2311.09077v1 [cs.CV] 15 Nov 2023

arxXiv

Spiking NeRF': Representing the Real-World Geometry by
a Discontinuous Representation

Zhanfeng Liao', Qian Zheng', Yan Liu', Gang Pan'

!Zhejiang University
{zhanfengliao, gianzheng, rliuyan, gpan}@zju.edu.cn

Abstract
A crucial reason for the success of existing NeRF-based

methods is to build a neural density field for the geometry
representation via multiple perceptron layers (MLPs). MLPs
are continuous functions, however, real geometry or density
field is frequently discontinuous at the interface between the
air and the surface. Such a contrary brings the problem of
unfaithful geometry representation. To this end, this paper
proposes spiking NeRF, which leverages spiking neuron and
a hybrid Artificial Neural Network (ANN)-Spiking Neural
Network (SNN) framework to build a discontinuous density
field for faithful geometry representation. Specifically, we
first demonstrate the reason why continuous density fields
will bring inaccuracy. Then, we propose to use the spiking
neurons to build a discontinuous density field. We conduct
comprehensive analysis for the problem of existing spiking
neuron models and then provide the numerical relationship
between the parameter of spiking neuron and the theoretical
accuracy of geometry, Based on this, we propose a bounded
spiking neuron to build the discontinuous density field. Our
results achieve SOTA performance. Our code and data will be
released to the public.

Introduction

3D reconstruction from RGB images is a challenging
and complex task in computer vision (Mildenhall et al.
2021; Wang et al. 2021). Neural Radiance Fields (NeRF)
(Mildenhall et al. 2021), a recently promising solution for
novel view synthesis in an implicit manner (Shao et al.
2022), has also achieved very competitive results in 3D
reconstruction (Shao et al. 2022; Oechsle, Peng, and Geiger
2021; Wang et al. 2021; Wang, Skorokhodov, and Wonka
2022, 2023).

One of the reasons for the success of NeRF is its
ability to implicitly represent geometric information using
a neural network based on conventional MLPs, which are
continuous functions. However, geometric information in
real world is discontinuous at the interface between the air
and the surface, which is inconsistent with the computational
representation in conventional MLPs. This inconsistency
poses three problems. Post-processing. Existing methods
require a post-processing approach (i.e., filtering with a
threshold (Peng et al. 2021; Pumarola et al. 2021; Boss et al.
2021)) to extract discontinuous geometric representations
from learned continuous fields. However, determining the
optimal threshold requires empirical and tedious tuning, and

many methods rely on manual selection of the threshold for
different scenarios (Mildenhall et al. 2021; Peng et al. 2021;
Pumarola et al. 2021; Boss et al. 2021) (see the left of Fig.
1). Optimal threshold perturbation. NeRF-based method
optimize the network view by view, resulting in the optimal
threshold of the surface to perturbate (see supplementary
material for more details). However, existing methods use
the same threshold to filter output values (Mildenhall
et al. 2021; Peng et al. 2021; Pumarola et al. 2021; Boss
et al. 2021), which cannot obtain the accurate geometric
information because the optimal filtering thresholds under
different views vary (see the middle of Fig. 1). Light
density scenarios'. The inconsistency can result in even
greater errors in light density scenarios (see the right of
Fig. 1). Because it is difficult for continuous functions like
conventional MLPs to generate quite different densities (i.e.,
significantly different outputs) for points close to each other
(i.e., similar inputs), resulting in the disappearance of the
object.

Although there are some attempts to address the
aforementioned problems, these methods are still based
on the continuous representation and do not provide a
fundamental solution to those problems. For example, some
works replace the density field by other fields to avoid
threshold selection (e.g., (Oechsle, Peng, and Geiger 2021;
Wang et al. 2021; Fu et al. 2022; Darmon et al. 2022;
Yariv et al. 2021; Wang, Skorokhodov, and Wonka 2022)).
However, these methods cannot use the filter value to get
the accurate geometric representation (see the left of Fig.
1). Moreover, they fail on light density scenarios (see
the right of Fig. 1). Some works modify the input to
improve its frequency or discretization, thereby mitigating
the inconsistency between continuous and discontinuous
representations. However, these methods still fail on light
density scenarios (Wang, Skorokhodov, and Wonka 2022,
2023) (see the right of Fig. 1). Some works are designed
for specific scenarios (e.g., (Guo et al. 2022; Levy et al.
2023)). However, these methods have poorer performance
in general scenarios. Moreover, they mainly focus on novel

