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Abstract

Collaborative learning (CL) is a distributed learning frame-
work that aims to protect user privacy by allowing users to
jointly train a model by sharing their gradient updates only.
However, gradient inversion attacks (GIAs), which recover
users’ training data from shared gradients, impose severe pri-
vacy threats to CL. Existing defense methods adopt differ-
ent techniques, e.g., differential privacy, cryptography, and
perturbation defenses, to defend against the GIAs. Neverthe-
less, all current defense methods suffer from a poor trade-
off between privacy, utility, and efficiency. To mitigate the
weaknesses of existing solutions, we propose a novel defense
method, Dual Gradient Pruning (DGP), based on gradient
pruning, which can improve communication efficiency while
preserving the utility and privacy of CL. Specifically, DGP
slightly changes gradient pruning with a stronger privacy
guarantee. And DGP can also significantly improve commu-
nication efficiency with a theoretical analysis of its conver-
gence and generalization. Our extensive experiments show
that DGP can effectively defend against the most powerful
GIAs and reduce the communication cost without sacrificing
the model’s utility.

1 Introduction
Collaborative learning (CL) (Shokri and Shmatikov 2015)
is a distributed learning framework, where multiple users
train a model locally and share their gradients among the
peers or to a centralized server. CL claims to protect user
privacy since users do not need to share their local (pri-
vate) data directly. However, recent studies reveal that gra-
dients can be used to recover the original training data in-
formation via gradient inversion attacks (GIAs) (Zhu, Liu,
and Han 2019; Geiping et al. 2020). To against GIAs, a
large number of studies have been proposed, where they
leverage the advanced privacy protection techniques, such
as differential privacy (DP) (Dwork, Roth et al. 2014), cryp-
tography (Bonawitz et al. 2017; Hardy et al. 2017; Gilad-
Bachrach et al. 2019) and perturbation defense (Gao et al.
2021; Sun et al. 2021; Scheliga, Mäder, and Seeland 2022).
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However, none of the existing defense methods could take
care of all privacy, utility, and efficiency difficulties in the
CL framework.

For example, traditional defenses such as DP and
cryptography-based methods strike a balance among pri-
vacy protection, model performance, and efficiency simul-
taneously (Dwork, Roth et al. 2014; Bonawitz et al. 2017;
Hardy et al. 2017; Gilad-Bachrach et al. 2019). To address
this challenge, various perturbations-based methods have
been proposed (Gao et al. 2021; Sun et al. 2021; Scheliga,
Mäder, and Seeland 2022). But they all rely on auxiliary
optimization modules to reduce certain privacy leakage and
cannot defend against all GIAs in practice (see Sec. 6.2 for
details). For instance, perturbation-based defense methods
(i.e., Precode (Scheliga, Mäder, and Seeland 2022), Sote-
ria (Sun et al. 2021)) can effectively defend against passive
GIAs (Geiping et al. 2020; Wang et al. 2020; Wei et al.
2020b), but fail to work against the active GIAs (Boenisch
et al. 2021; Pan et al. 2022), which is considered as the state-
of-the-art attack method. On the contrary, the classic Top-
k based gradient pruning method (Lin et al. 2017; Alistarh
et al. 2018) is generally ineffective for enhancing privacy
against passive GIAs, and corresponding defenses (e.g., Out-
post (Wang, Hugh, and Li 2023)) offer limited protection.
But we find that they significantly outperform recent de-
fense methods under the active attack. Tab. 1 gives a de-
tailed experimental result for this observation. The new find-
ings inspire us to seek a more practical and effective defense
against both passive and active GIAs. In this paper, we pro-
pose a new gradient pruning-based method, Dual Gradient
Pruning (DGP). Dual gradient pruning is a novel gradient
pruning technique, which removes top-k1 largest gradient
parameters and the bottom-k2 smallest gradient parameters
from the local model. DGP leads to a strong privacy protec-
tion against both passive GIAs and active GIAs.

To measure the level of protection, we present the theoret-
ical analysis of reconstruction error from pruned gradients,
showing that the error is proportional to gradient distance.
So removing larger gradient parameters can rapidly enlarge
the gradient distance, resulting in a significant reconstruc-
tion error. However, removing many larger parameters will
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significantly impact the model’s utility. Thus, to improve
the pruning ratio, which is essential to robustness against
active attack (Boenisch et al. 2021; Fowl et al. 2021), we
also remove smaller gradient parameters. In this way, our
method could significantly mitigate GIAs without affecting
the model’s utility.

We conduct extensive experiments to evaluate our
method. The quantitative and visualized results show that
our design can effectively make recovered images unrecog-
nizable under different attacks, and reduce the communica-
tion cost. Our contributions are as follows: 1) We revisit gra-
dient pruning to show its potential for mitigating GIAs; 2)
We propose an improved gradient pruning strategy to pro-
vide sufficient privacy guarantee while balancing the model
accuracy and the system efficiency; 3) We conduct extensive
experiments to show that our design outperforms existing
defense methods w.r.t. privacy protection, model accuracy,
and system efficiency.

2 Related Work
Collaborative learning (Shokri and Shmatikov 2015) is con-
sidered to be a privacy-preserving framework for distributed
machine learning as the training data is not directly out-
sourced. However, the emerging of GIAs (Zhu, Liu, and Han
2019; Fan et al. 2020; Zhao, Mopuri, and Bilen 2020; Geip-
ing et al. 2020; Qian and Hansen 2020; Boenisch et al. 2021;
Yin et al. 2021; Zhu and Blaschko 2020; Fowl et al. 2021)
shatters this conception. It has been proven that the attacker
(e.g., a curious server) can easily recover the private data
from gradient to a great extent. The privacy guarantee of col-
laborative learning urgently needs to be strengthened.

Traditional Defense. Traditionally, there are two ap-
proaches to construct privacy-preserving collaborative
learning: using DP to disturb gradients (Dwork, Roth et al.
2014; Abadi et al. 2016; Geyer, Klein, and Nabi 2017; Yu
et al. 2019; Chen, Wu, and Hong 2020) or using crypto-
graphic tools to perform secure aggregation (Danner and Je-
lasity 2015; Bonawitz et al. 2017; Hardy et al. 2017; Mo-
hassel and Zhang 2017; Sun, Qian, and Chen 2021; Gilad-
Bachrach et al. 2019). DP (Dwork, Roth et al. 2014) is a pop-
ular and effective privacy protection mechanism by adding
random noise to the raw data, but it is well known that the
noise introduced by DP can greatly degrade the model accu-
racy when meaningful privacy is enforced (Wei et al. 2020a).
Cryptographic-based secure aggregation can guarantee both
privacy and accuracy simultaneously, but it incurs expen-
sive computation and communication costs (Kairouz et al.
2021). Using the shuffle model (Liu et al. 2020; Sun, Qian,
and Chen 2021) can only provide anonymity. Moreover, it
totally changes the system model of collaborative learning
since an additional semi-trusted third party is introduced to
work cooperatively with the server.

