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Abstract

In this paper, we study the problem of generalizable syn-
thetic image detection, aiming to detect forgery images from
diverse generative methods, e.g., GANs and diffusion mod-
els. Cutting-edge solutions start to explore the benefits of
pre-trained models, and mainly follow the fixed paradigm of
solely training an attached classifier, e.g., combining frozen
CLIP-ViT with a learnable linear layer in UniFD [35].
However, our analysis shows that such a fixed paradigm is
prone to yield detectors with insufficient learning regarding
forgery representations. We attribute the key challenge to
the lack of forgery adaptation, and present a novel forgery-
aware adaptive transformer approach, namely FatFormer.
Based on the pre-trained vision-language spaces of CLIP,
FatFormer introduces two core designs for the adaption to
build generalized forgery representations. First, motivated
by the fact that both image and frequency analysis are es-
sential for synthetic image detection, we develop a forgery-
aware adapter to adapt image features to discern and inte-
grate local forgery traces within image and frequency do-
mains. Second, we find that considering the contrastive ob-
jectives between adapted image features and text prompt
embeddings, a previously overlooked aspect, results in a
nontrivial generalization improvement. Accordingly, we in-
troduce language-guided alignment to supervise the forgery
adaptation with image and text prompts in FatFormer. Ex-
periments show that, by coupling these two designs, our ap-
proach tuned on 4-class ProGAN data attains a remarkable
detection performance, achieving an average of 98% accu-
racy to unseen GANs, and surprisingly generalizes to un-
seen diffusion models with 95% accuracy.

1. Introduction

Recent years have witnessed the emergence and advance-
ment of generative models, such as GANs [13, 23–25] and
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Figure 1. Comparison with fixed pre-trained paradigm. Here,
we illustrate the overview of UniFD [35] and our FatFormer.
In contrast to training an attached classifier, FatFormer builds a
forgery-aware adaptive transformer by aligning the representations
of image and text prompts via contrastive objectives.

diffusion models [9, 14, 16, 34]. These models enable the
creation of hyper-realistic synthetic images, thus raising the
wide concerns of potential abuse and privacy threats. In
response to such security issues, various forgery detection
methods [11, 20, 21, 44, 45] have been developed, e.g.,
image-based methods [3, 48] focusing on low-level visual
artifacts and frequency-based methods [12, 37] relying on
high-frequency pattern analysis. However, we observe big
performance degradation when applying them to unseen im-
ages created by GANs or more recent diffusion models.
How to address this problem has seen significant interest.

Recent approaches [35, 46] turn to explore the utiliza-
tion of pre-trained models, following the fixed pre-trained
paradigm of solely training an attached classifier, as shown
in Figure 1 (a). A notable example in this field is the UniFD
proposed by Ojha et al. [35], where a pre-trained CLIP-ViT
[10, 38] is employed to encode images into image features
without learning. Subsequently, a linear layer is tuned as a
classifier to determine the credibility of inputs. At a very
high level, their key to success is the employment of a pre-
trained model in a frozen state, thus providing a learned uni-
versal representation (from the pre-training), yet not explic-
itly tuned in the current synthetic image detection task. In
this way, such a representation will never be overfitted dur-
ing training and thus preserves reasonable generalizability.
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Figure 2. Logit distributions of extracted forgery features. We compare the state-of-the-art UniFD [35] and our FatFormer with forgery
adaptation, both tuned with 4-class ProGAN [23] data. A total of four testing GANs and diffusion models are considered, including
ProGAN [23], StyleGAN [24], Deepfake [42] and LDM [41], each randomly sampled 1k real and 1k fake images. Best view in color.

However, we consider that such a frozen operation adopted
by UniFD will also limit the capability of pre-trained mod-
els for learning strong and pertinent forgery features.

To verify our assumption, we qualitatively study the
forgery discrimination of the fixed pre-trained paradigm by
visualizing the logit distributions of UniFD [35] across var-
ious generative models, as depicted in the top row of Fig-
ure 2. The distribution reflects the degree of separation
between ‘real’ and ‘fake’ during testing, thereby offering
the extent of generalization of extracted forgery represen-
tations. One can see that there is a large overlap of ‘real’
and ‘fake’ regions when facing unseen GANs or diffusion
models (Figure 2 (b)-(d)), mistakenly, to identify these forg-
eries as ‘real’ class. Moreover, even in the case of Pro-
GAN [23] testing samples, which employ the identical gen-
erative model as the training data, the distinction between
‘read’ and ‘fake’ elements becomes increasingly indistinct
(Figure 2 (a) vs. (e)). We conclude that the fixed pre-trained
paradigm is prone to yield detectors with insufficient learn-
ing regarding forgery artifacts, and attribute the key chal-
lenge to the lack of forgery adaptation that limits the full
unleashing of potentials embedded in pre-trained models.