'These scenarios contain several rays, along which the density
with non-zero values distribute within a very narrow range (e.g.,
thin objects) or with small values (e.g., semi-transparent objects).
In real life, semi-transparent objects (e.g. windows, glasses) and
thin objects (e.g. branches, axles, nets) can be seen everywhere.
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Figure 1: Left: The extracted surfaces from NeRF. Each row in the first big red box represents a surface extracted by a trained
NeRF using different thresholds, indicating that the optimal thresholds corresponding to different scenarios are different. The
tick represents the threshold is optimal. The cross represents the threshold is not optimal. Middle: The error maps from different
views in the same scene. Each row in the second big red box represents the depth error map of a trained NeRF’s surface extracted
with different thresholds from different views. It can be seen that the optimal thresholds corresponding to different views are
different. Right: The extracted surfaces from NeRF. These figures show that the inconsistency can result in even greater errors in
light density scenarios. The image in the bottom right corner of each part represents the original image from the corresponding
view. The number displayed in the bottom left corner of each image represents either the Chamfer distance (left and right) or

the depth error (middle).

view synthesis, and the quality of the 3D reconstruction is
low (see the right of Fig. 1).

Compared to the ANN transmitting continuous values,
SNN transmits spikes which are discontinuous. The
discontinuity of SNN is expected to represent the
discontinuous geometric information in real world
and fundamentally resolve the inconsistency between
real-world representation and computational representation
in conventional MLPs. Moreover, the threshold of spiking
neurons in SNNs can serve as a filtering threshold through
a parameter learning scheme (e.g., (Li et al. 2022; Zhang
et al. 2022)), which avoids the issue of manually specifying
threshold. Different from traditional cognitive applications
(Li et al. 2022; Zhang et al. 2022; Han et al. 2023; Zou,
Huang, and Wu 2022), using the spiking representation
to model 3D geometry from a numerical perspective is a
non-cognitive application (Aimone et al. 2022; Ren et al.
2023).

In this paper, we address the problems of continuous
geometric representation in conventional NeRF by
proposing spiking NeRF, which is based on a hybrid
ANN-SNN framework to model the real-world 3D
geometry in discontinuous representation. First, we
build the relationship between the spiking threshold,
maximum activation, and depth error for our discontinuous
computational representation. Second, based on this
relationship, we observe that when the spiking threshold
is sufficiently large, the depth error is sufficiently small.
However, the spiking threshold cannot be set sufficiently
high in semi-transparent scenarios and cannot be set to
infinity in practical implementation. We further discover
a way to maintain a small error under a finite spiking
threshold, which is to control the maximum activation. Last,
based on our analysis, we propose Bounded Full-precision
Integrate and Fire (B-FIF) spiking neuron to build a
hybrid ANN-SNN framework. Meanwhile, we design a
corresponding training pipline for the hybrid ANN-SNN
framework and verify the effectiveness on mainstream
datasets and light density scenarios. Our contributions can

be summarized as follows:

* We build the relationship between the spiking threshold,
maximum activation, and depth error. We constrain
the bound of depth error by the spiking threshold
and maximum activation. This bound can be leveraged
to facilitate the real-world application for geometric
estimation without knowing the ground truth.

* We propose B-FIF spiking neuron based on the
aforementioned analysis and build a hybrid ANN-SNN
framework. We design the corresponding training
pipline and training strategy for the hybrid ANN-SNN
framework. We verify the effectiveness on mainstream
datasets and light density scenarios.

Related Work
Neural Implicit Representations

Recently, neural implicit functions have emerged as an
effective representation of 3D geometry (Atzmon et al.
2019; Chen et al. 2018; Genova et al. 2019; Mescheder et al.
2019; Michalkiewicz et al. 2019; Niemeyer et al. 2019; Park
etal. 2019; Peng et al. 2020; Saito et al. 2019; Xu et al. 2019)
and appearance (Mildenhall et al. 2021; Liu et al. 2020a,b;
Niemeyer et al. 2020; Oechsle et al. 2019, 2020; Saito
et al. 2019; Schwarz et al. 2020; Sitzmann, Zollhofer, and
Wetzstein 2019) as they represent 3D content continuously
and without discretization while simultaneously having a
small memory footprint. Most of these methods require
3D supervision. However, several recent works (Mildenhall
et al. 2021; Liu et al. 2019; Niemeyer et al. 2020;
Sitzmann, Zollhofer, and Wetzstein 2019; Yariv et al.
2020) demonstrated differentiable rendering for training
directly from images. Some works use estimated depth
information for surface rendering without pixel-accurate
object masks (Verbin et al. 2022). Some works enhance
the accuracy of geometric information by incorporating
point cloud information and warp operations (Fu et al.
2022; Darmon et al. 2022). some works do not model the
density field and use other fields to avoid threshold selection
(Oechsle, Peng, and Geiger 2021; Wang et al. 2021; Fu