Perturbation Defense. Recently, researchers have begun
to explore the possibility of constructing new gradient per-
turbation mechanisms to better balance privacy and accu-
racy. (Sun et al. 2021) proposed Soteria, a scheme that per-
turbs the representation of inputs by pruning the gradients
of a single layer. (Gao et al. 2021) proposed ATS, an op-
timized training data augmentation policy by transforming

original sensitive images into alternative inputs, to reduce
the visibility of reconstructed images. (Scheliga, Mäder, and
Seeland 2022) presented Precode to extend the model archi-
tecture by using variational bottleneck (VB) (Alemi et al.
2016) to prevent attackers from obtaining optimal solutions
to reconstructed data. These works focus on the semi-honest
setting (Zhu, Liu, and Han 2019; Wang et al. 2019; Wei et al.
2020b) but fail to protect privacy when an active server mod-
ifies the model to launch GIAs (Fowl et al. 2021). Moreover,
these works suffer from high computation costs or a huge
communication burden.

Gradient Pruning Defense. From an independent re-
search domain, gradient pruning has been commonly used
for saving communication bandwidth. The most common
pruning strategy is Top-k selection, which retains top k gra-
dient parameters with the largest absolute values (Lin et al.
2017; Alistarh et al. 2018). It has been widely proved that
gradient pruning provides very limited privacy protection
ability (Zhu, Liu, and Han 2019; Gao et al. 2021; Huang
et al. 2021; Sun et al. 2021; Scheliga, Mäder, and Seeland
2022) unless a high pruning ratio (e.g., removing 99% of the
gradients) is used at the cost of 10% accuracy drop (Huang
et al. 2021). However, we emphasize that this is misunder-
stood as they only consider the Top-k selection strategy and
it has never received an in-depth investigation in the field
of security. It is originally designed for improving system
efficiency, thus a direct application inherently suffers from
many weaknesses. Recently, (Wang, Hugh, and Li 2023)
proposed Outpost, a privacy-preserving method that com-
bines Top-k gradient pruning with adaptive noise addition.
However, our experiments indicate that Outpost cannot ef-
fectively defend against passive GIAs. In contrast, our work
shows that a slight modification can unleash the potential of
gradient pruning to provide a strong privacy guarantee, as
shown in Sec. 4.

3 Threat Model and Gradient Attacks
In this work, we consider a strong threat scenario, where an
active server, after receiving gradients from users, tries to re-
construct the local training data and is motivated to modify
model parameters in each iteration to strengthen the attack
effect. As will be shown in Sec. 5 and Sec. 6, our method
provides a theoretical guarantee against passive attacks and
empirical protection against active attacks. So we briefly dis-
cuss both kinds of attacks below.
Analytical Attack (Passive). Analytical attack exploits the
structure of the gradients to recover the inputs, such as using
gradient bias terms (Phong et al. 2017). Recently proposed
R-gap attack (Zhu and Blaschko 2020) exploits the recursive
relationship between gradient layers to solve the input. An
effective analytical attack depends on the specific structure
and parameters of gradients.
Optimization Attack (Passive). Optimization attack is
firstly proposed in (Zhu, Liu, and Han 2019), which approx-
imates the desired data (x,y) with dummy data (x∗,y∗) by
optimizing the euclidean distance between the gradients g∗
(generated by dummy data (x∗,y∗)) and the original gra-
dients ∇W (produced by real private data (x,y)) with L-
BFGS optimizer. (Geiping et al. 2020) proposed IG, opti-



mizing the cosine distance with Adam optimizer, and (Yin
et al. 2021) proposed GI, optimizing the Euclidean distance
with Adam optimizer. These methods are state-of-the-art
optimization attacks. Furthermore, recent works (Yin et al.
2020; Li et al. 2022) utilize GANs to generate data approx-
imating the input. However, these attacks are impractical as
they necessitate training GANs with vast amounts of data
that closely resemble private data.

Despite different optimizers can be used to achieve bet-
ter attack quality (Geiping et al. 2020; Wang et al. 2020;
Wei et al. 2020b), the existing attacks are all measured by
the distance between the virtual gradients g∗ and the origi-
nal gradients ∇W. We therefore propose a general defini-
tion for passive attacks to better evaluate their performance.
From Definition 1, for a given success probability (1− δ), a
smaller ε indicates a better attack strategy A.
Definition 1. A passive attack A is a (ε, δ)-passive attack,
if it satisfies:

P(E(DA(∇W,g∗)) ≤ ε) ≥ 1− δ. (1)
where P represents the probability, E represents the expec-
tation, DA is the distance (commonly instantiated with Eu-
clidean or cosine distance) estimated under A.
Active Server Attack. In this kind of attack, the server can
actively modify the global model to realize a better attack re-
sult rather than honestly executing the protocols (Boenisch
et al. 2021; Pan et al. 2022; Wen et al. 2022). Recently pro-
posed Rob attack (Fowl et al. 2021) adds imprint modules to
the model and uses the difference between the gradient pa-
rameters in adjacent rows of the imprint module to recover
the data, achieving the best attack effect in the literature.

4 Dual Gradient Pruning
4.1 Analysis of Gradient Pruning
We owe the failure of common Top-k gradient selection
methods to two reasons: 1) the distance between the Top-
k pruned gradient g and the real gradient∇W is small; and
2) large gradient parameters in ∇W also reveal label infor-
mation about user data. The first reason stems from the intu-
itive observation that when the perturbed gradient is close to
the true gradient, it becomes easier for the attacker to infer
sensitive information about the true gradient. And we give a
specific example to illustrate this point. In particular, Fig. 1
plots the recovery results of IG attack (in terms of PSNR
(↓), MSE (↑), LPIPS (Zhang et al. 2018) (↑), SSIM (Wang
et al. 2004) (↓) metrics) under various relative gradient dis-
tance ||∇W − g||2/||∇W||2 (measured in ratio). It is clear
from the figure that greater distance leads to worse recon-
struction for all metrics. To better support this observation,
we propose the following non-rigorous proposition.
Proposition 1. For any given input x and shared model W,
the distance between the recovered data x′ and the real data
x is bounded by:

||x− x′||2 ≥
||φ(x,W)− φ(x′,W)||2
||∂φ(x,W)/∂x||2

, (2)

where φ is the mapping from input to the gradient,
i.e., the reconstruction quality is limited by ||φ(x,W) −
φ(x′,W)||2 = ||∇W − g||2.

(a) PSNR (↓) (b) MSE (↑)

(c) SSIM (↓) (d) LPIPS (↑)

original 0% 17.77% 34.25% 53.67% 72.42%

(e) Visualization of original and reconstructed data at var-
ious ratios

Figure 1: Relationship between relative gradient distance
and reconstruction quality under IG (CIFAR10(Krizhevsky,
Hinton et al. 2009) with ResNet18 (He et al. 2016)).

Referring to the proof technique of Lemma 1 in (Sun
et al. 2021), we employ the first-order Taylor expansion in
our proof. The specific proof of the above proposition is
moved to the appendix due to space limit (the same here-
inafter). And we will present a more rigorous analysis in our
follow-up study. According to the above example and this
proposition, it is clear that the reconstruction error is pro-
portional to the gradient distance ||∇W − g||2, i.e., effec-
tive defense methods should enlarge the gradient distance
as much as possible. However, for the Top-k gradient se-
lection (Lin et al. 2017; Alistarh et al. 2018), the k largest
parameters are retained, making the gradient distance small
by nature. To explain the second reason, we consider a L-
layer perceptron model trained with cross-entropy loss for
classification. Let a column vector r = [r1, r2, . . . , rn] be
the logits (the output of the L-th linear layer) that input to
the softmax layer, the confidence score probability vector
is thus

[
er1∑
j erj

, er2∑
j erj

, · · · , ern∑
j erj

]
and the succinct form

of the cross-entropy loss becomes ℓ(x, y) = − log( ery∑
j erj

).