Driven by this analysis, we present a novel Forgery-
aware adaptive transFormer approach (Figure 1 (b)),
named FatFormer, for generalizable synthetic image detec-
tion. In alignment with UniFD [35], FatFormer investigates
CLIP [38] as the pre-trained model, which consists of a ViT
[10] image encoder and a transformer [47] text encoder.
Based on the pre-trained vision-language spaces of CLIP,
our approach achieves the forgery adaptation by incorporat-

ing two core designs, ultimately obtaining well-generalized
forgery representations with a distinct boundary between
real and fake classes (Figure 2 (e)-(h)).

First, motivated by the fact that both image and fre-
quency domains are important for synthetic image detec-
tion, a forgery-aware adapter (FAA) is developed, com-
prising a pair of image and frequency forgery extractors.
In the image domain, a lightweight convolution module is
employed for extracting low-level forgery artifacts, such
as blur textures and color mismatch [29]. On the other
hand, for the frequency domain, we construct a grouped at-
tention mechanism that dynamically aggregates frequency
clues from different frequency bands of discrete wavelet
transform (DWT) [32]. By integrating these diverse forgery
traces, FAA builds a comprehensive local viewpoint of im-
age features essential for effective forgery adaptation.

Second, instead of utilizing the binary cross-entropy loss
applied to image features, we consider the contrastive ob-
jectives between image and text prompts, a previously over-
looked aspect. This novel direction is inspired by the natural
language supervision in CLIP-ViT’s pre-training, typically
more robust to overfitting by optimizing the similarity be-
tween image features and text prompt embeddings [18]. Ac-
cordingly, language-guided alignment (LGA) is proposed,
which encompasses a patch-based enhancer, designed to en-
rich the contextual relevance of text prompts by condition-
ing them on image patch tokens, as well as a text-guided in-
teractor, that serves to align local image patch tokens with
global text prompt embeddings, thereby directing the im-
age encoder to concentrate on forgery-related representa-
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Figure 3. Our FatFormer architecture. The ViT image encoder integrates forgery-aware adapters to effectively extract visual forgery
features from input images. To supervise the forgery adaptation process, language-guided alignment is introduced. Specifically, taking
two input images for example, we maximize the cosine similarities between paired (dark gray squares) image features and text prompt
embeddings, while minimizing the unpaired ones (light gray squares). In testing, only the test image is required to calculate the forgery
probability via a softmax of these similarities. Squared ‘CLS’ and ‘EOS’ represent the image CLS tokens and text prompt embeddings.

tions. Empirical results show that the forgery adaptation
supervised by LGA obtains more generalized forgery repre-
sentations, thus improving the generalizability of synthetic
image detection.

Our adaptive approach FatFormer significantly outper-
forms recent methods with the fixed pre-trained paradigm.
Notably, we achieve 98.4% ACC and 99.7% AP on 8 types
of GANs, and 95.0% ACC and 98.8% AP on 10 types of un-
seen diffusion images, using limited ProGAN training data.
We hope our findings can facilitate the development of pre-
trained paradigms in this field.

2. Related Work

Synthetic image detecting. Due to the increasing concerns
about generative models, many works are proposed to ad-
dress the problem of synthetic image detection, which can
be roughly divided into image-based methods [33, 42, 49,
52], frequency-based methods [12, 20, 21], and pre-trained-
based methods [35, 46]. For instance, Yu et al. [50] find
images generated by GANs have unique fingerprints, which
can be utilized as forgery traces for detection. Wang et
al. [48] adopt various data augmentations and large-scale
GAN images to improve the generalization to unseen testing
data. Qian et al. [37] introduce frequency analysis into the
detection framework, using local frequency statistics and
decomposed high-frequency components for forgery detec-
tion. More recently, many works have focused on the fixed
pre-trained paradigm of freezing the pre-trained model and
adopting an attached classifier for forgery detection. For
example, Lgrad [46] turns the detection problem into a pre-
trained-based transformation-dependent problem, and uti-
lizes gradient features from the frozen pre-trained model as
forgery cues. Furthermore, Ojha et al. [35] propose UniFD
to explore the potential of the vision-language model, i.e.,
CLIP [38], for synthetic image detection. They observe that

training a deep network fails to detect fake images from new
breeds and employs the frozen CLIP-ViT [10, 38] to extract
forgery features, followed by a linear classifier.