et al. 2022; Darmon et al. 2022; Yariv et al. 2021; Wang,
Skorokhodov, and Wonka 2022). However, these works
are still based on the continuous representation, the same
threshold cannot accurately divide the surface. Different
from previous methods, we model the 3D geometric
information in a discontinuous representation by proposing
a hybrid ANN-SNN framework.

Spiking Neural Networks in Computer Vision

Over the past few years, brain-inspired (Mainen and
Sejnowski 1995; Li et al. 2021a) deep SNNs using spike
trains (Marchisio et al. 2020) have gradually replaced ANNs
in various tasks (Pfeiffer and Pfeil 2018; Davies et al. 2018),
and it is extensively utilized to develop energy-efficient
solutions for various tasks. Some works use SNNs to process
video or event streams (Zhu et al. 2022; Gehrig et al.
2020). Some works exploit the discontinuity of network to
enhance its robustness (Bagheri, Simeone, and Rajendran
2018; Sharmin et al. 2019, 2020). Some works leverage
the neural parameter of SNNs to further improve the
utilization of available information (Li et al. 2022; Zhang
et al. 2022). Although previous works have demonstrated
SNN applications on a wide range of tasks, they are still
limited in their performance (Neftci, Mostafa, and Zenke
2019; Pascanu, Mikolov, and Bengio 2013; Li et al. 2021b;
Fang et al. 2021). Meanwhile, there has been a growing
interest in exploring the potential benefits of combining
ANNs and SNNs (Kugele et al. 2021; Yang et al. 2019;
Lee et al. 2020; Liu and Zhao 2022; Zhao et al. 2022).
By combining ANNs and SNNGs, better performance can be
achieved while reducing the time step of SNNs. Different
combination strategies have been explored for a variety of
tasks. A group of work employs the strategy of processing
the accumulated spike train of SNNs with ANNs (Kugele
et al. 2021; Lee et al. 2020; Liu and Zhao 2022). In
these works, the SNN is used as an efficient encoder of
spatio-temporal data. The output of the SNN is accumulated
to summarize the temporal dimension before the ANN
processes the accumulated features (Kugele et al. 2021; Lee
et al. 2020). A second line of work uses a strategy where
the output of the independently operating SNN and ANN is
fused (Lele et al. 2022; Yang et al. 2019; Zhao et al. 2022). In
these works, the output of both networks are fused based on
heuristics (Lele et al. 2022), temporal filtering (Yang et al.
2019), or accumulation based on the output of the ANN
(Zhao et al. 2022). Different from the previous methods, we
apply the hybrid ANN-SNN framework to a non-cognitive
application. ..
Preliminary
Neural Radiance Fields

NeRF (Mildenhall et al. 2021) represents a scene as a
continuous volumetric field, where the density o € R3 and
radiance ¢ € R? at any 3D position x € R? under viewing
direction d € R? are modeled by a MLP f, : (x,d) —
(¢,0), with € as learnable parameters. To render a pixel,
the MLP first evaluates points sampled from the camera ray
7 = 0+td to get their densities and radiance. The light starts
at 0 and stops at a hypothetical large density 7". Define C), as

the estimated pixel color and C’p as the ground truth. NeRF

is optimized by minimizing the photometric loss:
LrgbzzHcp—épH. (1)
P

Here, p refers to each pixel as defined in (Guo et al. 2022).
There are currently two main methods for depth estimation:
one based on the integration (Zhang et al. 2021; Deng
et al. 2022) and the other based on the threshold to get
global shape (Wang et al. 2021; Ichnowski et al. 2021; Fu
et al. 2022). Since we focus on a global geometric shape
extracted from the network by threshold rather than a depth
map dependent on perspective, this paper mainly follow the
second method to define the depth.

