
CT-BERT: Learning Better Tabular Representations Through
Cross-Table Pre-training

Chao Ye∗
Zhejiang University
Hangzhou, China
ye.chao@zju.edu.cn

Guoshan Lu∗
Zhejiang University
Hangzhou, China

luguoshan@zju.edu.cn

Haobo Wang
Zhejiang University
Hangzhou, China

wanghaobo@zju.edu.cn

Liyao Li
Zhejiang University
Hangzhou, China
liliyao@zju.edu.cn

Sai Wu
Zhejiang University
Hangzhou, China
wusai@zju.edu.cn

Gang Chen
Zhejiang University
Hangzhou, China
cg@zju.edu.cn

Junbo Zhao†
Zhejiang University
Hangzhou, China
j.zhao@zju.edu.cn

ABSTRACT

Tabular data — also known as structured data — is one of the most
common data forms in existence, thanks to the stable development
and scaled deployment of database systems in the last few decades.
At present however, despite the blast brought by large pre-trained
models in other domains such as ChatGPT [1] or SAM [34], how
can we extract common knowledge across tables at a scale that may
eventually lead to generalizable representation for tabular data re-
mains a full blank. Indeed, there have been a few works around
this topic. Most (if not all) of them are limited in the scope of a
single table or fixed form of a schema. In this work, we first identify
the crucial research challenges behind tabular data pre-training,
particularly towards the cross-table scenario. We position the con-
tribution of this work in two folds: (i)-we collect and curate nearly
2k high-quality tabular datasets, each of which is guaranteed to
possess clear semantics, clean labels, and other necessarymeta infor-
mation. (ii)-we propose a novel framework that allows cross-table
pre-training dubbed as CT-BERT. Noticeably, in light of pioneering
the scaled cross-table training, CT-BERT is fully compatible with
both supervised and self-supervised schemes, where the specific in-
stantiation of CT-BERT is very much dependent on the downstream
tasks. We further propose and implement a contrastive-learning-
based and masked table modeling (MTM) objective into CT-BERT,
that is inspired from computer vision and natural language process-
ing communities but sophistically tailored to tables. The extensive
empirical results on 15 datasets demonstrate CT-BERT’s state-of-
the-art performance, where both its supervised and self-supervised
setups significantly outperform the prior approaches.

1 INTRODUCTION

With the extensive application of database management systems
and the vigorous development of the internet industry, tabular
data — also known as structured data — truly abounds. Indeed,
the accumulation of scaled tables stored in databases has brought
∗Chao Ye and Guoshan Lu are co-first authors of the article.
†Junbo Zhao is the corresponding author.

BERT

MLM Task

MIM Task

Vision Transformers

? ? ?

CT-BERT(ours)

Wiki

ImageNet

Learning across
texts

Learning across
images

CL Task

TabPretNet (ours)

Learning across
tables

Self-MTM TaskLa
rg

e-
sc

al
e

un
la

be
le

d
Labeled scenario

Sup-CL Task

MASK

MASK

Title: The Benefits of Reading
Reading is one of the most

important habits we can develop.
Not only does it improve our ...
———————————————

Title: 1984 by George Orwell
In this dystopian novel, Orwell

takes us to a future world that is
under the control of a totalitarian ...

MASK
MASK

Figure 1: An example of our method compared with Natural

language processing (NLP) and computer vision (CV). Our

work pioneers the research of a relatively unexplored direc-

tion in tabular modeling: large-scale cross-table pre-training.

MLM is short for masked language modeling, MLM is short

formasked imagemodeling, CL is short for contrastive learn-

ing, Sup is short for supervised, and MTM is short for our

proposed masked table modeling method.

significant value to the industry or individuals, through tech stacks
like data mining or the development of OLAP databases.

Notably, over the past decade, various large-scale collections
of tabular datasets have been proposed [13, 15], and they were
used for tasks like tableQA [19, 52], table interpretation [7, 22, 46],
table expansion [2, 14, 38], etc. Despite that, how to enable a large-
scale, distributed, and cross-table pre-training very much remains
untapped.

ar
X

iv
:2

30
7.

04
30

8v
1

 [
cs

.L
G

]
 1

0
Ju

l 2
02

3

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

This, unfortunately, is in stark contrast to the other communities
such as computer vision and natural language processing. In both of
these domains, techniques like pre-training followed by fine-tuning
have long established a dominant methodological status, such as
BERT [20], CLip [43], ChatGPT [1], GPT4 [40], SAM [34], etc. In
hindsight, the successes of these large-scale models lie in their
ability to extract common semantic structure from the seen/unseen
input and condense this knowledge/common sense into a vectorial
representation. The emergence of this capacity stems from a scaled
pre-training process on a gigantic amount of text or vision data
across the domains.

Recently, a few works have attempted to learn contextualized
representation from tabular data through neural networks, or more
specifically the transformermodel [56], such as TabTransformer [29],
VIME [66], TabNet [4], SAINT [50], etc. While the concept is truly
promising, these approaches are limited to single-table training
with a fixed form of a schema. Most closely related to our work
are TransTab [59] and PTab [36]. Both approaches note the impor-
tance of cross-table learning. However, they process the table to
a proximal form of text data, for instance by converting a sample
row in the table into a sentence, without doing much adaption
specifically to the structured data. This weakened coupling of the
data values in the tables with the schema/meta/column names has
arguably obstructed these approaches to scale and absorb common
knowledge.

1.1 Challenges

In what follows, we identify the core challenges that remained in
scaled and cross-table pre-training.

C1. How can pre-training models accept inputs from heteroge-
neous tables as there are significant differences between different
tables? For instance, the feature value "apple" appears under the
column names "fruit" and "My_Laptop" in two different tables, con-
veying completely different meanings.

C2.Unlike image or text datawhere the pixels andword/character
tokens are ordered, arbitrarily permuting any tables’ rows or columns
does not change its semantic meaning. We dub this property as
permutation invariance uniquely to tabular data. Thus, how can the
pre-training mechanism be compatible with this nature of tabular
data?

C3. Still driven by the difference against common vision or text
data, how to design a suitable cross-table pre-training task objective
because there is no obvious context or spatial structure in the
tabular data?

1.2 Key Idea behind CT-BERT

Ideally, in order for the pre-trained model to properly acquire the
common knowledge from multiple heterogeneous tables, the model
should be encouraged to learn the innate similarities or dissimilari-
ties among the tabular data distribution. However, as we posited
in the challenges, directly utilizing the original form of the data
(or its corresponding embedding) may cause unentangleable confu-
sion. Let us give a concrete example; given two tables with similar
schema, two forms “10 meters" and “10 kg" are iconically identical.
Despite that, directly converting them to embedding may inher-
ently confuse and adversely impact the convergence or training

difficulty. Abstracting away from this example, to cope with this
challenge, the pre-training methodology must be capable to con-
form the different metrical systems or different notations. It is true
that we can write heuristic rules to tackle this problem, but the
amount of it would be surely insurmountable.

In that regard, we outline the core idea behind CT-BERT. In a
nutshell, provided with any table, it can always be decomposed to
feature that denotes the data curated column-wise, together with
token drawn from the schema information such as the column
name or other textual meta-information. Instead of following a nor-
mal embedding-based encoding approach, we proactively combine
the feature with the token information, by casting them into a form
of textual representation. For example, we convert the feature value
"apple" combined with the schema information to "fruit is apple",
which we dub as a phrase, as the atomic representation of the cell
value in tabular data. This allows to distinguish the same feature
value "apple" in column "fruit" and "My_Laptop" respectively.

We postulate that this manifests several merits. In particular, the
challenge C1 can be both theoretically and empirically solved, and
this formation is rid of many heuristic rules, except the template
for sticking the feature and token together.

1.3 Our Methodology: CT-BERT

Essentially, CT-BERT bases itself upon the phrase as the atomic
representation of each unit in any provided table, in combination
of the feature (column name/meta) with the feature value. We then
process each atomic element similarly to word embedding in NLP.
Towards the challenge C2 of the permutation invariance property,
we propose a novel transformer [56] encoding architecture that is
adapted to cater to this nature of tabular data.

As a pioneer work to enable cross-table pre-training, we devise
CT-BERT to be compatible with both supervised and self-supervised
scenarios. In that regard, we profoundly categorized the available
tables drawn from databases by a standard whether there exists
a clear label column or not, that we direct it to supervised and
self-supervised learning paradigms respectively. On one hand, for
supervised learning, we propose a supervised contrastive learning-
based objective to better cluster samples with the same label while
allowing different labels to be uniformly distributed over the hy-
persphere of tabular representations. On the other hand, in order
to take advantage of large-scale unsupervised data, we propose
another pre-training method of masked table modeling (which we
call MTM) — adapted from the MLM objective in the NLP commu-
nity [20] — which facilitates to mask some features in the atomic
then let the model predict the recovery (for challenge C3).

We believe that if the model can predict the masked features
from the retained features, then the model can learn the underly-
ing relationship between the features. Similar to CV or NLP, this
relationship serves as the foundation to manifest the shareable
knowledge that is migrated across tables.

