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Abstract

Zero-shot point cloud segmentation aims to make deep
models capable of recognizing novel objects in point cloud
that are unseen in the training phase. Recent trends favor
the pipeline which transfers knowledge from seen classes
with labels to unseen classes without labels. They typically
align visual features with semantic features obtained from
word embedding by the supervision of seen classes’ anno-
tations. However, point cloud contains limited information
to fully match with semantic features. In fact, the rich ap-
pearance information of images is a natural complement to
the textureless point cloud, which is not well explored in
previous literature. Motivated by this, we propose a novel
multi-modal zero-shot learning method to better utilize the
complementary information of point clouds and images for
more accurate visual-semantic alignment. Extensive exper-
iments are performed in two popular benchmarks, i.e., Se-
manticKITTI and nuScenes, and our method outperforms
current SOTA methods with 52% and 49% improvement on
average for unseen class mloU, respectively.

1. Introduction

Point cloud segmentation is a critical task for 3D scene
understanding, which promotes the development of au-
tonomous driving, assistive robots, digital urban, AR/VR,
etc. Fully supervised methods [74, R , ] have
achieved impressive performance. However, there exist
tremendous categories of objects in the real world, espe-
cially in large-scale outdoor scenes, bringing challenges
for such methods to generalize to novel objects without
labels in training data. Furthermore, manual annotations
for 3D point clouds are extremely time-consuming and ex-
pensive. Zero-shot learning can recognize unseen objects
by utilizing side information, especially the word embed-
ding, to transfer the knowledge of seen categories to unseen
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Figure 1. Semantic features of objects obtained by word em-
bedding contain rich and diverse information, including appear-
ance characteristics existing in images(i.e., color, light), geometry
and location information contained in LiDAR point clouds(i.e.,
scale, shape), and some other non-visual properties(i.e., smell,
weight). Previous image-based or point cloud-based zero-shot
learning only considers the alignment between uni-modal visual
features and semantic features, where the former can just match a
small subset of the latter. We propose a more effective solution for
zero-shot 3D segmentation by using multi-modal visual features.

ones, which is important for the point cloud segmentation
in large-scale scenes.

Zero-shot semantic segmentation on 2D images has
made promising progress in the past few years [01, 3, 8, 38,

, 27]. There are two main streams of methods, including
generative methods and projection-based methods, which
inspire the following research works on 3D point clouds.
For generative methods [45, 42], they usually train a fake
feature generator supervised by seen classes and fine-tune
a classifier for recognizing real seen-class features and syn-
thesized unseen-class features. However, 3D features are
more difficult to generate than 2D features due to higher di-
mensional information, making such strategies perform un-



satisfactorily on 3D point clouds. Moreover, these meth-
ods require additional training efforts when new unseen
categories appear, which limits the generalization capabil-
ity on real-world applications. For projection-based ap-
proaches [15], they target to align visual features to cor-
responding semantic features by the seen-class supervision,
so that unseen class can be recognized by leveraging the
similarity between its visual features and semantic features.
Such methods can be easily generalized to novel classes
without retraining. However, visual features extracted from
the point cloud can only match a subset of semantic features
and yield limited performance, as shown in Fig. 1.

In fact, current autonomous vehicles and robots are usu-
ally equipped with multiple sensors, where LiDAR and
camera are the most common ones [9, 6]. Since point
cloud contain accurate location and geometric information
and images provide rich color and texture characteristics,
many researchers focus on exploring sensor-fusion meth-
ods [16, 41, 59] for achieving more precise perception.
Considering that see more and know more, we aim to make
these two uni-modal visual data complement each other and
generate more comprehensive visual features to better align
with semantic features for more effective zero-shot learn-
ing. To our knowledge, we are the first to explore zero-shot
learning based on multi-modal visual data.

In this paper, we focus on transductive generalized zero-
shot learning for point cloud-based semantic segmentation,
where both seen and unseen classes will appear in one scene
but only objects of seen classes have labels during training.
Based on the input of the synchronized point cloud and im-
age, we propose a novel zero-shot point cloud segmenta-
tion method. Specifically, we propose an effective multi-
modal feature fusion approach, termed Semantic-Guided
Visual Feature Fusion (SGVF), to obtain a more compre-
hensive visual feature representation, where valuable infor-
mation from two uni-modal visual features are adaptively
selected under the guidance of semantic features. As op-
posed to previous sensor-fusion methods, our strategy is
more flexible and applicable for zero-shot learning by in-
troducing semantic features to play an active role in the vi-
sual feature fusion stage. In this condition, exactly valid in-
formation can be utilized for the following semantic-visual
feature alignment. Then, the knowledge of seen classes can
be effectively transferred to unseen classes. Furthermore, to
reduce the semantic-visual domain gap in advance, we pro-
pose Semantic-Visual Feature Enhancement (SVFE) to
enhance both semantic features and visual features by trans-
ferring the domain knowledge, such as relationships among
classes, to each other, which definitely benefits the follow-
ing SGVF and the final semantic-visual alignment process.
Actually, our method can be easily extended to more visual
modalities.