Spiking Neuron

Integrate-and-fire model. We introduce the well-known
Integrate-and-Fire (IF) neuron model (Leroy, Franco, and
Boyer 2018) for SNNs. Given a membrane potential wu; at
time step ¢, the membrane potential u?fl before firing at
time step ¢ 4 1 is updated as

pre

’LLt+1 = U + W.’EtJrl. (2)
Here, the elements, W and x, 1, represent respectively the
weight and the output from previous layer at time step ¢ + 1.
Vin is the firing threshold. The spiking neuron will fire a
spike when u}", exceeds the Vi, (see Fig. 2), and then the
membrane potential w1 at time step ¢ + 1 resets to 0. The
spike output is given by

0 upyy < Va
0411 = . 3
o+l {1 otherwise, )

Yt+1 = 041 - Van. “)
After firing, the spike output y;4; will propagate to the next
layer and become the input z;; of the next layer. Note that
we omit the layer index for simplicity.
Full-precision integrate-and-fire model. However, the
spikes convey less information than floating-point number,
and networks using IF neurons do not perform well in
regression tasks (Henkes, Eshraghian, and Wessels 2022;
Iannella and Back 2001; Gehrig et al. 2020; Rancon et al.
2022; Kahana et al. 2022; Lu et al. 2021; Shrestha and
Orchard 2018). It’s difficult to ensure accuracy by directly
using IF neurons for modeling. To obtain full-precision
information, (Li et al. 2022) changes the Eqn. 4 to:

Yeg1 = Opr1 - Upyq. (5)
By replacing the output Vi, with uyy ,, the full-precision
information is reserved. Due to the full-precision
information meeting our requirements, we will only
consider one time step and omit ¢ in following formulations.

Spiking NeRF

To make the density field discontinuous, a trivial way is
to introduce spiking neurons in NeRF, which replaces the
last activation layer of density network with spiking neurons
(e.g., IF, FIF). However, on the one hand, as previously
mentioned, using IF is difficult to ensure accuracy, and on
the other hand, directly replacing the activation layer with
FIF will result in a significant depth error when the spiking
threshold is small (see ablation study for more details).



In this section, we first analyze what kind of spiking
neurons can solve the problems of post-processing and
optimal threshold perturbation, and alleviate the problem of
light density scenarios by building the relationship between
the spiking threshold, maximum activation, and depth error.
Then, based on this relationship, we further propose our
method.

Relationship between Parameters of Spiking
Neuron and Depth Error

We define that d, is the estimated depth and d is the accurate
depth. T refers to the length of the sampling range and At
refers to the sampling interval. V4, is the spiking threshold
and Vi« is the maximum density value. For a well-trained
NeRF, the Vj, is also the non zero minimum value of its
density field, and the density value of the first point that
a ray encounters with a non zero density is V4. We build
the relationship based on the following Proposition 1 (see
supplementary material for proving).

Proposition 1. For a well-trained NeRF, we have:

|d — dy| < max((At — Te™VmmAt)e=Valt T (1 — e=VauT)e=ValAl)  (6)

Based on the relationship, when the Vj, is sufficiently
large, e~ V21 is sufficiently small, resulting in a sufficiently
small error. Meanwhile, for a fixed V4, a small Vi,,x can
decrease the error (see supplementary material for more
details).

However, the V4, cannot be set sufficiently high in
semi-transparent scenarios and cannot be set to infinity in
practical implementation. Meanwhile, FIF does not have
Vinax constraint (see the right of Fig. 2), resulting in a
large positive (At — Te~Vm=A) 1In this case, significant
errors may occur in semi-transparent scenarios and practical
implementation. Direct use of the FIF spiking neuron is
not able to completely solve the above-mentioned problems.
Therefore, V.« should have a constraint to decrease the
error and we need a spiking neuron with a relatively small
maximum activation.

B-FIF: Bounded full-precision integrate and fire spiking
neuron. Based on previous analysis, the maximum
activation close to the spiking threshold can ensure lower
error. Therefore, we need to constrain the maximum
activation of spiking neuron to decrease the error. In this
paper, we use tanh() to constrain the maximum activation
(see supplementary material for other bounded functions).
The vP™ in Eq. 5 is reformulated as:

uP® =k - tanh(u + Wz), @)
oc=y=o0-u". 8)