1.4 Contributions

To wrap up, the contribution of this article is deemed two-fold. For
one thing, we collect and curate nearly 2,000 tabular datasets, each
of which is guaranteed to possess clear semantics, clean labels, and
other necessary meta information. We treat these high-quality and

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

labeled datasets as the foundation to launch large-scale pre-training.
For another, we propose a generic and efficient cross-table pre-
training solution, dubbed as Cross-Table pre-Training framework
(CT-BERT). CT-BERT promotes several novel development bullets
including but not limited to: (i)-a novel paradigm compatible with
both supervised and self-supervised objectives, (ii)-a contrastive
learning and masked table modeling (MTM) objectives for pre-
training tables, and a novel transformer architecture tailored to
the permutation invariance nature of tabular data. Our pre-trained
tabular model can support fine-tuning or few-shot learning for
prediction on tables of any shape.

The remainder of the paper is organized as follows. In Section 4,
we detail the table pre-training dataset TabPretNetwe contributed.
In Section 5, we present the proposed CT-BERT cross-table pre-
training framework. In Section 6, we constructed extensive experi-
ments to evaluate the effectiveness and superiority of CT-BERT.

2 RELATEDWORKS

We provide a brief background on representation learning, models
for tabular data, and self-supervised pre-training methods.

2.1 Representation Learning

In recent years, with the development of pre-trained large language
models ("LLMs") like GPT-3 [12], the pre-training then fine-tuning
and prompting paradigms have attracted attention. These methods
typically train models with self-supervised representation learn-
ing methods from large-scale unstructured text and structured
knowledge bases, and then fine-tune them or use them for various
downstream tasks. In early work in natural language, including
Word2Vec [39] and GloVe [42], pre-training distributed representa-
tions of words provided significant improvements over randomly
initialized parameters. However, these methods cannot simulate
the use of words in different linguistic contexts. This dilemma has
prompted the development of vocabulary representations that can
learn context and contextual relationships [20, 47, 64], and these
pre-trained language models have achieved tremendous success
and produced state-of-the-art results in various NLP tasks [57]. Sim-
ilarly, self-supervised representation learning can also be used for
tabular data, such as knowledge bases (KB) and databases, where
entities and relationships in the KB can be embedded into con-
tinuous vector spaces and then utilized for various downstream
tasks, such as KB completion [11, 60], relation extraction [45, 61],
entity resolution [10], etc. Although representation learning on the
text and KB has been successful, few works have explored directly
learning self-supervised representations on large-scale tabular data
for tabular modeling. In this work, we introduce CT-BERT, which is
the first method for self-supervised pre-training on large-scale tab-
ular data, and the pre-trained model can be fine-tuned for various
downstream tabular prediction tasks.

2.2 Models for Tabular Data

For a long time, traditional machine learning (ML) methods such as
tree-based methods [16] have dominated this field and have been
the preferred choice for most practitioners and data mining compe-
titions (e.g., Kaggle) [9]. Recently, many researchers have proposed
new neural network-based architectures [4, 24, 25, 29, 50, 51, 59, 66]

to model tabular data, attempting to challenge the dominance of
tree-based models in this field. For example, TabNet [4] uses se-
quential attention to simulate the process of tree decision-making,
TabTransformer [29] leverages transformers [56] to learn categor-
ical features in tables, and AutoInt [51] utilizes attention mecha-
nism [56] to model the relationship between user and item features
in click-through rate prediction tasks. However, only very few of
these neural network-based models work [36, 59] attempt to in-
vestigate how to handle heterogeneous tabular inputs. This leads
to the advantage that deep learning methods can be pre-trained
on large-scale datasets that cannot be fully exploited. As described
in Section 5.2 and 5.3, our proposed CT-BERT not only can accept
inputs from heterogeneous tables but also achieves permutation
invariance of feature columns, and leverage semantic knowledge
from table headers and textual features. These advancements pave
the way for CT-BERT to be pre-trained on large-scale datasets for
cross-table prediction.

2.3 Self-supervised pre-training

One of the key reasons for the great success of deep learning in
computer vision and natural language processing is that knowl-
edge on a large amount of unlabeled datasets is learned through
a self-supervised pre-training task and then generalized to down-
stream tasks through fine-tuning. For instance, masked language
modeling (MLM) self-supervised pre-text task [20, 49] is employed
to learn contextual relationships in natural language processing.
In computer vision, masked image modeling (MIM) [21, 49] and
contrastive learning [32] have been used to train powerful image
representations. Some studies have attempted to extend the success
of self-supervised learning to tabular data. These approaches can be
roughly categorized into three types: 1) reconstruction of masked
inputs [55]; 2) contrastive learning similar to that in SimCLR [17];
3) a combination of the first two. For example, VIME [66] utilizes
autoencoders to reconstruct corrupted table inputs. SCARF [6] ran-
domly selects and replaces certain features with corresponding
empirical marginal distributions to construct different views of the
same sample. We argue that contrastive learning methods similar
to that in SCARF [6] are not applicable to large-scale unlabeled
cross-table pre-training tasks. Assuming the existence of a priori
true labels for these unlabeled samples, such contrastive learning
methods are highly likely to distance samples with the same labels,
especially for tables with unrich sample labels.We aremore inclined
to believe that methods like masked language modeling (MLM) and
masked image modeling (MIM) have greater potential. Therefore, in
this work, for the first time, we formalize this series of approaches
as masked table modeling (MTM) tasks. Additionally, we propose a
novel masked table modeling method that combines semantic cues
from table headers, which is more suitable for learning cross-table
knowledge.

3 PRELIMINARY

3.1 Problem Formulation

For a given tabular data 𝐷 = (x𝑖 , 𝑦𝑖)𝑛𝑖=1 where 𝑛 refers to the num-
ber of samples. x𝑖 = {x𝑐𝑎𝑡

𝑖
, x𝑛𝑢𝑚
𝑖

} where x𝑐𝑎𝑡
𝑖

= {𝑥1
𝑖
, 𝑥2
𝑖
, . . . , 𝑥𝑎

𝑖
}

denotes all 𝑎 categorical features, and x𝑛𝑢𝑚
𝑖

∈ R𝑏 denotes all 𝑏

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

emb1 emb2 mask embmemb4 mask ……

C3emb

+ +

Adaptive Transformer Encoder

Projector Head Masked Table Modeling Head

Calculate Self-supervised Loss
gender …… monthly

income

male …… 3000

is the embedding for the name in column iCiemb

monthly
income pool

tokenize&
embedding

emb is the embedding for each feature

gender
is

male
pool

phrase

Input Processor

Feature
Embedding

Downstream Task

Header
Embedding Zero Zero Zero Zero Zero

+ + + + ++

……

TabPretNet

CLS

cat num

x1,1 x1,m

ID

1

2

....

....

xn,1 xn,m
……

monthly
income pool

3000

Element-wise
multiply

normalization

C5emb

Telephone Classification

Coffee Quality Data

Breast Cancer Dataset

BIRDS 525 SPECIES

Train one by one

Backbone

L×

Figure 2: The architecture of the proposed CT-BERT. The number of rows and columns of the tables in TabPretNet (Details in

Section 4) varies. First we use the input processor to accept these heterogeneous tables (Details in Section 5.1). Then, we use the

L-layer transformer encoder to model the feature interactions (Details in Section 5.2). The obtained hCLS representations are
used for prediction or pre-training task learning (Details in Section 5.4&5.3). In CT-BERT, we propose self-supervised masked

table modeling and supervised contrastive learning to adapt to labeled and unlabeled scenarios, respectively. For self-supervised

masked table modeling task (supervised contrastive learning task see Figure 3), we mask some proportion of features (gray

features in the figure) and replace them with a shared, learnable vector. The pre-training task aims at recovering these masked

features based on the retained features.

numerical features. 𝑦𝑖 ∈ {1, 2, . . . ,𝑇 } where 𝑇 refers to the total
classes of labels. All samples share the same table header descrip-
tions (column names) C = {𝑐1, 𝑐2, . . . , 𝑐𝑎+𝑏 }. Our goal is to find the
best possible prediction function 𝑓𝜃 to model the mapping between
features and labels:

𝑓𝜃 (x𝑖 ;C) = 𝑦𝑖 , (1)

where 𝜃 refers to all trainable parameters of the function 𝑓 .

3.2 Pre-training then Fine-tuning Paradigm in

Tabular Domain

Given a generic architecture, often called a backbone such as Trans-
former, and projection head for mapping to specific tasks, the model
is first pre-trained on a large dataset by self-supervised or unsuper-
vised tasks (e.g., Contrastive Learning or MLM). The individual fea-
ture columns of the dataset {x𝑐𝑎𝑡 , x𝑛𝑢𝑚} are converted to the input
format x𝑖 = {e𝐶𝐿𝑆 , e1, e2 ..., e𝑎+𝑏 }, which is sent to the Transformer
model, and the model is further optimized using self-supervised
or unsupervised objectives. Then, in the downstream task-specific
fine-tuning stage, the pre-trained backbone module is retained, the
pre-trained projection head is discarded and the classification head
for the new task is constructed, and the output e𝐶𝐿𝑆 is used for
multi-classification and optimized via cross-entropy loss [68], etc.

