3575 0.4035 0.4156 0.4180 0.3987

Layer 2 0.0140 0.0184 0.0186 0.0189 0.0175

Block 8

SDSA

Input 0.2865 0.3888 0.4019 0.4106 0.3720

VS 0.0200 0.0342 0.0380 0.0419 0.0335

QS 0.00001 0.0001 0.0001 0.0002 0.0001

KS 1e−5 1e−5 0.0001 0.0001 1e−5

g(QS ,KS) 2e−5 0.0001 0.0020 0.0024 0.0015

Output of SDSA(·), V̂S 1e−5 0.0002 0.0002 0.0002 0.0001

MLP
Layer 1 0.2716 0.3721 0.3827 0.3899 0.3541

Layer 2 0.0056 0.0111 0.0110 0.0115 0.0098

Head FC 0.0002 0.3876 0.3604 0.4843 0.3081
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Figure S1: Attention Map Based on Spike Firing Rate (SFR). Attention map 1 and 2 are generated by
the Grad-CAM method [95]. VS is the Value tensor. V̂S is the output of SDSA(·). The spike-driven
self-attention mechanism masks unimportant channels in VS to obtain V̂S . Each pixel on VS and V̂S

represents the SFR at a patch. The spatial resolution of each attention map is 14× 14 (196 patches).
The redder the higher the SFR, the bluer the smaller the SFR. We can see that the SDSA(·) regulation
of spike firing is basically consistent with the focused points in the attention map.
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