Here, k is a learnable parameter. By increasing k, it is
ensured that the spiking neuron can have a larger spiking
threshold. The proposed neuron constrains the maximum
output value while ensuring accuracy as it is also a
full-precision neuron. So the spiking neuron can ensure
that the network is trained accurately and also decrease
errors when the spiking threshold is relatively small as its
maximum activation approaches its spiking threshold.
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Figure 2: Framework overview of spiking NeRF and an
illustration of different existing spiking neuron models
and the proposed one. Left: The network structure of our
approach. We use a NeRF model following (Mildenhall et al.
2021), but excluding the last activation layer of density
network. Instead of using ReLU, we use B-FIF spiking
neuron to make the density field discontinuous. Right top:
the IF and FIF spiking neuron. Right bottom: the B-FIF
spiking neuron with different » (r = 2 and 5). These
curves show that B-FIF become more similar to FIF as the
parameter r increases. And when the r is sufficiently large,
the B-FIF spiking neuron degenerate to the FIF spiking
neuron.

Hybrid ANN-SNN Framework

B-FIF implementation. Directly using the previously
mentioned spiking neuron can lead to slow training. It is
potentially caused by the derivative of the initial network
output approaching 0 (see Fig. 2), leading to a smaller
learning step size. Therefore, to better train the network, we
introduce a learnable parameter 7 for the proposed neurons
to increase the derivative of the initial network output (see
Fig. 2), which can improve training.

%%
uwe=kK-r- tanh(iu t W

): 9)

We set the initial value of r and k£ to 10 and 1 to
maintain similarity to the original NeRF output (i.e., ReLU
(Mildenhall et al. 2021; Azinovi¢ et al. 2022; Wang et al.
2021)) near point O (see Fig. 2). This setting ensures that the
network maintains performance similar to NeRF during the
initial training stage, which can ensure that the range of the
derivative approaching 1 is expanded. In addition to above
advantage, this initial strategy and the proposed neuron in
Eq. 9 have another advantage that the network is trained with
an increased penalty for small density regions that should
not appear, and it is able to limit the density value that should
not appear above the spiking threshold more easily during
training.

It can be observed that when r is sufficiently large, B-FIF
spiking neuron degenerates into FIF spiking neuron, and
when the maximum activation approaches the threshold,
B-FIF spiking neuron degenerates into IF spiking neuron
(please find Fig. 2 for the comparison of different spiking
neuron models).

Loss function. Based on Proposition 1, it is necessary to
have a large spiking threshold to obtain accurate geometric
information. The network can learn the spiking threshold
during the training process. However, duo to the difficulty of



the network spontaneously pushing the spiking threshold to
a larger value, the spiking threshold at the end of the training
process may not necessarily be relatively large. Therefore,
we propose L, as a regularization term to increase the
spiking threshold and ensure that the spiking threshold does
not remain a small value after the training is completed. The
L, is as follows: I 1 (10)
Y Va

Following (Verbin et al. 2022), we use a regularization
term L, to maintain the smoothness of the geometric
representation in the initial stage, improving the network

convergence.
Ly =YY wimax(—d,Vo;,0)°. (11)

p )
Here, p refers to each pixel as defined in (Guo et al. 2022).
1 refers to each sampling point and w; refers to the weight
at each sampling point as defined in (Verbin et al. 2022).
However, in (Verbin et al. 2022), they specifically designed
a MLP to predict the normal vector, which generated more
parameters that needed to be learned. We directly use the
normal vector calculated by the gradient of density on the
input coordinates to calculate Lg, reducing the number of
parameters that need to be learned while reducing network
complexity.
Finally, We optimize the following loss function:

L = Ligp + A Ly + Ao L. (12)

Surrogate gradient. The non-differentiability of the firing
function remains one of the most significant challenges in
training SNNs (Neftci, Mostafa, and Zenke 2019). Direct
training requires the use of the surrogate gradient (Pfeiffer
and Pfeil 2018; Li et al. 2022, 2021c; Bagheri, Simeone, and
Rajendran 2018). There are 2 kinds of surrogate gradient,
the surrogate gradient for conventional spiking neurons and
the surrogate gradient for full-precision spiking neurons.
The proposed neuron is based on the full-precision spiking
neuron, so we use the surrogate gradient for full-precision
spiking neurons. However, there are multiple time steps in
(Li et al. 2022), and the surrogate gradient of the spiking
threshold is based on the number of spikes, while our
method only uses one time step. Directly using the surrogate
gradient in (Li et al. 2022) can lead to unstable training (see
supplement material for more details). In this paper, we use
the piecewise linear function similar to (Li et al. 2021c) as
the surrogate gradient for Vj; to avoid the gradient that is
0 almost everywhere. The surrogate gradient of B-FIF is as

follows: o
aufre = o, (13)
dy k— |uPe — Vi
= A max(0, %). (14)

Meanwhile, due to the use of full-precision spiking neurons,
we only need one time step to meet requirements. So
theoretically, our training complexity is similar to that of
ANN.