4 TABPRETNET: A LARGE-SCALE SEMANTIC

TABULAR DATABASE

In recent years, the field of cross-table pre-training has been rel-
atively underexplored. One major challenge lies in the lack of a

clean and high-quality tabular dataset. Just as the proposal of Im-
ageNet [18] has greatly propelled the advancement of computer
vision representation learning and influenced various other do-
mains, such as self-supervised learning and transfer learning, a
similar catalyst is needed for the domain of tabular representation
learning. Therefore, in this work we contribute a large-scale se-
mantic tabular database, which we called TabPretNet, to better
train our CT-BERT. TabPretNet is a large-scale tabular database
with high quality built on various public tabular dataset websites
and through our strict data cleaning. These tabular datasets are
collected from OpenML1, UCI2, CATALOG3, and Kaggle4. We have
open-sourced TabPretNet5 and hope to facilitate future research
in the field of tabular representation learning.

With the advent of the Big Data era, the proliferation of data-
base technologies has led to an explosion of tabular data on the
Internet. These numerous tabular datasets can help more complex
and powerful models and algorithms to learn more general tabu-
lar representations. And representations are the standard signal
linking many machine learning applications in this day and age.
This means that more novel AI techniques can be made accessible
to databases, such as allowing large language models (e.g., Chat-
GPT [1]) to understand databases. However, the quality of tables in
Internet databases is inconsistent greatly, which can significantly
impact the learning performance of models. For example, column
name information in some tabular datasets is usually anonymized
1https://www.openml.org/
2https://archive.ics.uci.edu/datasets
3https://catalog.data.gov/dataset
4https://www.kaggle.com/
5TabPretNet

https://drive.google.com/file/d/1-2m1tyejUV5_bZduqZw1ZXS1BUSkhzVl/view?usp=drive_link

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

or unclear to avoid compromising privacy (e.g., named f1, f2, etc.),
which may lose important semantic knowledge to better under-
stand the tabular data. In addition to this, some tabular datasets also
suffer from too many missing values, redundant feature columns,
lack of consistent formatting, etc. Therefore, in this work, we spent
a lot of time filtering and cleaning the tabular data from the Internet
database. Specifically for each table, our data cleaning includes the
following steps:
(1) Check the semantic degree of the column names for each feature.
For example, the column names {user_age, weight,monthly_income}
have high semantic information, while the column names {f1, f2, xyz}
have almost no semantic information. We compute the cumulative
semantic relevance score for each table. In our cleaning protocol,
we discard such tables that have less than 50% of the features having
actual semantic information in the column names.
(2) Check the missing values. For example, the datasets with more
than 40% missing values are discarded. Because too many miss-
ing values can easily lead to biased or inaccurate results. For the
retained tables, we fill the missing values with the plural of the
corresponding column.
(3) For categorical features in the tables, we aim to restore them to
their original textual values. As for numerical features, we employ
min-max normalization. This is done to mitigate the impact of in-
consistent measurement units across different tables (e.g., kilograms
vs. grams).
(4) For the table with labels and more than 100 features, feature
filtering based on Random Forest importance [28] is performed,
and the features with lower importance ranking are discarded.

At present, TabPretNet has contained about 17G datasets, in-
cluding approximately 1000 labeled datasets and 1000 unlabeled
datasets. Usually high-quality and semantically rich labeled datasets
are more difficult to obtain, while unlabeled tabular datasets are
easier to obtain.

Therefore, in supervised pre-training, the theoretical upper bound
of model performance is expected to be influenced by the quantity
of available labeled tabular datasets at the data level. In contrast,
self-supervised pre-training has the potential for a higher upper
bound of performance. According to what is suggested in previous
research [55], contrastive learning will not be adapted to tables that
are not rich in label classed due to the chances of sampling negative
samples are low, which is why we propose a novel self-supervised
masked table modeling (MTM) pre-training approach. We believe
that the contrastive learning-based pre-training approach will be
more suitable for lightweight labeled scenarios, and the upper limit
of the model will be determined by the number of its available tab-
ular datasets. On the other hand, the self-supervised pre-training
approach may require a large amount of data for model training
and would also theoretically have more room for improvement.

5 METHODS

Previously proposed table pre-training methods [4, 6, 55, 66] have
all been pre-trained on an individual tabular task dataset. As a
result, these pre-trained models exhibit notably poor generaliza-
tion performance on downstream tasks involving other tables. In
this section, we detail our proposed novel cross-table pre-training
framework CT-BERT, which improves the generalization ability of

pre-trained models by learning shareable knowledge across differ-
ent tables. The overall architecture is provided in Figure 2.

As we have discussed before, cross-table pre-training needs to
address three key challenges C1-C3.

For C1, in Section 5.1 we propose to use a natural language-like
approach to process the input of heterogeneous tables and enhance
cross-table transfer learning by leveraging semantic knowledge in
the schema. For C2, in Section 5.2 we use an adapted transformer
encoder [56] without positional encoding to model feature-level
interactions. ForC3, in Section 5.3 we propose a novel masked table
modeling (MTM) self-supervised pre-training task for large-scale
unlabeled dataset scenarios and a contrastive learning-based super-
vised pre-training task for lightweight labeled dataset scenarios,
respectively. At last, in Section 5.4 we introduce fine-tuning the
pre-trained model on downstream tasks.

5.1 Input Processor on Heterogeneous Tables

Feature columns among tables from diverse domains often exhibit
significant variations. Therefore the previous works [24, 50] often
use the table-specific feature extractor which is also called "fea-
ture tokenizer" in their literature. This greatly hinders the model
to perform cross-table learning. In CT-BERT, we analyze that the
table is essentially a multimodal structured data, which contains
both text (e.g., column names and discrete categorical values) and
continuous values. Based on this observation, we use a natural
language-like approach and combine the column name schema in-
formation to convert all features into a uniformly formatted feature
phrase, e.g. [column name] is [value]. This design has two advan-
tages. First, our model can accept inputs from heterogeneous

tables without any table-specific operation. This serves as a
necessary condition for enabling cross-table pre-training. Second,
the knowledge learned from pre-training can be maximized

to transfer between similar features by semantic informa-

tion in the schema across different tables. For example, gender
features are recorded in both tables. In one table, the column name
is gender and the value is "male", and in the other table, the column
name is "sex" and the value is "man". Our model can encode the
two feature phrases "gender is male" and "sex is man" into two dis-
tance proximity embeddings (e.g., cosine similarity is high) based
on semantic information.

For each feature phrase, we convert it into a low-dimensional
embedding and employ it to model the feature interaction in the
subsequent phase. The right part of Figure 2 illustrates the details
about how we handle the categorical and numerical features sepa-
rately to get the feature embedding.

Categorical Feature. For each sample 𝑥𝑖 , each discrete category
will have a corresponding text description (e.g., 1 for a man, 2 for a
woman). We concatenate the column name and the original categor-
ical description to form a feature phrase. Then, we use a pre-trained
BERT [20] model to tokenize the phrase and generate the corre-
sponding embedding for each token, where the pre-trained BERT
model contains generic semantic knowledge. Further, we pool these
token embeddings of the j-th feature into one feature embedding
e𝑗
𝑖
∈ R𝑑 . In our experiments, we tried average, self-attention [48]

and other pooling methods. See Section 6.4 for ablation experiments

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

on these pooling strategies. Among them, the average pooling strat-
egy performs the best. Therefore, without a special explanation,
average pooling is used by default.

Numerical Feature.We know that at least for now pre-training
token embedding of continuous values is ineffective [24]. For nu-
merical features, we similarly process their column names as for
categorical features to obtain the header embedding cj ∈ R𝑑 . Then
wemultiply the normalized numerical value with the corresponding
header embedding to get the feature embeddinge𝑗

𝑖
= 𝑥

𝑗
𝑖
× cj ∈ R𝑑 .

Note that the normalization of the numerical values is important
here, as it helps the knowledge to transfer better across different
tables. Because the same numerical features may have different
measurement units across different tables. For example, the unit
of height in one table is a meter, but in another table may be a
centimeter.

We note that previous works [36, 59] have also tried to combine
column names to convert each sample into a sequence of text tokens
and the subsequent learning is built on the token-level. We think that
such token-level interactions are more suitable for extracting tex-
tual semantic information from tables (e.g., TableQA task [27, 65]),
but are not well-suited for our target column prediction task. For
example, in a "work" column with the value "associate professor"
in a table, this feature will first be converted into three token em-
beddings: [𝑤𝑜𝑟𝑘], [𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒] and [𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑜𝑟]. The subsequent
model will learn the relationship between [𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒] token and
[𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑜𝑟] token in the same column, which is unreasonable. The
experimental results in Section 6.4 also validate this observation.
However, in our design, one column corresponds to one feature
embedding, and the subsequent model learns at the feature-level.
This is a straightforward but effective enhancement. At the same
time, for tables with a large number of features, such a design can
optimize computational efficiency and memory space usage.