We conduct extensive comparisons with current 2D and

3D zero-shot segmentation methods and our method outper-
forms others significantly on different datasets and settings.
The effectiveness of each module of our method is also ver-
ified by ablation studies. In summary, our contributions are
summarized as follows:

e We propose a novel multi-modal zero-shot approach
for point cloud semantic segmentation.

e We design an effective feature-fusion method with
semantic-visual feature enhancement, which can better
align visual features with semantic features to benefit
the recognition of unseen classes.

e Our method achieves state-of-the-art performance on
SemanticKITTI and nuScenes datasets.

2. Related Work
2.1. Zero-Shot Learning

Zero-shot learning aims at transferring the knowledge
learned from seen categories to unseen ones. Many zero-
shot learning studies[10, 33, 68, 48, 35, 1, 60, 36, 7, 23,

, 26] leverage intermediate representations such as se-
mantic embeddings and attributes to bridge the gap be-
tween seen and unseen classes. Early works of zero-
shot learning (ZSL) [1] only recognize unseen classes of
data during inference. While the recently discussed gen-
eralized zero-shot learning (GZSL) [55] requires model to
recognize both seen and unseen classes, which is more
challenging yet practical since real scenes usually contain
both seen and unseen classes of objects at the same time.
Apart from ZSL and GZSL, zero-shot learning tasks can
also be classified as inductive[2, 11, 25, 49, 70, 54] and
transductive[56, 71, 67, 28, 32]. The former excludes the
occurrence of samples of unseen classes yet the latter per-
mits. In this paper, we focus on the setting of transductive
GZSL, which is more practical for real-world applications.

2.2. Zero-shot Segmentation on 2D Image

Zero-shot segmentation on 2D images has been widely
explored [01, 3, 8, 38, 17,27, 31, 30, 50, 44, 72, 63] in the
past few years, which can be divided into projection-based
methods and generative methods. Projection-based meth-
ods like SPNet[61] intend to align visual feature space with
semantic feature space so as to generalize the model to un-
seen data by leveraging the structure of the semantic feature
space. Since the training process only involves labels of
seen classes, many methods [61, 12] try to alleviate the bias
toward seen classes during training. By contrast, generative
methods[8, 38, 17, 27] usually adopt a multi-stage training
paradigm with a fake feature generator supervised with seen
data and a classification layer fine-tuned by real seen-class
features and synthesized unseen-class features. Following



the astonishing zero-shot transfer learning performance of
CLIP [53], a series of works[65, 43, 24, 37, 73] begin to ex-
ploit its huge potential under ZS3 task and have made sig-
nificant improvement. However, data leakage is a concern
since unseen objects may already occur in the CLIP training
data and it is also difficult to extend to 3D tasks due to the
lack of huge 3D pre-training samples.

2.3. Zero-shot Segmentation on Point Cloud

The boom of autonomous driving and the expensive 3D
manual annotation has led to zero-shot point cloud per-
ception becoming an emerging research hotspot. Many
works[21, 18, 20, 19, 42,45, 13, 14, 15] focusing on zero-
shot learning for 3D point clouds appear, especially for
point cloud classification [21, 18, 20, 19]. Cheraghian et
al.[21] uses PointNet[52] to extract point cloud features and
leverages W2V [47] or Glove[5 1] as extra semantic features.
Then, many researchers try to address the hubness prob-
lem [18, 20] and extend zero-shot learning to the transduc-
tive setting [19].

To the best of our knowledge, only three papers[42,

, 15] propose solutions for zero-shot point cloud se-
mantic segmentation. Among them, 3DGenZ[45] and
SeCondPoint[42] are generative approaches. They all gen-
erate fake features of unseen classes with semantic features
for training the classifier to achieve the zero-shot transfer.
However, generative methods require extra training efforts
when new unseen categories appear, which limits the gener-
alization capability. In addition, since 3D features are more
complex than 2D features, the generated feature distribu-
tion does not fit the original distribution well, resulting in
poor results. Different from them, TGP[15] is a projection-
based approach, which learns geometric primitives to facili-
tate the knowledge transfer from seen classes to unseen cat-
egories. However, only relying on the point cloud proper-
ties, the alignment between visual space and semantic space
is difficult since there is a huge domain gap between these
two spaces and the point cloud could only match a subset of
semantic space, causing incomplete knowledge for unseen
objects.