Training strategy. During the initial stage of network
training, the density field exhibits significant deviations. A
larger spiking threshold will render the network untrainable

because most of the membrane potential cannot reach the
spiking threshold and is not in the range of surrogate
gradient non-zero. So we initially set the spiking threshold
to 0. Furthermore, we set A1 to 0.15 at first and continue to
increase A1 as the training process progresses. To preserve
true high-frequency geometric information, we initially set
the A5 to 0.001 and gradually decrease the proportion of L,
in L as the training progresses by decreasing As.

Experiments
Experimental Settings

Datasets. We evaluate our methods in 8 scenes from the
Blender dataset (Mildenhall et al. 2021) and 6 scenes from
Dex-NeRF (Ichnowski et al. 2021). Following most 3D
reconstruction methods (Wang et al. 2021; Oechsle, Peng,
and Geiger 2021; Wang, Skorokhodov, and Wonka 2022,
2023), we also evaluate our methods in 15 scenes from
the DTU dataset (Jensen et al. 2014). These datasets cover
different types of scenes or objects and are benchmarks for
NeRF-based methods. Furthermore, we additionally use 2
self created scenes to show that our method is better than
previous methods in special scenarios (see supplementary
material for more details).

Implementation details. We sample 512 rays per batch
and train our model for 200k iterations for 3 hours on a
single NVIDIA RTX3080Ti GPU. Our network architecture
and initialization scheme are similar to those of NeRF
(Mildenhall et al. 2021) and we model the background using
NeRF++ (Zhang et al. 2020) with the same settings as
NeusS in the real scene dataset. More details of the network
architecture and training parameters can be found in the
supplementary material.

Metrics. Following most 3D reconstruction methods,
we measure the reconstruction quality with the Chamfer
distances (Wang et al. 2021; Wang, Skorokhodov, and
Wonka 2022, 2023; Fu et al. 2022; Darmon et al. 2022).
Overall Performance

Comparison methods. We compared our method with 2
kinds of NeRF-based methods, conventional NeRF-based
method and the SDF-based methods. For conventional
NeRF-based method, we compared with NeRF (Mildenhall
et al. 2021), MipNeRF (Barron et al. 2021) (referred
to as “Mip” in the table), For SDF-based methods, we
compare with NeuS (Wang et al. 2021), Hf-NeuS (Wang,
Skorokhodov, and Wonka 2022) (referred to as “HFS” in
the table) and PET-NeuS (Wang, Skorokhodov, and Wonka
2023) (referred to as “PET” in the table). PET-NeuS and
Hf-NeuS are follow-up works on NeuS and achieve more
detailed geometry reconstruction. We did not include IDR
(Yariv et al. 2020), UNISURF (Oechsle, Peng, and Geiger
2021) or VoISDF (Yariv et al. 2021) as NeuS had shown
superior performance on Chamfer distances. We report the
Chamfer distances in Tab. 3, Tab. 2, and Tab. 1, and conduct
the qualitative comparisons in Fig. 3.

Quantitative comparison. As shown in Tab. 1,
these SDF-based methods failed in semi-transparent
scenes, resulting in significant Chamfer distances. This
indicates that the SDF-based method cannot reconstruct
semi-transparent scenes. Meanwhile, as shown in Tab. 2, our



Figure 3: Visual Quality Comparisons on surface reconstruction on Blender dataset (Mildenhall et al. 2021), DTU dataset
(Jensen et al. 2014), semi-transparent dataset (Ichnowski et al. 2021), and thin object dataset. We show the Chamfer distance in
the bottom left corner of the image. The results of the 2nd and 4th rows are multiplied by 102,

average Chamfer distances are the lowest in Blender dataset
(Mildenhall et al. 2021). This indicates that our method can
obtain more accurate geometric information. It is rare (Ren
et al. 2023) that the result of SNN is better than that of ANN.
As shown in Tab. 3, we have a similar average Chamfer
distances to SDF-based methods in the DTU dataset. While
our method achieves leading results, some of our results are
less competitive compared to some mainstream methods
(e.g. Pet-NeuS, Hf-Neus). Because SDF-based methods
adopt lower frequency position encoding and constrain the
variation of output with input, they have good performance
for low frequency and smooth scenes. However, when these
premises are not met, their performance will decrease.