5.2 Feature Interaction

There is no inherent order relationship among different columns in
a table. In other words, tables possess permutation invariance in
the column dimension. Previous tabular modeling works [24, 36]
often overlooked this aspect by directly employing the transformer
architecture [56]. Therefore, we have made certain modifications
to the standard transformer encoder to adapt it to tabular data.
Specifically, we 1) discard positional encoding and 2) use a shared-
parameter fully connected feed-forward network at each trans-
former encoder block. Finally, our adapted transformer encoder
block contains two sub-layers: a multi-head self-attention layer, and
a shared-parameter fully connected feed-forward layer. In addition,
a residual connection [53] is done for each sub-layer, followed by
layer normalization [5]. The multi-headed self-attentive mechanism
is the key to modeling feature interactions. It learns the relation-
ship between features through Query, Key, and Value matrices. It
is calculated as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (H𝑙) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑖 , . . . , ℎ𝑒𝑎𝑑ℎ))W𝑂 , (2)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(H𝑙W𝑄

𝑖
,H𝑙W𝐾

𝑖 ,H
𝑙W𝑉

𝑖), (3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇

√
𝑑

)V, (4)

where H𝑙 ∈ R𝑛×𝑑 is the input of the l-th layer; W𝑂 ∈ R𝑑×𝑑 is
parameter matrix; W𝑄

𝑖
, W𝐾

𝑖
and W𝑉

𝑖
∈ R𝑑×𝑑ℎ𝑒𝑎𝑑 . 𝑑ℎ𝑒𝑎𝑑 = 𝑑

ℎ
is the

dimension of each attention head. Inspired by BERT [20], we add a
special classification token (e𝐶𝐿𝑆 ∈ R𝑑) to the first position of the
input sequence in each layer. This special token is used as the aggre-
gate sample representation and is then served for the subsequent
pre-training and downstream tasks. As described in Section 5.1, we
can obtain the processed feature embeddings E = {e1, e2, . . . , e𝑎+𝑏 }
from the raw tabular data . So we have the first layer of input
H0 = [e𝐶𝐿𝑆 , E]. Finally, we can model the higher-order feature
interactions step by step through the following calculation:

H𝑙+1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(Ĥ + 𝑙𝑖𝑛𝑒𝑎𝑟 (Ĥ)), (5)

Ĥ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(H𝑙 +𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (H𝑙)) . (6)

5.3 Pre-training Across the Tables

Our work is the first to explore large-scale cross-table pre-training.
Supervised and self-supervised pre-training are twomajor approaches
in the field of deep learning. As described in Section 4, we con-
tributed TabPretNet a cross-table pre-training dataset which is
collected from various domains and includes approximately 1000
labeled tables and 1000 unlabeled tables. In this work, based on the
nature of the collected dataset TabPretNet, we simultaneously
explore supervised and self-supervised cross-table pre-training ap-
proaches. Firstly, for the relatively more easily learnable labeled tab-
ular datasets, we propose a randomly subsampled supervised con-
trastive learning approach to adapt to the cross-table pre-training
task. Secondly, for large-scale unlabeled tabular datasets, some
studies have discussed the limitations of contrastive learning-based
methods in unlabeled tabular scenarios [6, 55]. So in order to fully
leverage the potential of shareable knowledge within unlabeled tab-
ular data, in CT-BERT, we propose a novel masked table modeling
(MTM) self-supervised cross-table pre-training method.

Details of the two cross-table pre-training approaches are as
follows:

Supervised contrastive learning. In the labeled tabular sce-
nario, we observe that samples with the same labels tend to have
similar feature sets. Based on this observation we make a bold
hypothesis: powerful representation should model the invariant
factors of feature sets with the same label. We, therefore, propose
a random overlapping subsampling method to construct positive
and negative samples in contrastive learning.

Figure 3 illustrates how we randomly sample subsets and divide
positive and negative pairs. Specifically, for each row (x𝑖 , 𝑦𝑖) we
randomly sample 𝑘 feature subsets {s1

𝑖
, s2
𝑖
, . . . , s𝑘

𝑖
} and set all their

labels to 𝑦𝑖 . There will be a partial overlap of features between sub-
sets. In this way, feature subsets with the same label form positive
pairs, and subsets with different labels form negative pairs. Overall
contrastive loss is:

L𝐶𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 (X, y) =
1
|𝐵 |

∑︁
𝑖∈𝐵

1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖)

Ψ(z𝐶𝐿𝑆𝑖 , z𝐶𝐿𝑆𝑝), (7)

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

Random Partition

Backbone

Input Processor

Transformer Encoder

CLS

Projector Head

Calculate supervised contrastive loss

n

ID

1

2

....

col1
x1,1

x2,1

....

xn,1

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

colm
x1,m

x2,m

....

xn,m

lab

1

2

....

1....

overlapoverlap

n

ID

1

2 x2,p1 x2,p2

xn,p2 xn,p3xn,p1

x2,p3

lab

1

2

1

colp1

x1,p1

colp2

x1,p2

colp3

x1,p3

Positives Positives

Nagetives Nagetives

Positive and Negative Sample

Figure 3: An illustration of contrastive learning supervised

pre-training. For each row, we randomly sample K feature

subsets (features with the same color in each row in the

figure indicate that they are in the same feature subset), and

each feature subset inherits the label of the original row.

Note these feature subsets may overlap with each other. The

feature subsets with the same label are positive samples, and

those with different labels are negative samples.

Ψ(z𝐶𝐿𝑆𝑖 , z𝐶𝐿𝑆𝑝) = − log(
exp(𝑠𝑖𝑚(z𝐶𝐿𝑆

𝑖
, z𝐶𝐿𝑆𝑝)/𝜏)∑

𝑖′∈𝐵 exp(𝑠𝑖𝑚(z𝐶𝐿𝑆
𝑖

, z𝐶𝐿𝑆
𝑖′)/𝜏)

), (8)

where 𝐵 is the set of samples in a batch; 𝑃 (𝑖) = {𝑝 |𝑝 ∈ 𝐵, 𝑝 ≠ 𝑖, 𝑦𝑖 =

𝑦𝑝 }. The previous tabular contrastive learning work SCARF [6]
focused only on constructing different views of the same samples,
simply treating all different samples as negative pairs. This only
applies when the sample label classes are very rich such that the
sample labels in a batch are almost all different. Compared to the
tabular vertical fixed-partitioned contrastive learning method [59],
our method can learn more robust sample representations in richer
feature subsets by random sampling.

Self-supervised MTM. For large-scale unlabeled scenarios, we
propose a novel masked table modeling (MTM) self-supervised
cross-table pre-training task. On each sample row in all tables,
we mask some percentage of features, and then reconstruct them
based on the retained features. We argue that if the model is able
to successfully reconstruct the masked features from the retained
features, then the model is able to learn the underlying relationships
between features that can be transferred as shareable knowledge
between different tables with similar feature columns, which will
eventually indirectly bring closer the representations of samples
with similar feature relationships.

The middle part of Figure 2 shows the overview of our self-
supervised MTM pre-training method, which can be divided into
three steps. First step we select the features that are masked.

Given an input table, we first convert all features of each sam-
ple into feature embeddings, as described in Section 5.1. Then we
mask approximately 𝑝𝑚𝑎𝑠𝑘 features for each row (𝑝𝑚𝑎𝑠𝑘 is set to
35% in our experiments and further ablation results are shown
in Section 6.5.2). Specifically, we generate a binary mask vector
m = [𝑚1,𝑚2, . . . ,𝑚𝑎+𝑏] ∈ {0, 1}𝑎+𝑏 where 𝑚 𝑗 is randomly sam-
pled from a Bernoulli distribution with probability 𝑝𝑚𝑎𝑠𝑘 . The

"1" in m indicates a masked feature and "0" indicates keeping
the original feature. Second step we replace the masked fea-

tures with a shared, learnable vector e𝑚𝑎𝑠𝑘 ∈ R𝑑 , which is

also called mask token. Note that here we will add additional
header embedding, which is obtained by pooling the text token
embeddings of the corresponding column name, for each mask
token. Because there is no order relationship between the columns
in tables. Here the role of header embeddings is like the posi-
tion embeddings in masked language modeling (MLM) [49] and
masked image modeling (MIM) [21, 63] tasks. Third step we re-

construct these masked features.We feed the masked sample
row x = {e𝑗 |𝑚 𝑗 = 0} ∪ {e𝑚𝑎𝑠𝑘 + c𝑗 |𝑚 𝑗 = 1} into the L-layer trans-
former encoder to get the encoded representations H = {hj}𝑎+𝑏

𝑗=1 .
For the masked numerical features, we pass it through a numeri-
cal projection matrix M𝑛𝑢𝑚

𝑝𝑟𝑜 ∈ R𝑑×1 and then calculate the mean
square error loss with the original feature values. For the masked
categorical features, we pass it through a categorical projection
matrix M𝑐𝑎𝑡