2.4. Multi-Sensor Fusion

Considering that the image contains rich appearance fea-
tures and the point cloud possesses accurate location and ge-
ometry features, many works [62, 58, 59, 606, 75, 5, 41, 16,

] explore effective fusion ways to make these two sen-
sors complement each other for more precise 3D percep-
tion. PointPainting[58] and PointAugmenting[59] utilize
the semantic label or feature at the projected image loca-
tion as additional information to append to the correspond-
ing point, while such point-level fusion strategy will lose
dense appearance feature of images. PMF[75] performs
perspective projection on the point cloud and performs fea-

ture fusion in the camera coordinate system. 2DPASS[66]
leverages knowledge distillation for cross-modal knowl-
edge transfer. Recently, transformer-based sensor-fusion
methods [5, 16, 22, 39] achieve promising performance for
3D perception with learnable projection and the usage of
the global context. However, these feature-fusion methods
are designed for fully supervised tasks. For zero-shot seg-
mentation, direct feature fusion operation results in a more
complex fused visual feature, making the alignment to se-
mantic features more difficult. We allow semantic features
to adaptively select desired features from two visual modal-
ities for matching, avoiding the interference of irrelevant
information.

3. Methods
3.1. Problem Formulation

Point cloud semantic segmentation aims at classifying
each point into a specified class. Similar to [15, 45], we
divide all classes into seen and unseen ones. We focus on
the generalized transductive zero-shot point cloud segmen-
tation problem, which is a more realistic setting where the
model needs to segment both the seen and unseen classes
in the scene by seeing their features and supervised by the
labels of only seen classes.

Let P € RT3 denote one frame of point cloud with
T points represented by (z,y, z) coordinates, and X €
R3*H>XW denote the corresponding image, where H x W
means the image size. The set of seen and unseen classes are
expressed as C° = {cf}f\:l and C" = {c?}g\:l(C’S NnC* =
()), respectively, where s, u stand for seen and unseen cate-
gories and N° and N denote the number of data samples

. . . N®
involving seen and unseen categories. W* = {w?},_; and

i=
W — {wy};\; , are the word embedding [15] of seen and
unseen class names from the word2vec [46] or glove [51],
respectively. Since we focus on the transductive zero-shot
segmentation setting, the training set is defined as Dy;qin =
{(Ps, X5, Wi, YR, (P, X, W)}, where Y is the
ground truth label for seen categories.

3.2. Overview

As illustrated in Fig. 2, our method consists of four
main modules, including Feature Extraction, Semantic-
Visual Feature Enhancement (SVFE), Semantic-Guided Vi-
sual Feature Fusion (SGVF), and Semantic-Visual Align-
ment. Firstly, following [15], we use a 3D backbone net-
work to produce the point visual representation Fj, and uti-
lize the 2D backbone network to extract image visual repre-
sentation F;. Meanwhile, a Multi-Layer Perception (MLP)
G(-) is used to project the word embedding W into Fy as the
semantic feature of specific categories. Secondly, to reduce
huge domain gaps between visual and semantic features,
we design SVFE to make these two feature space interact



Semantic-Visual

&S5 NN

S5 S Point
LiDAR Point Cloud

Feature

Car

*
Word Embedding Semantic
Feature

Class Name

10podUH
ofew IXaL

Image
Feature

m Feature
Interaction

Feature Enhancement(SVFE)

Semantic-Guided
Visual Feature Fusion(SGVF)

Semantic-Visual Alignment

Enhanced

Point
Feature

Enhanced

Semantic
Feature

<

Enhanced

Image
Feature

Point-Semantic
Similarities
Fused
Feature

Semantic Feature
Visual Feature
Image-Semantic

Similarities Inference

Element-wise Multiplication

Semantic Segmentation

Figure 2. Method overview. Firstly, 3D and 2D backbones extract visual features from LiDAR point cloud and image, while MLP extracts
semantic features. Secondly, for reducing the semantic-visual gap, visual features and semantic features interact with each other by
learnable projection in the SVFE module. Then, we make semantic features adaptively select valuable visual features from two modalities
for effective feature fusion in the SGVF module. Finally, we perform semantic-visual feature alignment for zero-shot learning.

knowledge with each other to enhance the feature repre-
sentation by the cross-attention mechanism. Then, we pro-
pose SGVF to make semantic features automatically select
valuable information from two visual modalities for better
feature alignment. In the end, we perform semantic-visual
feature alignment for transferring the knowledge from seen
objects to unseen ones for zero-shot point cloud segmenta-
tion.

In the following sections, we will introduce the technical
details of modules according to the following order: SGVEF,
SVFE, and Semantic-Visual Alignment.