Since our method is based on conventional NeRF
(Mildenhall et al. 2021) and is similar to NeRF, the
robustness of our method closely resembles that of
NeRF. The actual performance can be seen in Tab. 2
and Tab. 3 which show results on the general real
scene (i.e. DTU dataset (Jensen et al. 2014)) and the
general synthetic scene (i.e. Blender dataset (Mildenhall
et al. 2021)). For conventional NeRF-based methods, even
the results obtained by manually selecting the optimal
threshold are worse than our methods. Because our method
uses the hybrid ANN-SNN framework to model the 3D
geometric information in a discontinuous representation, the
reconstructed geometric information is more accurate.

Table 1: Quantitative Comparison on light scenarios
(Ichnowski et al. 2021). We show the Chamfer distance
%1072 for the reconstructed geometry on 6 scenes from the
Dex-NeRF dataset and 2 scenes from our Blender dataset.

Method | wheel | tennis | mount | glass | turbine | clutter | pawn | pipe | Avg.

PET 1323 | 4.14 1594 | 1532 | 1534 | 2328 | 14.31 | 1423 | 14.47
HFS 30.41 | 8.02 1535 | 17.24 | 11.53 17.23 | 15.78 | 12.57 | 16.01
NeuS 23.85 | 7.23 12.75 | 13.14 | 11.70 | 25.32 | 14.30 | 11.53 | 14.97
NeRF 7.47 3.63 1022 | 11.53 | 10.06 | 13.15 | 12.04 | 10.12 | 9.77
Mip 11.31 | 347 10.30 | 12.74 | 10.25 12.36 | 11.67 | 9.23 | 10.16

Ours 6.42 2.85 9.87 9.45 9.82 10.44 | 10.87 | 10.32 | 8.75

Visual quality comparison. As shown in the 5th and
6th columns of Fig. 3, with conventional NeRF-based
methods, determining the threshold that can accurately
segment the surface requires enumeration attempts. We
choose the optimal threshold manually for them. And
due to the lack of surface constraints, the reconstruction
results have many erroneous high-frequency information,
and there is a loss of reconstruction accuracy for thin
objects and semi-transparent scenes. As shown in the
2nd, 3rd and 4th columns of Fig. 3, with SDF-based
methods, the reconstruction resulted in significant errors
in high-frequency changes in the image, such as failing
to reconstruct holes that should have been present and
surfaces that should have been separate. Moreover, NeuS
demonstrated excessive smoothness in 2nd row. And NeuS,
HF-NeuS, and PET-NeusS fail in the reconstruction of semi
transparent scenes. Even though HF-NeuS uses methods
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Figure 4: The relatlonshlp between the upper bound and
the average depth error during training. We show six scenes
from Blender dataset (Mildenhall et al. 2021). We randomly
choose a view for displaying from each scene, and compute
error and upper bound in epoch = 10K, 50K, 100K, 150K
and 200K (see supplementary material for more scenes).
The red curve represents upper bound while the blue curve
represents the average depth error during training. It can be
seen that the average depth error decreases with the upper
bound and the average depth error keeps being less than
upper bound during training.
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to reconstruct high-frequency information, it still fail in
some thin high-frequency positions. Because our method
uses the hybrid ANN-SNN framework to model the 3D
geometric information in a discontinuous representation, the
reconstructed geometric information is more accurate.

The practicality of Upper Bound of Proposition 1

To explore whether the bound is practical, we verify whether
there is a correlation between the bound and the average
depth error, and whether the bound has similar patterns
across different scenarios. Because the Blender dataset
provides depth information (Mildenhall et al. 2021), we
conduct our experiments on it. As shown in Fig. 4, the
average depth error is under the bound. Moreover, there is
indeed correlation between the bound and the average depth
error, and the bound has similar patterns across different
scenarios. It means that the bound can be leveraged to
facilitate the real-world application for geometric estimation
without knowing the ground truth. However, note that there
is still a relatively large gap between the bound and the
average depth error. While we made a new attempt in the
field of NeRF and this bound can be used to a certain extent,
it is still not enough to be practical.

Ablation Study

Validation for proposition 1. When L, is minimized, the
spiking threshold will continue to increase, and when L,
is removed, the spiking threshold of the final network will
remain at a lower value. To validate the proposition 1, we
design an experiment without L, and compare results with
our method. It can be seen that there are many areas that
should not exist above the reconstructed surface (see the 3rd
column of Fig. 5), indicating that a relatively large spiking
threshold is necessary, which is consistent with our analysis.