𝑝𝑟𝑜 ∈ R𝑑×𝑑 and then compute the cosine similarity with
the original feature embedding e𝑗 . Here the feature embedding
e𝑗 is calculated in the same way as section 5.1 but with the col-
umn names removed. We formulate the masked table modeling
pre-training loss as follows:

L𝑚𝑎𝑠𝑘𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 (X) =
1
|𝐵 |

∑︁
𝑖∈𝐵

Φ(xi, ei, zi), (9)

Φ(xi, ei, zi) =
1

𝑁𝑛𝑢𝑚

𝑁𝑛𝑢𝑚∑︁
𝑗=1

(𝑥 𝑗
𝑖
−𝑧 𝑗

𝑖
)2 + 1

𝑁𝑐𝑎𝑡

𝑁 𝑐𝑎𝑡∑︁
𝑗 ′=1

(1−𝑠𝑖𝑚(e𝑗
′

𝑖
, z𝑗

′

𝑖
))

(10)
where B is the set of samples in a batch; 𝑧 𝑗

𝑖
= h𝑗

𝑖
M𝑛𝑢𝑚
𝑝𝑟𝑜 ; zj

′

i =

h𝑗
′

𝑖
M𝑐𝑎𝑡
𝑝𝑟𝑜 ; 𝑁𝑛𝑢𝑚 refers to the number of numerical features; 𝑁𝑐𝑎𝑡

refers to the number of categorical features. We do not compute
the traditional cross-entropy loss for categorical features because
the same category in the same feature column may be inconsis-
tently labeled in different tables, which can lead to confusion when
cross-table pre-training. For example, for the "gender" column, one
table may have "man" corresponding to label "1" and "woman"
corresponding to label "2", while another table might be the ex-
act opposite, with "man" corresponding to label "2" and "woman"
corresponding to label "1".

Rather than a completely random mask strategy, we think that
the proportion of numerical and categorical features masked can
be adjusted according to the downstream task. When the down-
stream scenario is a regression task, the model needs to predict
a continuous value. In this case, the pre-training task to predict
the masked numerical features will be more helpful. Similarly, for
classification downstream tasks, it will be biased to mask more
categorical features. The downstream tasks in our experiment are
mainly classification prediction, so we set the mask ratio of cate-
gorical features and numerical features to 7:3 during pre-training.
The overall mask rate is 35%.

5.4 Fine-Tuning on Downstream Tabular Tasks

After cross-table pre-training, we discarded the original projection
header and added a new task layer on the Transformer encoder. We
then fine-tuned the parameters on the downstream task datasets.

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

The downstream scenario in our experiments is mainly classifica-
tion prediction tasks. So, we employ a simple linear classifier as
the task layer. We use softmax [30] to calculate the probability of
each label category and use cross-entropy loss as our empirical
supervised loss.

L𝑡𝑎𝑠𝑘 (X, y) = − 1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑗=1

𝑦𝑖 𝑗 log(𝑓𝜃 (x𝑖)), (11)

where label 𝑦𝑖 uses one-hot encoding; 𝑇 is the total number of all
label categories.

6 EXPERIMENTS

In this section, we evaluate the effectiveness and superiority of CT-
BERT on several benchmark tabular datasets. Specifically, we con-
ducted extensive experiments to demonstrate the following two
points:

• How does our backbone, which can accept heterogeneous
table inputs, compare with the current state-of-the-art tab-
ular neural network framework when faced with a fixed
single table downstream task without pre-training?

• (key) Our large-scale cross-table pre-training can help
improve the effectiveness of downstream tasks by self-
supervised masked table modeling pre-training in large-
scale unlabeled scenarios and supervised contrastive learn-
ing pre-training in lightweight labeled scenarios, respec-
tively.

6.1 Experimental Setup

6.1.1 Datasets. The experimental dataset consists of two parts:
upstream large-scale cross-table pre-training datasets and down-
stream tabular tasks for evaluating the effectiveness of our model
and pre-training.

Large-scale cross-table pre-training dataset: We collected
more than 2000 high-quality datasets with semantic information
of column names and performed some data cleaning, including
1000 labeled datasets and 1000 unlabeled datasets. We call this
dataset TabPretNet and describe it in detail in Section 4.

Public downstream tabular tasks: We selected 15 common
and high-quality tabular datasets from OpenML-CC18 [8] to evalu-
ate the effectiveness of our model and pre-training method. These
downstream datasets contain both binary and multi-class classifi-
cation tasks. We included the details and source of each dataset in
Table 4 & 5 in the Appendix 8.2.

6.1.2 Competing Methods. We conduct experiments on the follow-
ing "shallow" (eg. tree-based) and neural network-based methods
to show the efficacy and efficiency of CT-BERT on tabular learning.

Shallow baselines:

• Logitic Regression [62] is a linear classification algorithm
that models the relationship between input variables and a
binary outcome using a logistic function. It is widely used
due to its simplicity, interpretability, and ability to handle
large datasets efficiently.

• Xgboost [16] is an advanced implementation of gradient
boosting algorithms. It has gained great popularity in ma-
chine learning competitions (e.g., Kaggle) and has been con-
sidered the dominant approach to modeling tabular data
for a long time.

• LightGBM [31] is another gradient boosting tree frame-
work. It employs a novel approach called "Gradient-based
One-Side Sampling" (GOSS) to achieve faster training speeds
and lower memory usage.

Neural network-based baselines:

• MLP (Multilayer Perceptron) [23] is a basic feed-forward
fully connected artificial neural network architecture, but
is considered a competitive neural network approach on
tabular data.

• TransTab [59] is a newly proposed tabular framework that
combines column description and table cells as the raw
input to a transformer and is the current state-of-the-art
tabular model.

• FT-Transformer [24] is a adaptation of the Transformer
architecture [56] for the tabular data (Feature Tokenizer +
Transformer).

• TabNet [4] uses sequential attention to simulate the process
of tree decision-making, enabling interpretability and more
efficient learning on tabular data.

• VIME [66] is a self- and semi-supervised learning frame-
work specifically designed for tabular data.

• SAINT [50] is a newly proposed hybrid deep learning ap-
proach to solving tabular data problems and performs at-
tention over both rows and columns.

• DCN-v2 [58] is an improved version of Deep & Cross Net-
work (DCN), and claimed to be able to automatically and
efficiently captures feature interactions in tabular data.

• AutoInt [51] is a click-through prediction, which is a type
of structured data task, model. It uses a multi-head self-
attentive neural network to learn the high-order feature
interactions of input features.

6.1.3 Metrics. We follow previous work [24, 59] using AUC [37]
as the main evaluation metric and improve on it using 5-fold cross-
validation [3] as the final result. Note that within each fold of the
training set, we partitioned 20% as a validation set, which was
utilized for hyperparameter selection and early stopping. For the
sake of fairness, we employed the identical dataset splitting setting
for all baseline algorithms and CT-BERT on all downstream task
datasets.

6.1.4 Implementation Details. For details of all baseline implemen-
tations see Appendix 8.1, while the settings for all baselines remain
consistent across all experiments unless otherwise specified. In the
data pre-processing phase, we scale numerical features to [0, 1] by
min-max normalization in all methods. For classification features,
we use ordinal codes to represent them in all baselines. However,
note that in our CT-BERT, we use the raw textual values of the
categorical features in order to better exploit their semantic infor-
mation. CT-BERT uses a 4-layer transformer, where the embedding
dimension of the token is 128, the hidden dimension of the middle
dense layer is 256, and the self-attention module has 8 heads. We

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

Table 1: Comparison of CT-BERT with other shallow and NN-based methods. CT-BERT_NoPT is our supervised learning from

scratch method (without pre-training), CT-BERT_P_M is our self-supervised MTM pre-training then fine-tuning method, and

CT-BERT_P_S is our supervised contrastive learning pre-training then fine-tuning method.