3.3. Semantic Guided Visual Feature Fusion

Point cloud contains precise location and geometry in-
formation, while images provide rich texture and color in-
formation. The combination of both visual features can
better match semantic features extracted from language de-
scriptions, which may contain the information of diverse
properties of the category. Therefore, we propose to lever-
age multi-modal visual data for semantic-visual alignment
to solve zero-shot learning problems. However, direct
fusing point cloud feature and image feature in the data
level [58] or feature level [59] will make the fused fea-
ture more complex, resulting in difficulty in aligning with
semantic features. We design an adaptive selection mech-
anism for semantic features, where the network can learn
valuable information from two visual modalities automat-
ically under the semantic guidance and integrate them to-
gether as the richer visual feature.

Based on the point cloud feature F;, image feature Fv;,
and semantic feature F,; gained from the last module (Sec-
tion. 3.4), we search valuable visual features for semantic

features from the 3D point cloud and 2D image by calcu-
lating the weight matrix wsp and wsp, respectively. It is
conducted by utilizing the multi-head attention [57]:

wsp = MultiHead Attention(Feg, Fep),

wap = MultiHead Attention(Fes, Fe;). M
The weights stand for the significance of two uni-modal vi-
sual features to semantic features. And the fused visual fea-
ture can be obtained by applying element-wise multiplica-
tion between the weight matrix and visual features. Then,
we obtain the final fused visual feature by employing an
MLP:

Ftusion = MLP (softmax(stack(wsp © Fer, wap © Fey))).
2)
In this way, the network utilizes multi-modal visual data
effectively by selecting valuable information to match se-
mantic features for different categories of objects, which
can benefit the following alignment of semantic and visual
spaces, thus improving the recognition ability of unseen ob-
jects.

3.4. Semantic-Visual Feature Enhancement

During the selection step in SGVF, the huge domain
gap between visual features and semantic features will hin-
der the learning process for fusing effective visual features.
Therefore, we consider narrowing the semantic-visual gap
in advance by transferring the knowledge, such as relation-
ships among various categories, between semantic and vi-
sual space. We conduct the knowledge interaction by the
cross-attention mechanism, which can learn the semantic-



visual projection automatically and enhance each feature
with valuable knowledge of the other.

Semantic Feature Enhancement. To enhance the se-
mantic feature F by visual features, we take F as the
query ¢ and visual feature as key k£ and value v to feed into
a Transformer Decoder [57] as follows.

TD(g, k,v) = Linear(LN(MLP(Q) + Q)),

@ = LN(CrossAttention(g, k,v) + ¢q), )
where Linear indicates linear mapping layer and LN de-
notes layer normalization. Because we have two modalities
of visual features, we make them interact with the semantic
features in order. Considering that we target for point cloud
segmentation, we first enhance feature F; by point feature
F; to pull the representation of two spaces closer, and then
conduct the same operation on image feature F;; for further
semantic feature enhancement. Formula. 4 illustrates the
process.

Fes = TD(TD(F, Fi, 1), Fy, F). “)

Visual Feature Enhancement. Similarly, we enhance
the visual feature by querying to semantic feature and fetch-
ing knowledge from semantic space. Then, we obtain en-
hanced point feature by F,; = TD(Fy, F, Fy), and en-
hanced image feature by F,; = TD(F;, F, Fs).

In this way, we reduce the difference between semantic
and visual rpresentations by feature interaction and the en-
hanced features can further facilitate the visual feature se-
lection process in SGVF and the final alignment between
semantic and visual spaces.

To demonstrate the effectiveness of SVFE and SGVF
intuitively, we select one scene from SemanticKITTI val-
idation set and visualize semantic and visual features of
all classes occurred in Fig. 3. It is obvious to see that
our model pulls visual features to corresponding semantic
features gradually by effective semantic-visual feature en-
hancement and multi-modal visual feature fusion.

3.5. Semantic-Visual Alignment

Through the feature enhancement of SVFE and multi-
modal visual feature fusion of SGVF, we obtain a compre-
hensive representation of visual features, which can match
more content and represent similarly with semantic fea-
tures. We align visual and semantic feature spaces by the
supervision of seen classes. Therefore, the knowledge of
seen class can be transferred to unseen class with the aid of
side information, e.g., semantic features from word embed-
ding.

Loss function. Following TGP[15], we adopt a cross
entropy loss and an unknown-aware InfoNCE loss to distin-
guish various seen classes and allow the model to identify
whether an object is a seen class or an unseen class.

(a) Before SVFE
Figure 3. Visualization of semantic-visual feature relationships
of various classes in one scene of SemanticKITTI by t-SNE. Tri-
angles indicate semantic features, circles denote visual features,
pure colors stand for seen classes, and gradient colors mean un-
seen classes. The same color represents the same class. Visual
features in (a) and (b) come from the point cloud branch.

(b) After SVFE (c) After SGVF

In order to obtain a better semantic-visual space align-
ment, we have to ensure that the distribution of each
class is compact within classes and distinguishable between
classes. To this end, we use the following objective func-
tion.

exp(D(f}, eye)/7)

logzz c+c exp(D( L e/r)

where f! denotes the visual features of the ¢-th point in the
i-th sample, e+ is the corresponding ground truth semantic
representation. 7 is the inversed temperature term. C'° and
C*" are the number of seen and unseen classes, respectively.
D) is the similarity function between visual and semantic
features. In this paper, we choose the dot product similarity.