In this paper, our motivation is different from the closely-
related approach UniFD [35]. UniFD attempts to adopt
a frozen pre-trained model to extract forgery representa-
tions ‘without learning’. In contrast, our approach aims to
demonstrate that the forgery adaptation of pre-trained mod-
els is essential for the generalizability of synthetic image
detection.
Efficient transfer learning. The latest progress in trans-
fer learning shows the potential for efficient fine-tuning of
pre-trained models, especially in the NLP field. Unlike tra-
ditional strategies, such as linear-probing [15] and full fine-
tuning [56], efficient transfer learning only adds learnable
modules with a few parameters, such as prompt learning
[27] and adapter-based methods [17, 19]. Inspired by this,
many efficient transfer learning works are proposed for vi-
sion [5, 22] and vision-language models [53, 54]. Unlike
UniFD [35] with linear probing, this paper investigates the
efficient transfer learning for generalizable synthetic image
detection and first proposes an adaptive transformer with
contrastive objectives.

3. FatFormer
3.1. Overview

The overall structure of FatFormer is illustrated in Figure 3.
FatFormer is composed of two pre-trained encoders for both
image and text prompts, as well as the proposed forgery-
aware adapter (Section 3.2) and language-guided alignment
(Section 3.3). This framework predicts the forgery probabil-
ity by calculating the softmax of cosine similarities between
image features and text prompt embeddings.
Vanilla CLIP. Following UniFD [35], we adopt CLIP [38]
as the pre-trained model with a ViT [10] image encoder and
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transformer [47] text encoder, respectively. Given an image
x ∈ R3×H×W , with height H and width W , CLIP converts
it into a D-dimensional image features fimg ∈ R(1+N)×D,
where 1 represents the image CLS token, N = HW

P 2 de-
notes the image patch tokens and P is the patch size. Mean-
while, the text encoder takes language text t and generates
the text prompt embeddings ftext ∈ RM×D from the ap-
pended EOS tokens in the text encoder, where M denotes
the number of classes (in this paper, M = 2). Two en-
coders are jointly trained to optimize the cosine similar-
ity between the image CLS token and text prompt embed-
dings using contrastive loss. After pre-training, we can uti-
lize the re-assembled text descriptions for zero-shot testing,
e.g., a simple template of ‘this photo is [CLASS]’, where
‘[CLASS]’ is replaced by class names like ‘real’ or ‘fake’.
Given the testing image and text prompts, we have the pre-
dicted similarity of class i ∈ {0, 1}, where 0 represents
‘real’ and 1 is ‘fake’, as follows

S(i) = cos(f
(0)
img, f

(i)
text), (1)

where cos(·) is the cosine similarity, f (0)
img denotes the image

CLS token at index 0 of fimg . Further, the corresponding
possibility can be derived via a softmax function

P (i) =
exp(S(i)/τ)∑
k exp(S(k)/τ)

, (2)

where τ is the temperature parameter.

3.2. Forgery-aware adapter (FAA)

To adapt the image features for effective forgery adapta-
tion, we insert forgery-aware adapters to bridge adjacent
ViT stages, each encompassing multiple ViT layers, in the
image encoder, as shown in Figure 3. These adapters dis-
cern and integrate forgery traces within both image and fre-
quency domains, enabling a comprehensive local viewpoint
of image features.
Image forgery extractor. In the image domain, FAA con-
structs a lightweight image forgery extractor, comprising
two convolution layers and a ReLU layer for capturing low-
level image artifacts, as follows

ĝ
(j)
img = Conv(ReLU(Conv(g

(j)
img))), (3)

where ĝ(j)img represents the adapted forgery-aware image fea-

tures from FAA in j-th ViT stage, and g
(j)
img is the vanilla

features from the last multi-head attention module in j-th
ViT stage. Here, we omit the reshape operators.
Frequency forgery extractor. For the frequency domain,
a grouped attention mechanism is proposed to mine forgery
traces in the frequency bands of discrete wavelet transform
(DWT) [32]. Although previous detection methods [21, 37]