Dataset Shallow Methods NN-Based Methods Our Methods
LR XGB LightGBM DCN-v2 AutoInt MLP FT-Trans Saint TabNet VIME TransTab CT-BERT_NoPT CT-BERT_P_M CT-BERT_P_S

pc4 0.8621 0.7264 0.7938 0.8532 0.8741 0.8031 0.8990 0.8957 0.8449 0.8442 0.8882 0.8816 0.8837 0.9030

kc1 0.8004 0.6488 0.6623 0.7161 0.7710 0.7894 0.7957 0.8459 0.7917 0.7901 0.7945 0.7950 0.7846 0.7880
car 0.7393 0.9950 0.9134 0.9896 0.9664 0.9961 0.9981 0.9588 0.9713 0.9921 0.9039 0.9997 0.9996 0.9998

wilt 0.7098 0.8883 0.9249 0.9894 0.9601 0.6406 0.6978 0.9744 0.9934 0.9134 0.9850 0.9930 0.9946 0.9937
higgs 0.6346 0.6730 0.6935 0.6435 0.6237 0.6430 0.7063 0.7324 0.5474 0.6354 0.7284 0.6610 0.7002 0.7348

adult 0.8360 0.7894 0.8314 0.8923 0.8879 0.9023 0.9161 0.9152 0.9003 0.9128 0.9134 0.9150 0.9155 0.9143
climate 0.9449 0.7217 0.7014 0.8549 0.9097 0.4048 0.9584 0.8145 0.7951 0.8647 0.9345 0.9164 0.9204 0.9376
credit-g 0.7251 0.6755 0.7152 0.6912 0.7253 0.7370 0.7675 0.7817 0.6630 0.7659 0.7600 0.7701 0.7703 0.7867

vehicle 0.8912 0.9286 0.9305 0.9125 0.8883 0.9277 0.9231 0.8053 0.7877 0.7752 0.9178 0.9291 0.9306 0.9197
segment 0.9703 0.9929 0.9923 0.9746 0.9881 0.9858 0.9913 0.9809 0.9633 0.9752 0.9922 0.9908 0.9919 0.9930

amazon 0.5315 0.5231 0.6012 0.5564 0.5372 0.5461 0.5099 0.5550 0.5190 0.5081 0.5551 0.5698 0.6092 0.5313
satimage 0.9722 0.9889 0.9501 0.8023 0.9530 0.9863 0.9867 0.9838 0.9831 0.9126 0.9868 0.9856 0.9897 0.9888
phishing 0.9786 0.9669 0.9810 0.9389 0.9789 0.9943 0.9936 0.9923 0.9911 0.9913 0.8296 0.9949 0.9949 0.9942

mice-protein 0.9973 0.9993 0.9989 0.8894 0.9112 0.9997 0.9987 0.9973 0.9477 0.9579 0.9998 0.9981 0.9999 0.9998
cylinder-bands 0.7498 0.8197 0.7706 0.7465 0.7203 0.7070 0.8303 0.7415 0.5640 0.6916 0.8537 0.7629 0.8581 0.8715

mean 0.8229 0.8225 0.8307 0.8301 0.8463 0.8042 0.8648 0.8650 0.8175 0.8354 0.8695 0.8775 0.8895 0.8904

use a dropout of 0.3 in all attention layers and feed-forward lay-
ers. We choose ReLU for all activation functions. The supervised
pre-training method is trained on 1000 labeled datasets, and the
self-supervised pre-training method is trained on all 2000 datasets.
We train CT-BERT using Adam [33] optimizer with a learning rate
in {5e-5, 1e-4, 3e-4}, where the learning rate of the fine-tuning phase
will be smaller than that of the pre-training phase. Batch size is in
{64, 128, 256}. We use a pre-trained BERT-base-uncased [20] model
on Hugging Face6 to obtain token embeddings that are rich in
semantic information. In the pre-training phase, we set the max-
imum training epoch to 500 for both the supervised contrastive
learning and the self-supervised masked table modeling tasks. In
the fine-tuning phase, the maximum training epoch is 200 and the
patience value is set to 20 for early stopping. Experiments were
conducted with 8 GPU V100, Intel(R) Xeon(R) Gold 6240 CPU @
2.60GHz, and 128GB RAM. We use the DeepSpeed [44] framework
for parallel computation acceleration. DeepSpeed offers a range of
optimization techniques, including model parallelism, data paral-
lelism, and mixed-precision training. It can improve the efficiency
of our large-scale cross-table pre-training which occupies a large
portion of the computational resources in our experiments.

6.2 Overall Performance

In this section, we report the overall performance of CT-BERT. The
results are shown in Table 1.

6.2.1 Supervised Learning from Scratch. As can be seen in Ta-
ble 1, CT-BERT_NoPT outperforms all the existing works on stan-
dardized benchmarking datasets on average. Although TransTab [59]
greatly outperforms the baseline method, CT-BERT_NoPT is still
slightly higher than TransTab on avg. 0.8%. We analyze this due
to the fact that CT-BERT_NoPT models at the feature-level, while
TransTab [59] models at the token-level, which may be not reason-
able on tabular data. And the experimental results also show that
TransTab’s performance drops abruptly on some datasets, such as
car and phishingweb. In addition, we found that CT-BERT_NoPT
6https://github.com/huggingface

is also comparable to FT-transformer [24] and SAINT [50]. We an-
alyze and believe that CT-BERT_NoPT is essentially the same as
these methods on single tabular data, which extract features from
table data and then model feature interactions using a similar trans-
former encoder. However, the difference is that CT-BERT_NoPT can
receive input from heterogeneous tables. This gives our approach a
natural advantage in cross-table pre-training which is detailed in
Section 5.3.

6.2.2 Cross-table Pre-training. We mainly compare with the super-
vised learning from scratch of CT-BERT.

Supervised: In labeled scenarios, our supervised contrastive
learning cross-table pre-training model CT-BERT_P_S has achieved
state-of-the-art average performance. As evident from the results
in Table 1, CT-BERT_P_S outperforms the supervised training from
scratch CT-BERT_NoPT by avg. 1.29% and achieves better perfor-
mance on 10 out of 15 diverse downstream tabular tasks. Moreover,
we observed that CT-BERT_P_S achieves a comparatively com-
petitive performance than masked table modeling self-supervised
cross-table pre-training method on average. We analyze that the
reason lies in CT-BERT_P_S’s ability to fully leverage the label
information, enabling the model to learn more powerful sample
representations. And self-supervised methods may require a larger
amount of training data to achieve significant advancements.

Self-supervised: In large-scale unlabeled scenarios, as can be
seen in Table 1, our masked table modeling self-supervised cross-
table pre-training model CT-BERT_P_M outperforms the super-
vised training from scratch CT-BERT_NoPT by avg. 1.2%. And
CT-BERT_P_M achieves better performance on 13 out of 15 di-
verse downstream tabular tasks. It is noteworthy that our cross-
table pre-trained model exhibits significant improvements on the
cylinder-bands, higgs, and Amazon datasets. We hypothesize that
this result can be attributed to the presence of certain tables in the
pre-training data that bear close relevance to these downstream
tasks. Therefore, we have reason to believe that masked table mod-
eling cross-table pre-training approach on ultra-large-scale datasets

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

Table 2: Few-shot 5-fold AUC (%) on 6 datasets from the

OpenML-CC18 [8].

Our Methods Datasets Meanvehicle pc4 adult phishing cylinder car

shot=5

CT-BERT_NoPT 0.6771 0.7459 0.7561 0.7389 0.6315 0.7527 0.7170
CT-BERT_P_M 0.7020 0.7825 0.8131 0.8435 0.6498 0.7260 0.7528
CT-BERT_P_S 0.7126 0.7684 0.8778 0.8596 0.7246 0.8629 0.8010

shot=10

CT-BERT_NoPT 0.7440 0.7721 0.8082 0.8471 0.6694 0.8681 0.7848
CT-BERT_P_M 0.7514 0.7607 0.8499 0.9023 0.6652 0.8651 0.7991
CT-BERT_P_S 0.7690 0.7598 0.8797 0.9424 0.7202 0.9186 0.8316

shot=20

CT-BERT_NoPT 0.8312 0.7695 0.8312 0.9253 0.6875 0.9591 0.8341
CT-BERT_P_M 0.8028 0.7826 0.8601 0.9512 0.6825 0.9464 0.8376
CT-BERT_P_S 0.8227 0.7601 0.8805 0.9546 0.7734 0.9743 0.8609

is a highly promising approach on the path toward a comprehensive
universal table model.

CT-BERT is the first attempt at such large-scale cross-table
pre-training. Our experimental results demonstrate the fea-

sibility of learning shareable knowledge across different ta-

bles through cross-table pre-training, which helps the model

achieve better generalization on diverse downstream tasks.

Both supervised pre-training and self-supervised pre-training meth-
ods achieved good performance.We believe that supervised training
requires higher dataset requirements but may be better suited for
specific scenarios, while self-supervised training has the potential
for greater scalability through larger pre-training datasets in the
future.

6.3 Few-shot Learning

As widely recognized, a significant advantage of pre-trained models
is that they still work well when the downstream task dataset is
relatively scarce, commonly referred to as few-shot learning [67].
This capability stems from that the model can learn rich shareable
knowledge from large-scale upstream datasets. In the domain of
tabular tasks, there are numerous practical application scenarios
characterized by limited data resources, such as medical diagno-
sis [35]. In such contexts, the exceptional few-shot learning ability
of pre-trained models becomes invaluable. Therefore, we conducted
extensive experiments to explore the practical effectiveness of CT-
BERT in the context of few-shot learning settings.