Since only seen classes have annotations during train-
ing, the zero-shot model is naturally biased towards the seen
classes. To avoid this, we push the features of the seen and
unseen classes apart by the following loss formula.

A jr€c)/T)

D( ft
1ogZZ ccﬁcexp( Uy . ©

exp(D(f}, ez)/7)

The overall loss function is the combination of two losses.

&)

L=1L4+ L, )

Inference. We infer a I%@W scene with fused visual fea-

ture Ffusion = {f}t‘usion}t_l
ce +C
{ecto—

and semantic feature F,, =

, where T' is the number of points in this scene.
The class of the tth point is determined as follows.

€xp (D(f]t”usion7 66)) (8)
ST e (D(fhusion: €2)

C; = argmax
c



Table 1. Comparison with state-of-the-art methods on SemanticKITTI and nuScenes datasets. We show the performance of diverse unseen-
class settings introduced in Section. 4.1. Setting “0” indicates fully supervised manner. “Improvement” means the percentage improvement
in the metric unseen mloU for our method relative to the previous SOTA method. “Supervised” denotes that both seen and unseen classes

have labels during the training of our method, which stands for the upper bound for zero-shot learning performance.

SemanticKITTI nuScenes
Setting | Model Seen  Uneen Improvement Overall Seen  Uneen Improvement Overall
mloU mloU mloU hloU | mloU mloU mloU hloU
0 TGP[15] - - - 59.1 - - - - 67.9 -
Ours - - - 62.6 - - - - 69.1 -
3DGenZ[ 40.9 12.4 - 379 190 | 67.8 4.2 - 59.9 7.9
) TGP[15] 58.3 28.8 +3.5% 552 38.6 | 589 26.9 +25.3% 549 369
Ours 59.5 29.8 - 564 39.7 | 594 33.7 - 56.2  43.0
3DGenZ[ 41.4 10.8 - 350 17.1 | 67.2 3.1 - 51.2 59
4 TGP[15] 54.6 17.3 +54.9% 46.7 263 | 65.7 14.8 +56.1% 53.0 242
Ours 58.8 26.8 - 521 36.8 | 66.4 23.1 - 55.6 343
3DGenZ|[ 40.3 6.5 - 29.6  11.2 | 538 32 - 34.8 6.0
6 TGP[15] 53.6 13.3 +79.7% 409 213 | 68.8 14.1 +56.7% 483 234
Ours 56.6 239 - 463 33.6 | 66.8 22.1 - 50.0 33.2
3DGenZ|[ 38.3 1.3 - 22.7 2.5 36.5 2.1 - 19.3 4.0
3 TGP[15] 53.2 8.6 +70.9% 344 148 | 684 13.7 +56.9% 41.1 228
Ours 46.0 14.7 - 328 223 | 68.2 21.5 - 449 327

4. Experiments

We first introduce the datasets, evaluation metrics, and
implementation details. Then we show results and analysis
of extensive comparison experiments and ablation studies
to verify the effectiveness and superiority of our method.

4.1. Dataset and Category Division

SemanticKITTI [6] contains 22 sequences, where ten
sequences are for training, sequence 08 for validation, and
the remaining sequences are used for testing. It has an-
notations for 20 classes in total. For a full evaluation,
we conduct diverse zero-shot settings with different num-
bers of unseen classes, including 2-motorcycle/truck, 4-
bicyclist/traffic-sign, 6-car/terrain, 8-vegetation/sidewalk.
The classes in the unseen set increase incrementally for
different settings. Especially, the setting 4 with motorcy-
cle, truck, bicyclist, and traffic-sign is following [15] and is
taken as the main setting for ablation study.

nuScenes [9] contains 40157 annotated samples with 6
monocular camera images with 360° FoV and a 32-beam
LiDAR scan. It has annotations for 17 classes in total.
We conduct several zero-shot settings with different num-
bers of unseen classes, including the 2-Motorcycle/trailer,
4-terrain/traffic-cone, 6-bicycle/car, 8-vegetation/sidewalk.
The classes in the unseen set increase incrementally for dif-
ferent settings. The rest classes are taken as seen classes.

4.2. Evaluation Metrics

We report the mean-intersection-over-union(mloU) of
seen classes, unseen classes, and all classes, respectively.
Following [15], we utilize the harmonic mean IoU (hloU)
to demonstrate the overall performance of methods.

2 X mIoUseen X mIOUunseen
hloU =
° mloUseen, + mIoU i seen ’

€))

where mIoUee,, and mIoU,,,seen represents the mIoU of
seen classes and unseen classes, respectively.