adopt fast Fourier transform [1] and discrete cosine trans-
form [40], they destroy the position information [28] in the
transformed frequency domain, which is crucial in the con-
text of attention modeling [10]. Thus, we utilize DWT as
the transform function, retaining the spatial structure of im-
age features, which decomposes the inputs into 4 distinct
frequency bands, including LL, LH, HL, and HH. Here,
combinations of ‘L’ and ‘H’ represent the combined low and
high pass filters. Then, two grouped attention modules, i.e.,
inter-band attention and intra-band attention, are proposed
for the extraction of frequency clues. As indicated in Fig-
ure 3, the inter-band attention explicitly explores the inter-
actions across diverse frequency bands, while the intra-band
attention builds interactions within each frequency band.
This design achieves the dynamical aggregation of differ-
ent positions and bands, rather than manual weighting like
F3Net [37]. In practice, we implement them with multi-
head attention modules [47]. Finally, FFN and inverse dis-
crete wavelet transform (IDWT) are used to obtain forgery-
aware frequency features ĝ(j)freq , which are transformed back
into the image domain for further incorporation.

To prevent introducing hyper-parameters, we leverage a
learnable scale factor λ to control the information from im-
age and frequency domains as the final adapted image fea-
tures of j-th stage of ViT, which will be sent to the first
multi-head attention module in the next (j + 1)-th stage.

ĝ(j) = ĝ
(j)
img + λ · ĝ(j)freq. (4)

3.3. Language-guided alignment (LGA)

To supervise the forgery adaptation of FatFormer, language-
guided alignment is proposed by considering the contrastive
objectives between image and text prompts. In a bit more
detail, LGA has a patch-based enhancer that enriches the
context of text prompts, and a text-guided interactor that
aligns the local image patch tokens with global text prompt
embeddings. Finally, we implement an augmented con-
trastive objective for the loss calculation.
Patch-based enhancer. Instead of using hand-crafted tem-
plates as prompts, FatFormer has a soft prompt design
by adopting auto context embeddings, following [53, 54].
Since synthetic image detection relies on local forgery de-
tails [4, 51], we develop a patch-based enhancer to enhance
the contextual relevance of prompts via the condition of lo-
cal image patch tokens, deriving forgery-relevant prompts
context. Specifically, we first compute the image patch to-
kens f (1:N)

img ∈ RN×D in the image encoder. Then, given C

context embeddings pctx ∈ RC×D, we have

Apbe = pctx · (f (1:N)
img )T , (5)

where Apbe ∈ RC×N is the similarity matrix in patch-based
enhancer. We use Apbe to represent the intensity of image
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patch tokens for constructing each context embedding, as
follows

p̂ctx = softmax(Apbe) · f (1:N)
img + pctx. (6)

Finally, we can obtain the set of possible text prompts by
combining the enhanced context p̂ctx and M [CLASS] em-
beddings, and send them to the text encoder.
Text-guided interactor. To guide the image encoder fo-
cusing on forgery-related representation, we propose a text-
guided interactor, which aligns the local image patch tokens
with global text prompt embeddings. Specifically, given the
text prompt embeddings ftext from text encoder and im-
age patch tokens f

(1:N)
img , our text-guided interactor calcu-

lates the similarity Atgi between them by

Atgi = f
(1:N)
img · (ftext)T . (7)

Similar to Eq. (6), with Atgi, sized RN×M , we align the
image patch tokens with text prompt embeddings by adap-
tively augmenting text representations, as follows

f̂
(1:N)
img = softmax(Atgi) · ftext + f

(1:N)
img , (8)

where f̂
(1:N)
img denotes the aligned image patch tokens. To-

gether with the augmented contrastive objectives, the image
encoder is guided to concentrate on forgery-related repre-
sentation within each distinct image patch.
Augmented contrastive objectives. For the loss calcu-
lation, we consider augmented contrastive objectives that
comprise two elements. The first is the cosine similarity in
Eq. (1) same as the vanilla CLIP. The second is the simi-
larity between text prompt embeddings and aligned image
patch tokens f̂

(1:N)
img . With t ∈ [1, N ] and i ∈ {0, 1}, we

have

S′(i) =
1

N

∑
t

cos(f̂
(t)
img, f

(i)
text). (9)

By merging similarities from Eq. (1) and Eq. (9), our Fat-
Former describes a augmented probability P̂ (i) by a soft-
max function, as follows

P̂ (i) =
exp((S(i) + S′(i))/τ)∑
k exp((S(k) + S′(k))/τ)

. (10)

In practice, we apply the cross-entropy function on Eq. (10)
with label y ∈ {0, 1} to calculate contrastive loss like the
origin CLIP, as follows

L = −y · log P̂ (y)− (1− y) · log(1− P̂ (y)). (11)