Focus on the L-th layer WLx+ bL = r, it is easy to find
∂ℓ(x, y)

∂bi
=

∂ℓ(x, y)

∂ri
· ∂ri
∂bi

=
∂ℓ(x, y)

∂ri
=

eri∑
j e

rj
− Ii=y,

and

∇WL =
∂ℓ(x, y)

∂r
· xT = [

∂ℓ(x, y)

∂r1
, · · · , ∂ℓ(x, y)

∂rn
] · xT .

For a given x (and so xt is fixed), the magnitude of certain
elements of the gradient matrix ∇WL (i.e., the i-th row) is
particularly large if i is the true label of the training data x

due to reason that |∂ℓ(x,y)∂ri
| =

∑
j ̸=i |

∂ℓ(x,y)
∂rj

|.



DGP

Original

Top-k

(a) Recovered data under IG

(b) ResNet18 on CIFAR dataset

Figure 2: Comparison between Top-k and DGP on privacy
and accuracy (20% of parameters are selected in Top-k).

To summarize, due to the above two reasons, we conclude
that common Top-k gradient selection cannot provide suffi-
cient protection for user data against passive optimization at-
tacks. From another point of view, a sufficient gradient prun-
ing ratio also plays an important role in defending against
active server attacks. As mentioned in Sec. 3, active attack-
ers can exploit the correspondence of partial gradient param-
eters to recover the real data. So, the gradient pruning will
directly destroy the relationship among gradient parameters
constructed by the active attacker. Intuitively, the higher the
pruning rate, the stronger the impact. As will be validated
in Sec.6, a high pruning rate can prevent the attacker from
obtaining useful gradient information.

4.2 Dual Gradient Pruning
Generally speaking, large gradient parameters of local
model need to be removed to make the gradient distance
larger, but the distance should also be appropriately bounded
to maintain high model accuracy. Moreover, it is also nec-
essary to delete gradient parameters to achieve a high prun-
ing ratio, which can reduce the input information that the
active server may retain on the gradient by modifying the
model and improve communication efficiency. Considering
the model performance, we choose to remove small gradi-
ent parameters to achieve this. With these observations, we
propose dual gradients pruning (DGP), a new parameter se-
lection strategy for gradient pruning. The users first layer-
wisely sort the absolute values of local gradient parame-
ters ∇W in the descending order. Let Tk1

(∇W) represent
the set of top-k1 percents of elements of ∇W, Bk2

(∇W)
represent the set of its bottom-k2 percents. Then the users
remove Tk1

(∇W) and Bk2
(∇W) from ∇W for gradient

pruning. A detailed illustration of DGP is shown in Alg. 1.
Note that we set p = k1/k2 as a hyperparameter to regu-

Algorithm 1: Dual Gradient Pruning (DGP).

Require:
Original gradient matrix ∇W, values of k1 and k2.

1: for l← 1 to L do
2: Search sets Tk1(∇Wl) and Bk2(∇Wl).
3: Obtain gl by removing the parameters in Tk1(∇Wl)

and Bk2(∇Wl) from ∇Wl.
4: end for
5: return Pruned gradient matrix g =

{
gi
}L

i=1
.

Algorithm 2: A Complete Illustration of Our Defense.

Require:
Initial model W0, value k1 and k2, total rounds T , total
users N .

1: Set e0 = 0.
2: for t← 0 to T − 1 do
3: for i← 1 to N do
4: The i-th user generates local gradient∇Wt,i.
5: Pt,i = ∇Wt,i + et,i.
6: gt,i = DGP(k1, k2,Pt,i)
7: et+1,i = Pt,i − gt,i

8: end for
9: Sever side aggregation:

10: Wt+1 = Wt − η
∑N

i=1 gt,i

N
11: end for
12: return Shared global model WT .

late the trade-off between privacy and accuracy. The authors
in (Lin et al. 2017) show that large gradient parameters are
more likely to have an impact on the model’s performance,
hence removing these large parameters will reduce model’s
accuracy. To reduce this negative impact and increase con-
vergence speed, we introduce the error feedback mechanism
(Karimireddy et al. 2019). In particular, at the iteration round
t, after user i obtaining his local gradient ∇Wt,i, he will
combine ∇Wt,i with an error term accumulated in the pre-
vious (t−1) rounds before performing the DGP. A complete
illustration of our method is shown in Alg. 2, and the steps
from et,i to et+1,i provide the implementation details of er-
ror feedback mechanism. We emphasize that although such
dual gradients pruning strategy is very simple, it can signif-
icantly mitigate GIAs without affecting the model accuracy.
Fig. 2(a) gives an example of ResNet18 showing the privacy
guarantee when k1 = 5%, k2 = 75%. Fig. 2(b) gives a com-
parison of model performance. The convergence analysis of
our method is shown in Sec. 5, and more experimental re-
sults can be found in Sec. 6.

5 Theoretical Analysis

This section presents the security analysis with regard to
passive GIAs, as well as the generalization and convergence
analyses of our method.



5.1 Assumptions
Following the literature studies in (Wilson et al. 2017;
Karimireddy et al. 2019), for a given L-layer centralized
model, we model the first (L − 1) layers as a robust fea-
ture extractor of any input sample. Thus, the function of this
model is characterized by f(x|W) = Wx+b, and the opti-
mization objective is the loss ℓ(x, y) (such as cross-entropy).
To facilitate analyses and following literature studies (Chen
et al. 2020; Dai et al. 2019; Karimireddy et al. 2019), the
assumptions about the smoothness of DGP and l, as well as
the variance of the stochastic gradient are employed.
Assumption 1. The pruning mechanism DGP(k1, k2, ·) is
Lipschitz, so the following conditions hold:

||∇W − DGP(k1, k2,∇W)||22
= ||DGP(0, 0,∇W)− DGP(k1, k2,∇W)||22 ≤ γ1||∇W||22,

where γ1 is a constant related to k1 and k2 and satisfies
(1−

√
1− k1 ∗ k2)2 < γ1 < 1.

Assumption 2. The objective function l : Rd → R has
a low bound l∗ and it is Lipschitz-smooth, i.e., for any x1,
x2, ||∇l(x1) − ∇l(x2)||2 ≤ K||x1 − x2||2 and l(x1) ≤
l(x2) + ⟨∇l(x2), x1 − x2⟩+ K

2 ||x1 − x2||22.
Assumption 3. The collaborative stochastic gradient
∇Wt,i (t = [0, T − 1], i = [1, N ]) is bounded, i.e.,
||∇Wt,i||22 ≤ G2, and the average aggregated gradient
∇Wt is the expectation of collaborative stochastic gradi-
ent ∇Wt,i, i.e., ∇Wt = E(∇Wt,i). Moreover, the vari-
ance between ∇Wt,i and ∇Wt is bounded: E||∇Wt,i −
∇Wt||22 ≤ σ2.