4.3. Implementation Details

Following [15], we use Cylinder3D [74] to extract Li-
DAR point cloud features and ResUnet to extract image fea-
tures. The visual feature dimension is 128. We adopt W2V
[47] and Glove [51] to embed the class name and obtain the
word embedding features (600-dimensional vector) as the
auxiliary information for zero-shot segmentation. The G(-)
is a two-layer MLP with the dimension of 96 and 128, then
we obtain a 128-dimensional semantic feature. For SVFE,
the transformer decoder is comprised of cross-attention and
MLP. We use one decoder and the number of heads is 4.
For SGVF, we utilize multi-head attention (the number of
heads is 4) to compute the similarity between semantic fea-
tures and visual features. Our method is built on the Py-
torch platform, optimized by Adam. The learning rate for
the backbone is 0.001, while the learning rate for SVFE and
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Figure 4. Visualization of results on SemanticKITTI. We show the ground truth, segmentation results of TGP[ ! 5], and segmentation results
of our method in rows. Objects highlighted by black circles are unseen classes, including motorcycle, bicyclist, truck, and traffic-sign. It is
obvious that our model classifies unseen classes more accurately and is closer to ground truth.

Table 2. Comparison with state-of-the-art 2D methods on Se-
manticKITTI dataset with 4-unseen-class setting. We extend those
2D zero-shot methods to solve 3D zero-shot point cloud segmen-

@,

tation, where “x” indicates results reported in [15].

Model Seen Unseen Overall
mloU mloU mloU hloU
SPNet[61] 57.0 0.0 45.0 0.0
ZS5Netx [8] 53.2 5.1 43.1 9.3
PMOSRx* [69] 55.1 8.7 45.3 15.0
JoEm [4] 56.7 2.8 454 53
Ours 58.8 26.8 52.1 36.8

SGVF is 0.0003. The batch sizes for both SemanticKITTI
and nuScenes are 4. It costs 80 hours to train 40 epochs on
four RTX 3090 GPUs for the SemanticKITTI dataset and
costs 45 hours to train 20 epochs for the nuScenes dataset.

4.4. Comparison Results

In this section, we show results of our method and
compare it with current state-of-the-art 3D zero-shot seg-
mentation methods, including 3DGenZ[45] and TGP[15].
Extensive experiments with different unseen class settings
are conducted on SemanticKITTI and nuScenes datasets to
comprehensively evaluate the methods’ performance. Qual-
itative analysis is also provided. In particular, due to lim-
ited works on 3D zero-shot segmentation, we also adapt 2D
SOTA methods to solve 3D tasks for further verification. In
addition, since our method is based on multimodal fusion,
we also compare with current popular multimodal fusion
strategies used for full supervised tasks. Our method out-
performs others in recognizing unseen classes of objects by
a large margin. Detailed analysis is as follows.

Comparision with 3D methods. As shown in Table. 1,
our method achieves SOTA performance on 2-, 4-, 6- and 8-
unseen-class settings on both SemanticKITTI and nuScenes
datasets, outperforming previous SOTA methods with im-

provement rates of 52% and 49% in average for unseen
class mloU, respectively. For the comprehensive evaluation
metric hloU concerning both seen and unseen classes, our
method is also superior to others by a large margin. Qual-
itative results are provided in Figure 4, where we visual-
ize the segmentation results of our method and TGP[15] on
SemanticKITTI dataset alongside the ground truth annota-
tions. Our method makes more accurate predictions on un-
seen classes. For example, TGP identifies a motorcycle as a
traffic sign (first column) and takes parts of a truck as cyclist
(third column), while our model accurately segments corre-
sponding categories. It illustrates that multi-modal visual
feature in our method really benefits the semantic-visual
matching and further boost the unseen class recognition.
Comparision with extensions of 2D methods. Be-
cause 3D zero-shot segmentation just gets noticed recently,
there are limited research works for comparison. Mean-
while, 2D zero-shot segmentation has been well explored
and they can also provide essential inspirations for solv-
ing 3D tasks. Thus, for more adequate validation, we
compare our method with four representative 2D methods
by using their released source code, namely SPNet[61],
ZS5Net[8], PMOSR[69] and JoEm[4], on SemanticKITTI
dataset. Some modifications are imposed on the source code
for adapting to 3D point cloud data. We replace all 2D
segmentation backbones with Cylinder3D[74], the same as
ours. Stacked calibration is applied in JoEm with v = 0.08
on softmax scores but is not used in SPNet due to terrible
performance. The center loss is adopted instead of the BAR
loss in JoEm since the feature interpolation is hard to imple-
ment in 3D sparse convolution. The results are shown in Ta-
ble. 2. Notably, these 2D methods have limited performance
when adapting to 3D tasks with more complex 3D features.
We also try some generative methods [17, 27] but fail for
the similar reason that they usually rely on high-quality 2D
feature map to train their generators, but 3D feature is chal-
lenging for generation. Our method is superior due to the



Table 3. Comparision with other fusion methods on Se-
manticKITTI dataset with the 4-unseen-class setting.