4. Experiments
4.1. Settings

Datasets. As generative methods are always coming up,
we follow the standard protocol [35, 46, 48] that limits

the accessible training data to only one generative model,
while testing on unseen data, such as synthetic images from
other GANs and diffusion models. Specifically, we train
FatFormer on the images generated by ProGAN [23] with
two different settings, including 2-class (chair, horse) and
4-class (car, cat, chair, horse) data from [48]. For eval-
uation, we collect the testing GANs dataset provided in
[48] and diffusion model datasets in [35, 49], which contain
synthetic images and the corresponding real images. The
testing GANs dataset includes ProGAN [23], StyleGAN
[24], StyleGAN2 [25], BigGAN [2], CycleGAN [55], Star-
GAN [7], GauGAN [36] and DeepFake [42]. On the other
hand, the diffusion part consists of PNDM [30], Guided [9],
DALL-E [39], VQ-Diffusion [14], LDM [41], and Glide
[34]. For LDM and Glide, we also consider their vari-
ants with different generating settings. More details can be
found in their official papers.
Evaluation metric. The accuracy (ACC) and average pre-
cision (AP) are reported as the main metrics during eval-
uation for each generative model, following the standard
process [35, 46, 48]. To better evaluate the overall model
performance over the GANs and diffusion model datasets,
we also adopt the mean of ACC and AP on each dataset,
denoted as ACCM and APM .
Implementation details. Our main training and testing set-
tings follow the previous study [35]. The input images are
first resized into 256 × 256, and then image cropping is
adopted to derive the final resolution of 224 × 224. We
apply random cropping and random horizontal flipping at
training, while center cropping at testing, both with no other
augmentations. The Adam [26] is utilized with betas of
(0.9, 0.999). We set the initial learning rate as 4 × 10−4,
training epochs as 25, and adopt a total batch size of 256.
Besides, a learning rate schedule is used, decaying at every
10 epochs by a factor of 0.9.

4.2. Main results

This paper aims to build a better paradigm with pre-trained
models for synthetic image detection. Therefore, we mainly
compare our FatFormer with previous methods that adopt
the fixed pre-trained paradigm, such as LGrad [46] and
UniFD [35]. In addition, to show the effectiveness of
our approach, we also consider comparisons with exist-
ing image-based [3, 45, 48] and frequency-based methods
[11, 12, 20, 21, 37].
Comparisons on GANs dataset. Table 1 reports the com-
parisons on the GANs dataset [48] with two different train-
ing data settings. Results show that our FatFormer con-
sistently exceeds pre-trained-based LGrad [46] and UniFD
[35]. Specifically, under 4-class supervision, FatFormer
outperforms the current state-of-the-art method UniFD by
a significant 9.3% ACC and 1.4% AP with the same pre-
trained CLIP model, achieving 98.4% ACC and 99.7%
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Table 1. Accuracy and average precision comparisons with state-of-the-art methods on GANs dataset. We report the performance (in
the formulation of ACC / AP) with two different training settings, including supervision from 2-class and 4-class ProGAN data, following
[48]. Besides, we also provide the reference (Ref) for previous frameworks. † denotes only trained on self-blended images of FF++ [42].
The performance (ACCM / APM ) over the entire dataset is marked in gray . The best results are highlighted in bold.

Methods Ref ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean

2-
cl

as
s

su
pe

rv
is

io
n

Wang [48] CVPR 2020 64.6 / 92.7 52.8 / 82.8 75.7 / 96.6 51.6 / 70.5 58.6 / 81.5 51.2 / 74.3 53.6 / 86.6 50.6 / 51.5 57.3 / 79.6

Durall [11] CVPR 2020 79.0 / 73.9 63.6 / 58.8 67.3 / 62.1 69.5 / 62.9 65.4 / 60.8 99.4 / 99.4 67.0 / 63.0 50.5 / 50.2 70.2 / 66.4

Frank [12] ICML 2020 85.7 / 81.3 73.1 / 68.5 75.0 / 70.9 76.9 / 70.8 86.5 / 80.8 85.0 / 77.0 67.3 / 65.3 50.1 / 55.3 75.0 / 71.2

F3Net [37] ECCV 2020 97.9 / 100.0 84.5 / 99.5 82.2 / 99.8 65.5 / 73.4 81.2 / 89.7 100.0 / 100.0 57.0 / 59.2 59.9 / 83.0 78.5 / 88.1

BiHPF [20] WACV 2022 87.4 / 87.4 71.6 / 74.1 77.0 / 81.1 82.6 / 80.6 86.0 / 86.6 93.8 / 80.8 75.3 / 88.2 53.7 / 54.0 78.4 / 79.1