5.2 Security Analysis
When considering passive attacks, we prove that DGP
achieves a stronger privacy protection in the sense of Def-
inition 1.
Theorem 1. For any (ε, δ)-passive attackA, under the pres-
ence of DGP, it will be degenerated to (ε+

√
γ1||∇W||2, δ)-

passive attack ifDA is measured by Euclidean distance, and
degenerated to (ε + (1 − ε)

√
γ1, δ)-passive attack if DA is

measured by cosine distance.
Theorem 3 is based on Assumption 1 about DGP. It re-

veals that, with the same successful chance (1 − δ), DGP
weakens the passive attack A’s capability to obtain a better
estimation of the true ∇W. In particular, A’s estimation of
∇W is enlarged by

√
γ1||∇W||2 under Euclidean distance

and enlarged by (1− ε)
√
γ1 under cosine distance.

5.3 Convergence Guarantee
We start the convergence analysis by proving the general-
ization of DGP. The generalization analysis aims to quantify
how the trained model performs on the test data, and it is
achieved by analyzing the how DGP affects the properties of
the optima reached (without gradient pruning) (Karimireddy
et al. 2019; Wilson et al. 2017). For ease of expression, let
CL-SGD represent the training in CL with the SGD opti-
mizer. Based on Assumptions 1 and 3, the following Lemma
can be obtained.

Lemma 1. Let et =
∑N

i=1 et,i/N be the averaged accumu-
lated error among all users at iteration t, the expectation of
the norm of et is bounded, i.e.,

E||et||22 ≤
3γ1(2 + γ1)

2(1− γ1)2
G2. (3)

Note that the difference between the averaged pruned
gradient gt =

∑N
i=1 gt,i/N and the averaged collabora-

tive SGD gradient ∇Wt =
∑N

i=1∇Wt,i/N is simply
||
∑T−1

i=0 (∇Wt−gt)||22 = ||eT ||22. So the lemma above indi-
cates that the accumulated gradient difference between our
algorithm and CL-SGD is bounded. That said, the optima
reached by DGP and the optima reached by CL-SGD will
eventually be very close if the algorithm converge. Armed
with Lemma 2 and based on Assumptions 1, 2 and 3, we
demonstrate the convergence of the our algorithm.

Theorem 2. The averaged norm of the full gradient
∇l(Wt) derived from centralized training is correlated with
the our algorithm as follows:∑T−1

t=0 E||∇l(Wt)||22
T

≤ 4
l0 − l∗

ηT
+ 2Kη(G2 + σ2)

+ 4η2K2 3γ1(2 + γ1)

2(1− γ1)2
G2, (4)

where l0 is the initialization of l, and η is the learning rate.

The implication of Theorem 4 is that, with an appropriate
learning rate η, DGP converges similar to CL-SGD (slower
by a negligible term O( 1√

T
)), as shown in Corollary 1.

Corollary 1. Let η=(l0 − l∗)/KT (G2 + σ2), we have∑T−1
t=0 E||∇l(Wt)||22

T
≤ 6

√
K(l0 − l∗)(σ2 +G2)

T

+ O( 1
T
).

6 Experiments
6.1 Experimental Setup
We run the experiments with PyTorch by using one RTX
2080 Ti GPU and a 2.10 GHz CPU. For fair comparison,
we follow the setting of (Gao et al. 2021), using ten users
with the same data distribution. We assess model privacy
against various attacks and evaluate model performance on
CIFAR10 and CIFAR100, which is a common setting used
in many studies (Huang et al. 2021; Gao et al. 2021). We
follow (Huang et al. 2021; Jeon et al. 2021) to quantify
the privacy effect of defenses, i.e., visualizing the recon-
structed data and using learned perceptual image patch sim-
ilarity (LPIPS) and structural similarity (SSIM) to measure
the quality of the recovered data. A better defense should
have larger LPIPS (↑) and smaller SSIM (↓).
Attack methods. We evaluate DGP against IG, GI, R-gap,
and Rob attacks, which represent state-of-the-art passive and
active GIAs, as discussed in Sec. 3. We use the following
default attack settings: ResNet18 for IG , GI, Rob on CI-
FAR10. And we apply R-gap with CNN6 (Zhu and Blaschko



2020) on CIFAR10, as this analysis attack is only suitable
for models with simple structures. We provide additional at-
tack details, more privacy evaluations (e.g.more models and
datasets) and efficiency evaluation (computation costs and
communication costs) in the appendix.
Defense methods. We compare DGP with six state-of-the-
art defenses: Soteria, ATS, Precode, Outpost, DP and Top-k
pruning. Besides, we set CL-SGD as the baseline that adopts
no defense. Note that DP provides privacy guarantee by
adding noise to gradients in deep learning. We adhere to the
DP settings of (Sun et al. 2021) and use Gaussian noise with
standard deviation σ = 10−2. When quantifying the defense
performance of ATS, we not only evaluate the similarity be-
tween the raw images and the recovered data (ATS-T), but
also evaluate the similarity between the disturbed training
images (i.e., the real inputs) and the recovered data (ATS-
R). For Top-k and DGP, we set k = 20%, k1 + k2 = 80%
with the regulation hyperparameter p = 1/15. The rest de-
fenses remain the original settings.

6.2 Privacy Evaluation
Tab. 1 shows the defense performance with SSIM, and
LPIPS under four attacks. For each metric, we bold the best
result and underline the second best result (the same here-
inafter). The results show that ATS, Soteria, Precode, DP
perform poorly under Rob attack, while Top-k and Out-
post are vulnerable to IG attack and GI attack. In summary,
DGP can provide excellent privacy protection under all at-
tacks, while still retain high model accuracy. To perceptually
demonstrate the defense performance, we also visualize the
reconstructed images. Note that ATS-T refers to processed
raw data, while ATS-R represents the reconstructed raw data
in Fig. 3. Fig. 3(a) and Fig. 3(b) depict the recovered im-
ages under optimization attacks (e.g., IG, GI). We can find
that the attacker can still recover the outline of inputs with
ATS, Top-k and Outpost. Soteria, Precode, DP and DGP can
make the recovered images unrecognizable. Fig. 3(c) shows
the recovered images from the R-gap attack. We can see that
all defenses but ATS can well defend against R-gap because
ATS does not damage the gradient structure, validating that
a slight perturbation on gradients can mitigate the analytical
attacks easily. We are not able to provide the result of Pre-
code because its VB operation destroys the model structure,
making R-gap cannot be mounted. Fig. 3(d) plots the recov-
ered images from the Rob attack. It shows that ATS, Pre-
code, and Soteria fail to work and most inputs can be recon-
structed. Fig. 3(d) shows that DP also cannot defend against
Rob. This might be because the server calculates the inputs
by superimposing a large number of the malicious imprint
module’s gradient parameters. And the noise added to the
gradient follows a normal distribution, potentially canceling
out when aggregated in large numbers. However, DGP, Top-
k, and Outposts can effectively defend against Rob attack
because the gradients of all layers are pruned , including
those of the malicious imprint modules. However, we reit-
erate that the main weakness of the gradient pruning based
on Top-k selection is its vulnerability to optimization attacks
(e.g., IG, GI), as widely demonstrated in the literature (Gao
et al. 2021; Sun et al. 2021).