Model Seen  Unseen Overall
mloU mloU mloU hloU
PointPainting[58] 58.9 16.3 499 255
PointAugmenting[59]  57.9 15.0 489 238
2DPASS[66] 574 13.0 48.1 21.2
PMF[75] 56.9 14.1 479 226
Deepfusion[39] 54.9 15.8 46.7 24.5
TransFuser [22] 54.1 11.9 45.2 19.5
Ours 58.8 26.8 521 368

Table 4. Ablation experiments of the module of our framework on
SemanticKITTI dataset with the 4-unseen-class setting.

Model Seen  Unseen Overall
ode mloU mloU mioU hloU
Ours 58.8 26.8 52.1 36.8

Ours w/o SGVF  58.8 234 513 335
Ours w/o SVFE  59.0 19.9 50.8  29.8
Ours w/o Image  58.3 20.0 50.2  29.8

rational exploration and utilization of each modal feature.

Comparison with popular multi-modal fusion meth-
ods. While it is intuitive that multi-sensor-based meth-
ods naturally outperform single-sensor-based methods since
extra visual information is exploited, designing effective
sensor-fusion methods for zero-shot tasks is non-trivial be-
cause we have to consider the complex projection relation-
ship between semantic information and visual features. To
verify the superiority of our multi-modal fusion approach,
we apply two data-level fusion methods[59, 58] and four
feature-level fusion methods[66, 75, 39, 22], including two
transformer-based methods[39, 22], to the 3D zero-shot
segmentation task by using the same baseline as our pro-
posed method, which is a TGP[15] models trained by our-
selves for fair comparisons. As the results in Table. 3
shown, all previous camera-LiDAR-fusion methods gain
limited or no improvements compared with the baseline be-
cause they fuse visual features directly without considering
the semantic guidance, which is not suitable for zero-shot
learning. In contrast, our method outperforms others by
around 10% since it allows semantic features to adaptively
select valid LiDAR and image features for fusion, avoid-
ing unnecessary information, and benefiting the knowledge
transfer from seen classes to unseen classes.

4.5. Ablation Studies

In this section, we conduct ablation studies on the Se-
manticKITTI dataset to verify the effectiveness of proposed

modules in our network. Additionally, further analysis of
the internal design of the SVFE and SGVF modules can be
found in Appendix A and B.

Effect of SGVFE. To verify the effectiveness of our
feature-fusion strategy, we keep the backbone network and
SVFE module and adopt a simple concatenation fusion in-
stead of SGVFE. We concatenate F,; and F.; and utilize an
MLP to compress the features to 128 dimensions. Then
we perform visual-semantic alignment for the fused visual
feature and F.s. As shown in Table. 4, compared with us-
ing SGVF, the unseen mloU drops about 3.5%, illustrating
that SGVF fuses valid information and effectively transfers
knowledge from seen classes to unseen ones.

Effect of SVFE. To demonstrate the advantage of SVFE,
we maintain the backbone network and the features ex-
tracted from the backbone are directly fed into SGVF. As
Table. 4 shows, without SVFE, the unseen mloU drops
about 7%, showing that the huge semantic-visual gap leads
to the difficulty of feature alignment in the joint space, while
SVEE reduces the gap by feature enhancement.

Effect of image modality. We also conduct ablation
study for the image modality in Table. 4 by keeping the Li-
DAR backbone and its branch in the SVFE module. For
semantic-visual alignment, we only utilize the single modal
point cloud feature. We can see that compared with the mul-
timodal setting, the unseen mloU drops about 7% without
the appearance feature. Our method takes advantage of both
sensors to match semantic feature space, which achieves
significant improvement. It is worth noting that even with
the LIDRA-only setting, our method is still superior to TGP
(Table. 1) due to our effective semantic-visual feature en-
hancement.

5. Conclusions

We make the first attempt to investigate the potential of
multi-modal visual data in solving the transductive general-
ized zero-shot point cloud semantic segmentation problem.
We have designed an effective multi-modal fusion method
with mutual feature enhancement, which can adaptively de-
termine what information should be taken from each modal-
ity under the semantic guidance for better semantic-visual
alignment. Our method achieves SOTA performance on two
large-scale datasets under diverse zero-shot settings.
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Appendix A. More Details of SVFE

Why SVFE improves the performance? The main
function of the SVFE module is to narrow the semantic-
visual gap and facilitate early knowledge transfer between
semantic and visual spaces, rather than simply scaling up
the model. To demonstrate the importance of the semantic-
visual interaction, we conduct an experiment where we re-
place it with self-attention operation with the same param-
eter scale for each single modality. The results in Table.5
show the performance drops sharply without the SVFE
module.