Specifically, for each downstream classification tabular data, we
randomly sampled 5/10/20 samples from each class to construct
three new 5-shot/10-shot/20-shot tabular datasets. We then per-
formed both supervised training from scratch and pre-training then
fine-tuning on these new few-shot datasets. The experimental re-
sults are presented in Table 2. The self-supervised and supervised
pre-trained models significantly outperformed the baseline of learn-
ing from scratch in the few-shot learning setting. In 5-shot case, CT-
BERT_P_S outperforms the training from scratch CT-BERT_NoPT
by avg. 8.4%, and CT-BERT_P_M also surpassed by avg. 3.58%.
Furthermore, we can observe that the pre-trained model exhibits a
greater improvement in performance when the number of samples
is less. The improvement is most significant in the 5-shot case while

Table 3: Ablation studies of different pooling strategies (mean

AUC %)

Pooling Strategy CT-BERT_NoPT CT-BERT_P_M CT-BERT_P_S

No-Pooing 0.8556 0.8630 0.8633
Max 0.8695 0.8883 0.8774
Average 0.8775 0.8895 0.8904

Self-Attention 0.8681 0.8733 0.8710

is relatively weaker in the 20-shot case. We analyze this as a rea-
sonable phenomenon. The shareable knowledge learned through
cross-table pre-training is relatively more valuable when the train-
ing data is less. In conclusion, all these experimental results strongly
demonstrate the tremendous potential of cross-table pre-training
in the context of few-shot learning.

6.4 Ablation Studies

In order to demonstrate that modeling at the feature level is more
effective than previously used word token-level modeling in tabular
data, we conducted ablation experiments. Specifically, we do not
pool all word token embeddings into one feature embedding but
feed them directly into the transformer layer for learning. The exper-
imental result is presented in Table 3 and proves that feature-level
modeling is significantly better thanword token-level modeling. Ad-
ditionally, we further evaluated different pooling strategies: average
pooling, max pooling, and self-attention [56] pooling. The results
are shown in Table 3. Among these strategies, average pooling gives
the best results. We tried to analyze the reason that max-pooling
may not be able to distinguish between different feature values in
some cases. For example, the max value may come from the word
token embedding in the column name, which is the same for all the
sample rows. The self-attention mechanism may be too complex
relative to this simple information extraction. And average pooling
can do this task simply and efficiently.

6.5 Further Analysis

6.5.1 Convergence Curves. Figure 4 compares the convergence
curves of two paradigms: "training from scratch" and "pre-training
then fine-tuning". We observed that pre-training and then fine-
tuning leads to faster convergence and better results. This demon-
strates that CT-BERT has learned beneficial shareable knowledge
for downstream tasks through cross-table pre-training. Further-
more, pre-training and then fine-tuning can achieve reasonable
results within a short period of time. This significantly improves
the efficiency of executing downstream tasks that do not require
high precision. It also partially alleviates the longer training time is-
sue associated with neural network training compared to traditional
tree-based machine learning methods [4].

6.5.2 Masking Ratio. Previous research [26] has suggested that
a higher mask rate is required to achieve better performance in
masked image modeling tasks, whereas a lower mask rate is suf-
ficient for masked language modeling tasks. In this experiment,
we further investigate the impact of mask rates on masked table
modeling tasks, as shown in Figure 5. We found that the model
has high performance between 30% and 50%, with an excessively
high mask rate leading to a steep descent, while an excessively low

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

Figure 4: The convergence curves of two paradigms: training from scratch and pre-training then fine-tuning. The vertical line
represents the epoch that reaches the maximum validation set auc.

Figure 5: Masking ratio settings in our self-supervised

masked tablemodelingmethod.We tried 9 differentmasking

ratios, ranging from 15% to 95% with an interval of 10. The

best results are achieved at a 35% masking ratio.

mask rate leads to a more moderate descent. We analyze that table
data exhibits high information density, where a change in a single
feature value can significantly alter the meaning of a sample. So too
high a mask rate will cause the model to have difficulty in learning
the correct feature relationships.

6.5.3 Hyperparametric Sensitivity Analysis. We analyzed the sensi-
tivity of the number of randomly sampled partitions and the learn-
ing rate. We randomly selected some datasets to experiment with
the CT-BERT_P_S method. The experimental results are shown in
Fig. 6. The settings are consistent with Section 6.1.4 except for the
corresponding hyperparameters. It can be seen that CT-BERT is
robust to the hyperparameters.

7 CONCLUSION

With CT-BERT and TabPretNet, we hope to initiate the scaled cross-
table pre-training for the community of database and data mining
community. Speaking humbly, we deem CT-BERT as a pioneer work
to scale tabular data pre-training that it works in either a supervised
and/or self-supervised manner. We empirically demonstrate that
facilitating the pre-training procedure across large-scale tabular
datasets indeed offers decent efficacy benefits.

(a) Comparison of results with differ-
ent number of randomly sampled par-
titions

(b) Comparison of results with different
learning rate

Figure 6: Sensitivity analysis for hyperparameters.

Perceiving it through the lens of the development of current
LLMs, our model is still small (50M), which is roughly the same
size as BERT-base [20] in spite of CT-BERT being the largest-scaled
pre-trained model in tabular modeling thus far. We think that for
tabular data pre-training, we are still in the era of the BERT model
in NLP tracking back a few years. That is to say, the size of the
large model and the volume of the dataset still fall far behind the
development of the LLMs, such as ChatGPT or its other rivals [54].

On the bright side, the volume of available tabular data is truly
gigantic — wherever a database system is deployed there will be
tabular data — but perhaps much more decentralized than the text
and vision data. In the future, we hope to explore even further
scaling CT-BERT and adapting it to more diversified data domains.

8 APPENDIX

8.1 Baseline architecture and implementation

The setup of our baseline follows the previous work [59] and in-
cludes the following methods:

• Logistic Regression: Use the default setting of the package
Scikit-Learn. The maximum number of estimators is set to
1000.

• XGBoost: Implemented based on the XGBoost package. We
set the maximum number of estimators in {50, 100, 300}
and the max depth in {5, 8, 10}.

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

• LightGBM: Implemented based on the LightGBM. We set
the maximum number of estimators in {50, 100, 300} and
the max depth in {5, 8, 10}.

• MLP: Dense layers with hidden dimensions {256, 256}.
Dropout with a rate of 0.1 is used. They are trained with
batch size ∈ {16, 32, 64, 128}, learning rate ∈ {5e-5, 1e-4,
1e-3}, and early stopping patience of 5 with 100 maximum
epochs.

• TabNet: Use the official implementation with the default
recommended parameters7. Trained with batch size ∈ {16,
32, 64, 128}, learning rate ∈ {1e-4, 1e-3, 2e-2}, 𝑛𝑎, 𝑛𝑏 ∈
{8, 16, 64, 128}, 𝛾 ∈ {1.3, 1.5, 1.8}, categorical embedding
dimension ∈ {1, 8, 16} and early stopping patience of 5 with
100 maximum epochs.

• DCN-v2: Use the implementation by paper [24]8. The num-
ber of cross is 2. The dropout rate for the feedforward com-
ponent is 0.1. MLP part has two dense layers of dimension
{256, 128}. Trained with batch size ∈ {16, 32, 64, 128}, learn-
ing rate ∈ {5e-5, 1e-4, 1e-3}, and early stopping patience of
10 in 100 maximum epochs.

• AutoInt: Use the implementation by paper [24]8. The at-
tention layer number is set to 2. The attention head number
is set to 2. MLP part has two dense layers of dimension
256, 128; dropout deactivated; trained with batch size ∈ {16,
32, 64, 128}, learning rate ∈ {5e-5, 1e-4, 1e-3}, and early
stopping patience of 10 in 100 maximum epochs.

• SAINT: Use the official implementation9. The embedding
size is 32 dimensions. 6 transformer layers are used. The
number of heads of attention is ∈ {4, 8}. The dropout rate is
0.1 in all attention layers and feed-forward layers. Inside the
self-attention layer, the q, k, and v vectors are of dimension
16, and in the intersample attention layer, they are of size
64.

• FT-Transformer: Use the official implementation10. Feed-
forward component has 128 dimensions. 2 transformer lay-
ers are used. The number of heads of attention is ∈ {2, 4, 8}.
The dropout rate is 0.1.

• VIME: We reproduce it by PyTorch [41] based on the orig-
inal official implementation11. We train the model on all
training data taking mask rate 0.3, batch size 128, learning
rate 1e-4, and 10 epochs. During the fine-tuning phase, we
add a classifier after the encoder with three dense layers of
100 dimensions and ReLU activations. Trained with batch
size ∈ {16, 32, 64, 128}, learning rate ∈ {5e-5,1e-4,1e-3}, and
early stopping patience of 10 in 100 maximum epochs.

• TransTab: Use the official implementation12. Token em-
bedding has 128 dimensions. 2 transformer layers are used.
The number of heads of attention is 8. We train the model
on all downstream task data taking batch size 64, learning
rate 1e-4, dropout rate 0, and early stopping patience of 10
in 100 maximum epochs. We run the pre-training, transfer

7https://github.com/dreamquark-ai/tabnet
8https://github.com/Yura52/tabular-dl-revisiting-models
9https://github.com/somepago/saint
10https://github.com/Yura52/rtdl
11https://github.com/jsyoon0823/VIME
12https://github.com/RyanWangZf/transtab

learning, and vanilla supervised training methods in the
paper, and take the highest score.