Original ATS-T Baseline ATS-R Soteria DGPPrecode DP Top-k Outpost

(a) IG, CIFAR10
Original ATS-T Baseline ATS-R Soteria DGPPrecode DP Top-k Outpost

(b) GI, CIFAR10

Original ATS-T Baseline ATS-R Soteria DGPDP Top-k Outpost

(c) R-gap, CIFAR10

DGP

Original ATS-T Baseline ATS-R Soteria

Precode DP Top-k Outpost

(d) Rob, CIFAR10

Figure 3: Data visualization on privacy evaluation by using
multiple gradient inversion attacks.

6.3 Accuracy Evaluation

Tab. 1 lists the accuracy of ResNet18 on CIFAR10 under
different defenses. Clearly, ATS, Soteria, Precode, Outpost,
Top-k and our method can achieve model accuracy simi-
lar to the unprotected baseline, while DP performs worst
as expected. Additionally, we evaluated more model perfor-
mance with DGP, including ResNet18, VGG11 (Simonyan
and Zisserman 2014), CNN6, LeNet (Zhu) (Geiping et al.
2020). And we further perform ablation experiments to ex-
plore the role of the error feedback mechanism. Fig. 4 shows
that the model performance of DGP with error feedback is
close to the baseline. However, DGP without error feedback
performs poorly and even fails to converge. This is because
accumulated errors result in a larger disparity between the
model’s update direction and the correct update direction.
Notably, this effect is mitigated in structurally complex mod-
els due to the presence of numerous redundant parameters.
Prior research (Molchanov et al. 2016) indicated that even if
these redundant parameters are not updated (i.e., their gra-
dient parameters are set to 0), their impact on model per-
formance is small. Our theoretical analysis and Fig. 4 show
that the error feedback mechanism can effectively correct
the negative effects caused by gradient pruning. And Top-
k method can also enjoy the benefit since it is also based
on pruning. However, further experiments (see details in the
appendix) validate that, to achieve a similar level of privacy
protection of DGP with 80% pruning, the pruning rate of
Top-k exceeds 95% and results in inferior accuracy.



Attack Metric Baseline ATS-R ATS-T Soteria Precode DP Top-k Outpost DGP

R-gap LPIPS 7.7E-4 1.3E-4 0.020 0.378 - 0.373 0.379 0.378 0.375
SSIM 0.965 0.989 0.870 0.252 - 0.259 0.249 0.250 0.248

IG
LPIPS 0.003 4.5E-4 0.108 0.190 0.371 0.268 0.029 0.088 0.316
SSIM 0.954 0.981 0.566 0.368 0.257 0.333 0.769 0.640 0.287

GI
LPIPS 0.004 0.003 0.094 0.201 0.453 0.343 0.045 0.111 0.382
SSIM 0.918 0.908 0.563 0.362 0.247 0.305 0.697 0.612 0.199

Rob
LPIPS 0.023 0.028 0.150 0.023 0.025 0.023 0.523 0.295 0.527
Min LPIPS 7.43E-15 5.03E-15 0.011 7.79E-15 5.52E-15 8.79E-07 0.231 0.195 0.243
SSIM 0.933 0.926 0.514 0.933 0.929 0.899 0.038 0.221 0.051
Max SSIM 1.000 1.000 0.931 1.000 1.000 1.000 0.224 0.310 0.365

Final Model Acc. 93.62% 93.14% 92.90% 92.83% 76.01% 93.44% 92.96% 93.40%

Table 1: Evaluation of the defense performance under four attacks.

Figure 4: Evaluation of model accuracy with different
datasets and models (EF denotes the error feedback).

(k1 + k2) p = k1/k2

48% 80% 96% 1/15 1/7 1/3
LPIPS 0.426 0.527 0.531 0.316 0.351 0.383
SSIM 0.146 0.051 0.029 0.287 0.250 0.234
Acc.(%) 93.42 93.40 92.91 93.40 93.21 92.82

Table 2: The impact of different parameters on DGP.

6.4 Further Discussions
Choice of k1, k2 and p for DGP. According to the analy-
sis in Sec. 4.1, active GIA is greatly impacted by (k1 + k2)
and optimization GIA is greatly affected by p = k1/k2. In
this concern, we use the Rob attack to evaluate the privacy
of DGP with different (k1 + k2) and IG attack to evaluate
DGP with different p. As shown in Tab. 2, larger pruning rate
(k1+ k2) leads to better privacy-preserving, but the model’s
performance suffers as a consequence. Furthermore, a larger
p, i.e., more large parameters are eliminated, can better de-
fend against optimization GIAs but impact accuracy.
Reducing download communication cost. Although DGP
provides a sufficient privacy guarantee as well as reduc-
ing upload cost, users’ download cost could still be ex-
pensive. This is because different users have different sets
of Tk1

(·) and Bk2
(·) when pruning their own local gradi-

ents, so the global model parameters will become dense af-
ter aggregation. We suggest aligned DGP (ADGP), an im-
proved scheme to align the selected gradients to further re-

duce download cost. Similar to DGP, for best privacy, each
user will still firstly identify his top-k1 gradients location set
Tk1

. Different from DGP, ADGP also wants to save users’
download comm. cost by ensuring that all users’ uploaded
pruned gradient parameters reside in the same location set.
This is achieved by randomly selecting a user, who identi-
fies a top-2k (k1 < k) location set T2k (represented with
a binary location matrix I) and broadcasts I to all other
users. Note that Tk1 ⊂ T2k is not necessarily true. Upon
receiving I, each user first discards gradient parameters in
Tk1 and then only transmits the k largest gradient parameters
whose locations belong to I. After aggregation, users only
need to download the global gradients’ parameters associ-
ated with I. We give the specific comm. cost in the appendix
and find that ADGP further reduces the overall comm. cost.
Moreover, with error feedback mechanism, it can also main-
tain the model performance, shown in Fig. 4. To summarize,
ADGP can provide better communication efficiency while
maintain model performance. We leave the work of investi-
gating the privacy-protection of ADGP as the future work.

7 Conclusion, Limitation, and Future
Contrary to the traditional belief that gradient pruning is not
a good choice to protect privacy, this paper proposes DGP, a
gradient pruning-based defense, to achieve a better trade-off
among privacy protection, model performance, and commu-
nication efficiency for collaborative learning. This finding
is built upon the analysis of how pruned gradients bound
the attacker’s recovery error and why large gradient param-
eters leak more private information and should be pruned.
By dual-pruning both large and small gradients, DGP guar-
antees theoretical convergence and better privacy protection
against passive attackers. By comparing to state-of-the-art
defenses, experimental results corroborate our theoretical
analysis, as well as empirically demonstrating the advantage
of DGP against active attackers. In terms of limitations, the
success of ADGP relies on selecting a reliable user to broad-
cast its locations. When this user becomes malicious, the
entire system will fail. In the future, we will provide more
rigorous and more comprehensive privacy analysis, investi-
gate the privacy property of ADGP under passive attacks,
explore the applications of (A)DGP in federated learning
and broaden our research to more domains like NLP.



Acknowledgements
Shengshan’s work is supported in part by the National Nat-
ural Science Foundation of China (Grant No.U20A20177)
and Hubei Province Key R&D Technology Special Inno-
vation Project under Grant No.2021BAA032. Shengqing’s
work is supported in part by Hubei Provincial Natural Sci-
ence Foundation Project (NO. 2023AFB342) and Open Pro-
gram of Nuclear Medicine and Molecular Imaging Key Lab-
oratory of Hubei Province (NO. 2022fzyx018). The work is
supported by HPC Platform of Huazhong University of Sci-
ence and Technology. Shengshan Hu is the corresponding
author.