Effectiveness of B-FIF. To evaluate the effectiveness of
the B-FIF, we design an experiment that replaced B-FIF

Figure 5: Ablation studies. We show qualitative results and
report the quantitative metrics in Chamfer distance.
Table 2: Quantitative Comparison on Blender. We show the
Chamfer distance x 10~2 for the reconstructed geometry on
8 scenes from the Blender dataset.

Method [ lego | chair [ mic | ficus | hotdog | drums | materials | ship | Avg.

PET 0.58 | 0.65 | 0.59 | 0.71 1.02 2.53 1.05 1.57 | 1.09
HFS 0.96 | 0.65 | 0.72 | 0.87 1.35 3.82 1.08 2.18 | 145
NeuS 1.52 | 0.70 | 0.85 | 1.67 1.40 427 1.08 233 | 1.73
NeRF 206 | 0.75 | 095 | 0.56 1.83 3.38 1.12 312 | 1.72
Mip 1.92 | 090 | 1.13 | 0.55 1.98 3.34 1.30 2.03 | 1.64

Ours 0.70 | 0.66 | 0.72 | 0.54 | 0.94 2.43 1.10 149 | 1.07

Table 3: Quantitative Comparison on DTU (Jensen et al.
2014). We show a quantitative comparison for the
reconstructed geometry on 15 scans from the DTU dataset.

Method | 24 | 37 | 40 | 55 | 6 | 65 [ & | 8 [ 97 [ 105 [ 106 [ 110 | 114 | 118 [ 122 | Avg,
PET | 0.59 | 0.84 | 0.72 | 0.40 | 095 | 0.84 | 072 | 142 | L14 | 072 | 0.53 | 1.05 | 044 | 0.59 | 0.68 | 078
HFS | 083 | 137 | 078 | 047 | 111 | 0.68 | 0.68 | 120 | 1.17 | 085 | 0.57 | 127 | 038 | 0.54 | 055 | 0.83
NeuS | 1.00 | 137 | 093 | 0.43 | 110 | 0.70 | 0.72 | 148 | 1.16 | 0.83 | 0.52 | 1.69 | 0.35 | 0.49 | 054 | 0.89
NeRF | 1.90 | 1.63 | 1.75 | 0.60 | 203 | 1.07 | 147 | 170 | 1.95 | 113 | 0.79 | 233 | 087 | 1.05 | 086 | 1.41
Mip | 215 | 183 | 165 | 1.61 | 290 | 1.79 | 152 | 193 | 2.19 | 132 | 179 | 252 | 138 | 1.49 | 121 | 1.82
Ours | 084|120 | 102 | 038 | 1.15 | 072 | 0.69 | 1.10 | 119 | 0.65 | 049 | 1.60 | 0.49 | 0.55 | 0.51 | 0.83

spiking neuron with FIF spiking neuron which does not
have a maximum activation constraint and compare the
result with our method. It can be seen that the reconstructed
surface has significant deviation (see the 2nd column of Fig.
5), indicating that a bound is necessary, which is consistent
with our analysis.

Effectiveness of smoothness. To evaluate the
effectiveness of the initial smoothing, we design an
experiment without L, and compare the result with our
method. It can be seen that although the Chamfer distances
are similar, the reconstructed surface contain wrong
high-frequency information (see the 4th column of Fig. 5),
indicating that training from wrong high-frequency surface
is difficult and training from smooth surface is necessary.

Conclusion

We present a novel neural surface reconstruction method
for reconstructing objects with high fidelity from 2D image
inputs. NeRF and its variants use the volume rendering
to produce a neural scene representation. However,
extracting high-quality surfaces from this learned implicit
representation is difficult because there are not a definite
interface density. In our work, we propose to use a hybrid
ANN-SNN framework to reconstruct density fields. We
observe that the conventional volume rendering method
causes inherent geometric errors for surface reconstruction,
and propose a new spiking neuron to get more accurate

surface reconstruction with adaptive spiking threshold.
Limitation. Since NeRF (Mildenhall et al. 2021) does

not specifically consider scenes with high light and low
brightness, it will struggle to accurately represent the
geometry on these scenes (Verbin et al. 2022). Our method
also did not specifically consider these issues, so it is highly
likely to struggle to accurately represent the geometry on
these scenes.
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