Table 5. Ablation experiments of the design of SVFE module on
SemanticKITTI dataset with the 4-unseen-class setting,

Model Seen  Unseen Overall
mloU mloU mloU hloU
baseline 54.6 17.3 46.7 263
baseline + self attention 57.3 194 49.3 29.0
baseline + SVFE 58.8 234 51.3 335
image features first(F.,) 58.3 16.1 494 252

point cloud features first(F,;)  58.8 26.8 52.1 36.8

Does fusion order in SVFE matter? As mentioned in
Sec 3.4, semantic feature enhancement is implemented as:
F.; = TD(TD(Fs, Fi, Fy), F;, F;). We provide the result
of fusing image visual features first and then point cloud
visual features: F., = TD(TD(Fs, F;, F;), Fi, Fi). As
shown in Table.5, The ordering of feature fusion presented
in the paper is superior because visual features extracted
from point clouds are more central to 3D point cloud seg-
mentation. By fusing these visual features with semantic
features first, we are able to provide better guidance for the
segmentation process.

Appendix B. More Details of SGVF

Are there any better fusion methods than SGVF mod-
ule? As SGVF adopts an attention-based design, to further
validate the effectiveness of the SGVF module, we design
experiments to compare our method with two variants of
transformer-based multimodal fusion methods, as shown in
Table.6. We find that the performance of “w/o SGVF, w/
cross attention®, which uses LiDAR to query image features
for fusion without considering semantic features, is not as
good as our SGVF module. This is consistent with our in-
tuition that simply fusing the visual features without con-
sidering the semantic information is not sufficient for zero-
shot tasks. However, the result of “w/ SGVEFE, w/ self atten-
tion“ is unexpected. The performance of the method with
the added self-attention mechanism for the fused features is
lower than that of SGVF, even though the parameter quan-
tity is increased. This suggests that simply increasing the
model complexity does not necessarily lead to better per-
formance. In fact, the additional self-attention mechanism

may have introduced noise and decreased the discriminative
power of the fused features.

Table 6. Ablation experiments of the design of SGVF module on
SemanticKITTI dataset with the 4-unseen-class setting,

Seen  Unseen Overall
mloU mloU mloU hloU
w/o SGVEF, w/ cross attention  56.6 21.9 49.3 31.6
w/ SGVEFE, w/ self attention 50.4 21.2 44.3 29.8
Ours 58.8 26.8 52.1 368

Model

Appendix C. Model inference time

With the addition of an extra image modality, our
model’s inference time is 0.097 seconds per frame, slightly
larger than 0.087s/f of the SOTA single-modal method
TGP[13]. But our model outperforms it with more than
50% improvement of unseen category mIOU. Furthermore,
it yields real-time performance (All of the results are tested
on 1 NVIDIA GTX3090 GPU).

Appendix D. The impact of various image en-
coders on performance

We employed ResUnet-34 as our image encoder (L591).
To show the impact of various image encoders, we replace
the encoder with ResUnet-18 and ResUnet-50 and get com-
parable performance, as shown in the below table.

Model Seen  Unseen Overall
mloU mloU mloU hloU

ResUnet-18 57.3 24.7 50.4 34.5

ResUnet-50 58.9 27.1 522 371

Ours(ResUnet-34)  58.8 26.8 52.1 36.8

Appendix E. Discussion on the CLIP Model

Given the success of the CLIP [53] model in 2D zero-
shot segmentation [05, 43, 24, 37, 73], we aim to investi-
gate its potential for 3D point cloud semantic segmentation
by incorporating the CLIP model into our method. We fol-
low the approach used in MaskCLIP [73], where the class
name is inserted into 85 hand-crafted prompts and they are
fed into CLIP’s text encoder to generate multiple text fea-
tures. Additionally, we replace the 2D ResUNet backbone
with MaskCLIP+. As shown in Table 7, even though unseen
objects may already occur in the CLIP training data, causing
data leakage, the incorporation of the CLIP model still per-
forms worse than our pure zero-shot method. It is mainly
because CLIP is based on the contrastive learning between
image and text pairs and the significant disparity between



Table 7. CLIP model experiment on SemanticKITTI dataset with
the 4-unseen-class setting.

Seen  Unseen Overall
mloU mloU mloU hloU

Ours <— CLIP model 56.6 14.1 47.7 22.6
Ours 58.8 26.8 52.1 36.8

Model

point cloud features and image features makes point cloud
visual features difficult to align with semantic features ex-
tracted by CLIP. However, it is interesting to explore the
projection between point cloud and images and transfer the
knowledge learnt by CLIP to solve 3D zero-shot problems
in large scenarios.