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learn-
ing with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security (CCS’16), 308–318.
Alemi, A. A.; Fischer, I.; Dillon, J. V.; and Murphy, K. 2016.
Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410.
Alistarh, D.; Hoefler, T.; Johansson, M.; Konstantinov, N.;
Khirirat, S.; and Renggli, C. 2018. The convergence of spar-
sified gradient methods. In Proceedings of the 2018 Neural
Information Processing Systems (NeurIPS’18), 5977–5987.
Boenisch, F.; Dziedzic, A.; Schuster, R.; Shamsabadi, A. S.;
Shumailov, I.; and Papernot, N. 2021. When the Curious
Abandon Honesty: Federated Learning Is Not Private. arXiv
preprint arXiv:2112.02918.
Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.;
McMahan, H. B.; Patel, S.; Ramage, D.; Segal, A.; and
Seth, K. 2017. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS’17), 1175–1191.
Chen, C.-Y.; Ni, J.; Lu, S.; Cui, X.; Chen, P.-Y.; Sun, X.;
Wang, N.; Venkataramani, S.; Srinivasan, V. V.; Zhang, W.;
et al. 2020. Scalecom: Scalable sparsified gradient com-
pression for communication-efficient distributed training. In
Proceedings of the 2020 Neural Information Processing Sys-
tems (NeurIPS’20), 13551–13563.
Chen, X.; Wu, Z. S.; and Hong, M. 2020. Understanding
gradient clipping in private SGD: A geometric perspective.
In Proceedings of the 2020 Neural Information Processing
Systems (NeurIPS’20), 13773–13782.
Dai, X.; Yan, X.; Zhou, K.; Yang, H.; Ng, K. K.;
Cheng, J.; and Fan, Y. 2019. Hyper-sphere quantization:
Communication-efficient sgd for federated learning. arXiv
preprint arXiv:1911.04655.
Danner, G.; and Jelasity, M. 2015. Fully distributed privacy
preserving mini-batch gradient descent learning. In Pro-
ceedings of the 15th International conference on distributed
applications and interoperable systems (IFIP’15), 30–44.
Dwork, C.; Roth, A.; et al. 2014. The algorithmic founda-
tions of differential privacy. Found. Trends Theor. Comput.
Sci., 9(3-4): 211–407.

Fan, L.; Ng, K. W.; Ju, C.; Zhang, T.; Liu, C.; Chan, C. S.;
and Yang, Q. 2020. Rethinking privacy preserving deep
learning: How to evaluate and thwart privacy attacks. In
Federated Learning, volume 12500, 32–50. Springer.
Fowl, L.; Geiping, J.; Czaja, W.; Goldblum, M.; and Gold-
stein, T. 2021. Robbing the fed: Directly obtaining pri-
vate data in federated learning with modified models. arXiv
preprint arXiv:2110.13057.
Gao, W.; Guo, S.; Zhang, T.; Qiu, H.; Wen, Y.; and Liu,
Y. 2021. Privacy-preserving collaborative learning with
automatic transformation search. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR’21), 114–123.
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
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A Theoretical proof
This section presents all the missing theoretical analyses ap-
peared in the manuscript orderly.

Proposition 2. For any given input x and shared model W,
the distance between the recovered data x′ and the real data
x is bounded by:

||x− x′||2 ≥
||φ(x,W)− φ(x′,W)||2
||∂φ(x,W)/∂x||2

,

Proof. Apply the first-order Taylor expansion to
(φ(x,W)− φ(x′,W)), it is easy to find

|| φ(x,W)− φ(x′,W)||2
≈ ||(∂φ(x,W)/∂x)(x− x′)||2
≤ ||(∂φ(x,W)/∂x)||2||(x− x′)||2.

Hence, we have

||x− x′||2 ≥
||φ(x,W)− φ(x′,W)||2
||∂φ(x,W)/∂x||2

. (5)

Theorem 3. For any (ε, δ)-passive attackA, under the pres-
ence of DGP, it will be degenerated to (ε+

√
γ1||∇W||2, δ)-

passive attack ifDA is measured by Euclidean distance, and
degenerated to (ε + (1 − ε)

√
γ1, δ)-passive attack if DA is

measured by cosine distance.

Proof. IfDA is measured by Euclidean distance, by the defi-
nition of (ε, δ)-attack, the attacker can achieve the following
estimation

E||g∗ −∇W||2 ≤ ε,

where g∗ is the attacker’s optimized gradients of the ground-
truth gradients W. When DGP is used, from the bi-Lipschitz
assumption (i.e., Assumption 1), we know

||DGP(∇W)−∇W||2≤
√
γ1||∇W||2. (6)

Then, when central aggregation is protected by DGP, the
attacker’s optimized gradients is based on the observation of
DGP(∇W) and this modified observation will degrade the
attacker’s capability in optimizing∇W because

E ||g∗ −∇W||2
= E||g∗ − DGP(∇W) + DGP(∇W)−∇W||2
≤ ε+ ||DGP(∇W)−∇W||2
≤ ε+

√
γ1||∇W||2.

Hence, the first part of this theorem is true.
Similarly, when DA is measured by cosine distance, the

definition of (ε, δ)-attack reveals

E
[
1− < g∗,∇W >

||g∗||2||,∇W||2

]
≤ ε.

Then, we can obtain

E
[
< g∗,∇W >

||g∗||2||∇W||2

]
= E

[
< g∗,∇W− DGP(∇W) + DGP(∇W) >

||g∗||2||∇W||2

]
(c)
= E

[
< g∗,DGP(∇W) >

||g∗||2||∇W||2

]
= E

[
< g∗,DGP(∇W) >

||g∗||2||DGP(∇W)||2
||DGP(∇W)||2
||∇W||2

]
(d)

≥ (1−√γ1)E
[
< g∗,DGP(∇W) >

||g∗||2||DGP(∇W)||2

]
≥ (1−√γ1)(1− ε) = 1 + ε

√
γ1 −

√
γ1 − ε. (7)

where (c) is based on the fact that the all non-zero el-
ements of (∇W − DGP(∇W)) are pruned in DGP so
E(g∗, (∇W − DGP(∇W))) = 0, and (d) is the direct ap-
plication of Eq. (6). Based on Eq. (7), it is easy to conclude

E
[
1− < g∗,∇W >

||g∗||2||∇W||2

]
≤ ε+ (1− ε)

√
γ1,

which completes the proof.

Lemma 2. Let et =
∑N

i=1 et,i/N be the averaged accumu-
lated error among all users at iteration t, the expectation of
the norm of et is bounded, i.e.,

E||et||22 ≤
3γ1(2 + γ1)

2(1− γ1)2
G2.

Proof. To use the theoretical tools of SGD, we set up the
following dummy matrix V:

Vt+1 = Vt − η∇Wt.