8.2 Details of the downstream task datasets

The downstream task datasets are mainly from the OpenML-CC18
benchmark [8].

Table 4: Statistical Information of DownstreamTask Datasets

Dataset Name Samples Numerical Categorical label classes

pc4 1458 37 0 2
kc1 2109 21 0 2
car 1728 0 6 4
wilt 4839 5 5 2
higgs 2000 24 0 2
adult 48842 6 8 2
climate 540 20 0 2
credit-g 1000 7 13 2
vehicle 846 18 0 4
segment 2310 19 0 7
amazon 2000 0 9 2
satimage 6430 36 0 6
phishing 11055 0 30 2

mice-protein 1080 77 4 8
cylinder-bands 540 18 21 2

Table 5: Downstream Task Datasets Source

Dataset Name Link

pc4 https://www.openml.org/d/1049
kc1 https://www.openml.org/d/1067
car https://archive.ics.uci.edu/dataset/19/car+evaluation
wilt https://archive.ics.uci.edu/dataset/285/wilt
higgs https://www.openml.org/d/44422
adult https://archive.ics.uci.edu/dataset/2/adult
climate https://archive.ics.uci.edu/dataset/252/climate+model+simulation+crashes
credit-g https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
vehicle https://archive.ics.uci.edu/dataset/149/statlog+vehicle+silhouettes
segment http://archive.ics.uci.edu/dataset/50/image+segmentation
amazon https://www.openml.org/d/44712
satimage https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
phishing https://archive.ics.uci.edu/dataset/327/phishing+websites

mice-protein https://archive.ics.uci.edu/dataset/342/mice+protein+expression
cylinder-bands https://archive.ics.uci.edu/dataset/32/cylinder+bands

CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

REFERENCES

[1] 2022. https://openai.com/blog/chatgpt.
[2] Ahmad Ahmadov, Maik Thiele, Julian Eberius, Wolfgang Lehner, and Robert

Wrembel. 2015. Towards a hybrid imputation approach using web tables. In 2015
IEEE/ACM 2nd International Symposium on Big Data Computing (BDC). IEEE,
21–30.

[3] Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto, and Sandro
Ridella. 2012. The ‘K’in K-fold cross validation. In 20th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN). i6doc. com publ, 441–446.

[4] Sercan Ö Arik and Tomas Pfister. 2021. Tabnet: Attentive interpretable tabular
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
6679–6687.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[6] Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. 2021. Scarf: Self-
supervised contrastive learning using random feature corruption. arXiv preprint
arXiv:2106.15147 (2021).

[7] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015. Tabel:
Entity linking in web tables. In The Semantic Web-ISWC 2015: 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part I. Springer, 425–441.

[8] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hut-
ter, Michel Lang, Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren.
2017. Openml benchmarking suites. arXiv preprint arXiv:1708.03731 (2017).

[9] Casper Solheim Bojer and Jens Peder Meldgaard. 2021. Kaggle forecasting
competitions: An overlooked learning opportunity. International Journal of
Forecasting 37, 2 (2021), 587–603.

[10] Antoine Bordes, Xavier Glorot, JasonWeston, and Yoshua Bengio. 2014. A seman-
tic matching energy function for learning with multi-relational data: Application
to word-sense disambiguation. Machine Learning 94 (2014), 233–259.

[11] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[13] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. Proceedings of the
VLDB Endowment 1, 1 (2008), 538–549.

[14] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. Proceedings of the
VLDB Endowment 1, 1 (2008), 538–549.

[15] Michael J Cafarella, Alon Y Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene
Wu. 2008. Uncovering the Relational Web.. In WebDB. Citeseer, 1–6.

[16] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[17] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[19] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[22] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. 2017. Matching web tables with knowledge base entities: from
entity lookups to entity embeddings. In The Semantic Web–ISWC 2017: 16th
International Semantic Web Conference, Vienna, Austria, October 21–25, 2017,
Proceedings, Part I 16. Springer, 260–277.

[23] Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment 32, 14-15 (1998), 2627–2636.

[24] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021.
Revisiting deep learning models for tabular data. Advances in Neural Information
Processing Systems 34 (2021), 18932–18943.

[25] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction.
arXiv preprint arXiv:1703.04247 (2017).

[26] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[27] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TaPas: Weakly supervised table parsing via
pre-training. arXiv preprint arXiv:2004.02349 (2020).

[28] Tin Kam Ho. 1998. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 8
(1998), 832–844. https://doi.org/10.1109/34.709601

[29] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. 2020. Tabtrans-
former: Tabular data modeling using contextual embeddings. arXiv preprint
arXiv:2012.06678 (2020).

[30] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[31] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[32] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised
contrastive learning. Advances in neural information processing systems 33 (2020),
18661–18673.

[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

[35] Igor Kononenko. 2001. Machine learning for medical diagnosis: history, state of
the art and perspective. Artificial Intelligence in medicine 23, 1 (2001), 89–109.

[36] Guang Liu, Jie Yang, and Ledell Wu. 2022. PTab: Using the Pre-trained Language
Model for Modeling Tabular Data. arXiv preprint arXiv:2209.08060 (2022).

[37] Jorge M Lobo, Alberto Jiménez-Valverde, and Raimundo Real. 2008. AUC: a
misleading measure of the performance of predictive distribution models. Global
ecology and Biogeography 17, 2 (2008), 145–151.

[38] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex:
statically vetting android apps for component hijacking vulnerabilities. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security.
229–240.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[40] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[41] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[42] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[44] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[45] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. 2013.
Relation extraction with matrix factorization and universal schemas. In Proceed-
ings of the 2013 conference of the North American chapter of the association for
computational linguistics: human language technologies. 74–84.

[46] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. 2015. Matching html
tables to dbpedia. In Proceedings of the 5th international conference on web intelli-
gence, mining and semantics. 1–6.

[47] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szy-
manowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek. 2021.
Detecting formal thought disorder by deep contextualized word representations.
Psychiatry Research 304 (2021), 114135.

[48] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155 (2018).

[49] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and
Douwe Kiela. 2021. Masked language modeling and the distributional hypothesis:
Order word matters pre-training for little. arXiv preprint arXiv:2104.06644 (2021).

[50] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and
Tom Goldstein. 2021. Saint: Improved neural networks for tabular data via row
attention and contrastive pre-training. arXiv preprint arXiv:2106.01342 (2021).

https://openai.com/blog/chatgpt
https://doi.org/10.1109/34.709601
https://arxiv.org/abs/2303.08774

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao

[51] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[52] Ningyuan Sun, Xuefeng Yang, and Yunfeng Liu. 2020. Tableqa: a large-scale
chinese text-to-sql dataset for table-aware sql generation. arXiv preprint
arXiv:2006.06434 (2020).

[53] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. 2017.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[55] Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. 2021. Subtab: Subsetting
features of tabular data for self-supervised representation learning. Advances in
Neural Information Processing Systems 34 (2021), 18853–18865.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[57] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. 2018. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint arXiv:1804.07461 (2018).

[58] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. , 1785–1797 pages.

[59] Zifeng Wang and Jimeng Sun. 2022. Transtab: Learning transferable tabular
transformers across tables. arXiv preprint arXiv:2205.09328 (2022).

[60] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[61] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. 2013.
Connecting language and knowledge bases with embedding models for relation
extraction. arXiv preprint arXiv:1307.7973 (2013).

[62] Raymond E Wright. 1995. Logistic regression. (1995).
[63] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,

Qi Dai, and Han Hu. 2022. Simmim: A simple framework for masked image
modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9653–9663.

[64] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[65] Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.
arXiv:2005.08314 [cs.CL]

[66] Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. 2020. Vime:
Extending the success of self-and semi-supervised learning to tabular domain.
Advances in Neural Information Processing Systems 33 (2020), 11033–11043.

[67] Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu, Chien-Sheng Wu, Yao Wan,
Philip S Yu, Richard Socher, and Caiming Xiong. 2020. Discriminative nearest
neighbor few-shot intent detection by transferring natural language inference.
arXiv preprint arXiv:2010.13009 (2020).

[68] Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for training
deep neural networks with noisy labels. Advances in neural information processing
systems 31 (2018).

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2005.08314

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Key Idea behind CT-BERT
	1.3 Our Methodology: CT-BERT
	1.4 Contributions

	2 Related Works
	2.1 Representation Learning
	2.2 Models for Tabular Data
	2.3 Self-supervised pre-training

	3 Preliminary
	3.1 Problem Formulation
	3.2 Pre-training then Fine-tuning Paradigm in Tabular Domain

	4 TabPretNet: A Large-Scale Semantic Tabular Database
	5 Methods
	5.1 Input Processor on Heterogeneous Tables
	5.2 Feature Interaction
	5.3 Pre-training Across the Tables
	5.4 Fine-Tuning on Downstream Tabular Tasks

	6 Experiments
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Few-shot Learning
	6.4 Ablation Studies
	6.5 Further Analysis

	7 Conclusion
	8 APPENDIX
	8.1 Baseline architecture and implementation
	8.2 Details of the downstream task datasets

	References