Since W0 = V0, e0 = 0, it is easy to find

Vt −Wt = ηet. (8)

Under Assumption 1, we have

||X− DGP(X)||22 ≤ γ1||X||22 (9)

Under Assumption 3, we have

E||∇Wt,i||22 ≤ G2 (10)

E||∇Wt||22 ≤ G2 + σ2. (11)

By definition of et, we know

||et||22 ≤
∑N

i=1 ||et,i||22
N

,

and the ||et,i||22 is also bounded because

||et,i||22 = ||∇Wt−1,i + et−1,i − DGP(∇Wt−1,i + et−1,i)||22
(9)

≤ γ1||∇Wt−1,i + et−1,i||22
(e)

≤ γ1

(
(1 +

1

a
)||∇Wt−1,i||22 + (1 + a)||et−1,i||22

)
.



where (e) is based on the variant of Young’s inequality ||x+
y||22 ≤ (1 + a)||x||22 + (1 + 1

a )||y||
2
2. Set 1 + a = 2+γ1

3γ1
, it is

concluded that

E||et,i||22
(10)

≤ 3γ1(2 + γ1)

2(1− γ1)2
G2, (12)

E||et||22 ≤
3γ1(2 + γ1)

2(1− γ1)2
G2. (13)

Theorem 4. The averaged norm of the full gradient
∇l(Wt) derived from centralized training is correlated with
the our algorithm as follows:∑T−1

t=0 E||∇l(Wt)||22
T

≤ 4
K0 − l∗

ηT
+ 4η2K2 3γ1(2 + γ1)

2(1− γ1)2
G2

+ 2Kη(G2 + σ2), (14)

where l0 is the initialization of the objective l, and η is the
learning rate.

Proof. Under Assumption 3, we have

||∇l(Vt)−∇l(Wt)|| ≤ K||Vt −Wt||, (15)

and

l(Vt+1) ≤ l(Vt)+ < ∇l(Vt),Vt+1 − Vt > +
K

2
||Vt+1 − Vt||22

= l(Vt)− η < ∇l(Vt),∇Wt > +
Kη2

2
||∇Wt||22. (16)

Taking expectation on both sides of Eq. (16), we can get

E (l(Vt+1)) ≤ E(l(Vt))− ηE(< ∇l(Vt),∇l(Wt) >)

+
Kη2

2
E||∇Wt||22

(f)
= E(l(Vt))−

η

2
(E(||∇l(Vt)||22 + ||∇l(Wt)||22)

+
η

2
E||∇l(Vt)−∇l(Wt)||22 +

Kη2

2
E||∇Wt||22

≤ E(l(Vt))−
η

2
E(||∇l(Vt)||22) +

Kη2

2
E||∇Wt||22

+
η

2
E||∇l(Vt)−∇l(Wt)||22

(15)

≤ E(l(Vt))−
η

2
(E||∇l(Vt)||22) +

Kη2

2
E||∇Wt||22

+
K2η

2
E||Vt −Wt||22

(8)

≤ E(l(Vt))−
η

2
(E||∇l(Vt)||22) +

η3K2

2
E||et||22

+
Kη2

2
E||∇Wt||22

(11)

≤ E(l(Vt))−
η

2
(E||∇l(Vt)||22) +

η3K2

2
E||et||22

+
Kη2

2
(G2 + σ2), (17)

where (f) is based on the fact < x, y >= 1
2 (||x||

2 + ||y||2 −
||x− y||2). Base on the deduction above, we can further cal-
culate
η

2
(E||∇l(Vt)||22) ≤ E(l(Vt))− E(l(Vt+1)) +

η3K2

2
E||et||22

+
Kη2

2
(G2 + σ2), (18)

(

∑T−1
0 E||∇l(Vt)||22

T
) ≤ 2(l0 − l∗)

ηT
+ η2K2E||et||22

+ Kη(G2 + σ2). (19)
According to Eq. (15), it can be found that
||∇l(Wt)|| ≤ K||Vt −Wt||+ ||∇l(Vt)||,
||∇l(Wt)||22 ≤ 2K2||Vt −Wt||22 + 2||∇l(Vt)||22. (20)

Combining Eq. (13), Eq. (19) and Eq. (20), it is concluded

E ||∇l(Wt)||22 ≤
4(l0 − l∗)

ηT
+ 4η2K2E||et||22

+ 2Kη(G2 + σ2)

≤ 4(l0 − l∗)

ηT
+ 4η2K2 3γ1(2 + γ1)

2(1− γ1)2
G2 + 2Kη(G2 + σ2).

Set η =
√

l0−l∗

KT (σ2+G2) , we have∑T−1
0 E||∇l(Wt)||22

T
≤ 6

√
K(l0 − l∗)(σ2 +G2)

T
+O( 1

T
).

Hence, the theorem is true.

B Analysis of Assumption
Since Assumption 2 and Assumption 3 are common assump-
tions in many works (Karimireddy et al. 2019; Wilson et al.
2017), this section focus on analyzing the feasibility of As-
sumption 1.
Assumption 4. The pruning mechanism DGP(k1, k2, ·) is
Lipschitz, so the following conditions hold:
|| ∇W − DGP(k1, k2,∇W)||22
= ||DGP(0, 0,∇W)− DGP(k1, k2,∇W)||22 ≤ γ1||∇W||22,

where γ1 is a constant related to k1 and k2 and satisfies
(1−

√
1− k1 ∗ k2)2 < γ1 < 1.

To simplify the expression, we use DGP(∇W) to denote
DGP(∇W, k1, k2) and || · || to denote || · ||2. (Alistarh et al.
2018) states the following property of top[l](∇W) (i.e., re-
tain the top l-ratio of ∇W):

||∇W − top[l](∇W)|| ≤
√
1− l||∇W||. (21)

According to formula 21, it is easy to obtain formula 22:

||top[l](|∇W)|| ≥ (1−
√
1− l)||∇W||. (22)

And easy to find:
|| ∇W − DGP(k1, k2,∇W)||2
= ||top[k1](∇W) + bottom[k2](∇W)||2
> ||top[k1 ∗ k2](∇W)||2.

Combined with formula 22, it is true that γ1 > (1 −√
1− k1 ∗ k2)2. Moreover, even if the difference is large,

i.e., almost all parameters are removed and γ1 approaches 1,
the assumption still holds.



C More experimental results
This section presents the related experimental setup and
more experimental results.

C.1 Experimental setup
Privacy experiment setup. About IG and GI, follow (Gao
et al. 2021), we set the number of iterations to 2500, and we
set the optimal learning rate to 0.1. For rob attack, we set the
attack batchsize=9. For IG, GI and R-GAP attacks, we set
attack bachsize=1, randomly select 20 data points for attack,
and calculate the average metrics of the attack results. In ad-
dition, there are some settings about defenses. We set the
pruning rate of Soteria to 80, set the Outpost hyperparame-
ters as λ= 0.8, φ=40, β= 0.1, ρ= 80, which are the originally
experimental setting. In addition, we configured an LPIPS
object employing AlexNet as the perceptual model, consid-
ering the spatial structure of images for comparison.

Accuracy experiment setup. We train models with
batchsize=32. We use SGD optimizer with momentum of
0.9 and set epoch=100. To ensure a good performance
of the baseline, we set the following learning rates. For
LeNet (Zhu), we set the learning rate η=0.1 if epoch ≤ 50,
η=0.01 if epoch >50, and η=0.005 if epoch >70. For the
rest of the training settings, we set the learning rate η=0.01
if epoch ≤ 70, η=0.005 if epoch >70. Considering the error
feedback is designed for improving model accuracy for gra-
dient pruning (Karimireddy et al. 2019), we also apply error
feedback to Top-k.

C.2 Efficiency Evaluation
Communication cost. We measure the communication cost
of the defenses for all trained models and list the average
result of one epoch in Tab. 3. DP and ATS do not affect
the number of transmitted parameters, their results are the
same as the baseline. Clearly, DGP and Top-k save about
40% bandwidth when comparing to the baseline. Outpost
perturbs the gradient parameters based on Top-k pruning, so
the result is consistent with Top-k. Note that this advantage
is free since gradient pruning incurs a negligible computa-
tion burden (detailed evaluation is presented in the Tab. 4).

Model Baseline Soteria Precode Top-k DGP ADGP

LeNet (Zhu) 0.121 0.098 4.631 0.074 0.074 0.038
VGG11 70.428 70.413 73.436 43.137 43.137 22.449
ResNet18 85.251 85.235 88.258 52.216 52.216 27.174
CNN6 1.177 0.959 19.955 0.721 0.721 0.375

Table 3: Average overall comm. cost in one epoch (MB).

Computation cost. Tab. 4 shows the computation cost
comparison of gradient parameter searching for one epoch.
Although the average computation cost of ADGP is slightly
higher than DGP because ADGP needs to load the binary
matrix I, this computation cost is trivial considering the re-
duced communication cost. And our method is obviously
better than Soteria, because Soteria requires a lot of compu-
tation on gradients, which leads to expensive computation
cost.

Soteria Top-k DGP ADGP

LeNet (Zhu) 52.460 0.113 0.146 0.167
VGG11 331.379 0.419 0.764 0.842
ResNet18 862.567 0.967 1.803 2.587
CNN6 291.419 0.100 0.237 0.256

Table 4: Average comp. cost in one epoch (s)
DGPOriginal ATS-T Baseline ATS-R Soteria Precode DP Top-k Outpost

Figure 5: Reconstruction data visualization under GGL at-
tack on ImageNet.

DGP
(80% pruned)

Original

Top-k 
(95% pruned)

Figure 6: Reconstruction data visualization under IG attack
on CIFAR100.

C.3 Privacy evaluation with more models.
In this section, We evaluate privacy with multiple models
and datasets. We choose the state-of-the-art active attack
Rob and the state-of-the-art passive attack IG for privacy
evaluation. As shown in Tab. 5 and Tab. 6, DGP can play
an effective privacy protection.

C.4 Defenses under attacks with generative GIAs.
For a comprehensive privacy evaluation, we assess exist-
ing defenses against GAN-based generative GIAs. We se-
lect GGL, the state-of-the-art generative GIA, and main-
tain its original strongest configuration, utilizing ResNet18
on ImageNet. Fig. 5 shows that DGP has a better visual-
ization effect. This is because pruning Top-k1 gradient ele-
ments (in DGP) will confuse GGL’s inference of some data
labels, making the GAN-generated relevant data differ from
the original data significantly.

C.5 Evaluation of the trade-off between privacy
and accuracy for high-pruning rate Top-k

Set Top-k pruning rate for 95%, DGP pruning rate for 80%,
we compare their privacy-accuracy trade-offs. As shown in
Fig. 6, Fig. 7 and Tab. 7, with similar privacy protection,
Top-k is more likely to cause model performance degrada-
tion.



CNN6 LeNet (Zhu) ResNet18 VGG11

Attack Metric Baseline DGP Baseline DGP Baseline DGP Baseline DGP

Rob attack
LPIPS 0.0216 0.4421 0.0226 0.3031 0.0231 0.5273 0.0272 0.5079
SSIM 0.9273 0.1335 0.9293 0.2364 0.9328 0.0511 0.9328 0.0464

IG attack
LPIPS 0.0308 0.2349 0.0788 0.2537 0.0028 0.3163 0.0303 0.2845
SSIM 0.7735 0.4375 0.6745 0.3785 0.9539 0.2866 0.8084 0.3269

Table 5: Privacy Evaluation on CIFAR10.

CNN6 LeNet (Zhu) ResNet18 VGG11

Attack Metric Baseline DGP Baseline DGP Baseline DGP Baseline DGP

Rob attack
LPIPS 0.0212 0.4726 0.0322 0.3782 0.0297 0.4643 0.0248 0.4677
SSIM 0.9298 0.1177 0.9273 0.2257 0.9322 0.1474 0.9157 0.1209

IG attack
LPIPS 0.0521 0.2996 0.1042 0.3163 0.0021 0.3747 0.0297 0.3237
SSIM 0.7551 0.3792 0.6849 0.3781 0.9522 0.2550 0.8057 0.2991

Table 6: Privacy Evaluation on CIFAR100.

Original Top-k (95% pruned) DGP (80% pruned)

Figure 7: Reconstruction data visualization under Rob attack
on CIFAR100.

Original ATS-T Baseline ATS-R Soteria

DGPPrecode DP Top-k Outpost

(a) IG attack, batchsize=2

DGP

Original ATS-T Baseline ATS-R Soteria

Precode DP Top-k Outpost

(b) IG attack, batchsize=4

Figure 8: Reconstruction data visualization under IG attack
with different batchsizes on CIFAR10.

C.6 Defenses under attacks with different batch
sizes

To better evaluate privacy protection, we implement IG at-
tack and Rob attack with different batchsizes. Fig. 8 and

Rob attack, batchsize=2
Original ATS-T Baseline ATS-R Soteria

DGPPrecode DP Top-k Outpost

Rob attack, batchsize=4

DGP

Original ATS-T Baseline ATS-R Soteria

Precode DP Top-k Outpost

Figure 9: Reconstruction data visualization under Rob attack
with different batchsizes on CIFAR10.

ResNet18 LeNet (Zhu) CNN6 VGG11

Top-k (95%) 73.68% 26.75% 45.19% 68.07%
DGP (80%) 74.04% 32.42% 47.24% 68.60%

Table 7: Model performance on CIFAR100.

Fig. 9 show that our method protect privacy against IG
and Rob attacks better than recent works. In particular, our
method can comprehensively defend against gradient inver-
sion attacks, while Top-k and Outpost offer limited privacy
protection against IG attack, and Soteria, ATS, Precode can-
not defend against Rob attack.

D The framework of ADGP
As shown in Fig. 10, ADGP is achieved by randomly select-
ing a user, who broadcasts binary matrix I to all other users.
Each user then only transmits gradient parameters whose lo-
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Client 1

Client 2

Client N

…

𝑥ଵ

𝑥ଶ

𝑥

A
gg
re
ga
ti
on𝑔ଵ௧

∇𝑊ଶ
௧

0
0 0

0 0

0

0 0

1

0

1
1
1

1

1
1

∇𝑊ଵ
௧

0
0 0

0 0

0

0 0

1

0

1
1
1

1

1
1

∇𝑊
௧

0
0 0

0 0

0

0 0

1

0

1
1
1

1

1
1

𝑔ଶ௧

𝑔௧

Server

𝑔ଵ∗௧

𝑔ଶ∗௧

𝑔∗௧

Figure 10: The t-th iteration model update process, where
g∗t represents the gradient parameters whose position be-
long to I in t-th iteration.