FrePGAN [21] AAAI 2022 99.0 / 99.9 80.8 / 92.0 72.2 / 94.0 66.0 / 61.8 69.1 / 70.3 98.5 / 100.0 53.1 / 51.0 62.2 / 80.6 75.1 / 81.2

LGrad [46] CVPR 2023 99.8 / 100.0 94.8 / 99.7 92.4 / 99.6 82.5 / 92.4 85.9 / 94.7 99.7 / 99.9 73.7 / 83.2 60.6 / 67.8 86.2 / 92.2

UniFD [35] CVPR 2023 99.7 / 100.0 78.8 / 97.4 75.4 / 96.7 91.2 / 99.0 91.9 / 99.8 96.3 / 99.9 91.9 / 100.0 80.0 / 89.4 88.1 / 97.8

Ours − 99.8 / 100.0 87.7 / 97.4 91.1 / 99.3 98.9 / 99.9 99.9 / 100.0 100.0 / 100.0 99.9 / 100.0 89.4 / 97.3 95.8 / 99.2

4-
cl

as
s

su
pe

rv
is

io
n

Wang [48] CVPR 2020 91.4 / 99.4 63.8 / 91.4 76.4 / 97.5 52.9 / 73.3 72.7 / 88.6 63.8 / 90.8 63.9 / 92.2 51.7 / 62.3 67.1 / 86.9

Durall [11] CVPR 2020 81.1 / 74.4 54.4 / 52.6 66.8 / 62.0 60.1 / 56.3 69.0 / 64.0 98.1 / 98.1 61.9 / 57.4 50.2 / 50.0 67.7 / 64.4

Frank [12] ICML 2020 90.3 / 85.2 74.5 / 72.0 73.1 / 71.4 88.7 / 86.0 75.5 / 71.2 99.5 / 99.5 69.2 / 77.4 60.7 / 49.1 78.9 / 76.5

PatchFor [3] ECCV 2020 97.8 / 100.0 82.6 / 93.1 83.6 / 98.5 64.7 / 69.5 74.5 / 87.2 100.0 / 100.0 57.2 / 55.4 85.0 / 93.2 80.7 / 87.1

F3Net [37] ECCV 2020 99.4 / 100.0 92.6 / 99.7 88.0 / 99.8 65.3 / 69.9 76.4 / 84.3 100.0 / 100.0 58.1 / 56.7 63.5 / 78.8 80.4 / 86.2

Blend† [45] CVPR 2022 58.8 / 65.2 50.1 / 47.7 48.6 / 47.4 51.1 / 51.9 59.2 / 65.3 74.5 / 89.2 59.2 / 65.5 93.8 / 99.3 61.9 / 66.4

BiHPF [20] WACV 2022 90.7 / 86.2 76.9 / 75.1 76.2 / 74.7 84.9 / 81.7 81.9 / 78.9 94.4 / 94.4 69.5 / 78.1 54.4 / 54.6 78.6 / 77.9

FrePGAN [21] AAAI 2022 99.0 / 99.9 80.7 / 89.6 84.1 / 98.6 69.2 / 71.1 71.1 / 74.4 99.9 / 100.0 60.3 / 71.7 70.9 / 91.9 79.4 / 87.2

LGrad [46] CVPR 2023 99.9 / 100.0 94.8 / 99.9 96.0 / 99.9 82.9 / 90.7 85.3 / 94.0 99.6 / 100.0 72.4 / 79.3 58.0 / 67.9 86.1 / 91.5

UniFD [35] CVPR 2023 99.7 / 100.0 89.0 / 98.7 83.9 / 98.4 90.5 / 99.1 87.9 / 99.8 91.4 / 100.0 89.9 / 100.0 80.2 / 90.2 89.1 / 98.3

Ours − 99.9 / 100.0 97.2 / 99.8 98.8 / 99.9 99.5 / 100.0 99.3 / 100.0 99.8 / 100.0 99.4 / 100.0 93.2 / 98.0 98.4 / 99.7

Table 2. Accuracy and average precision comparisons with state-of-the-art methods on diffusion model dataset. Models here are
trained on the 4-class ProGAN data. We transpose the table for better readability. Notations are consistent with Table 1.

Dataset Wang [48] Durall [11] Frank [12] PatchFor [3] F3Net [37] Blend† [45] LGrad [46] UniFD [35] Ours

PNDM 50.8 / 90.3 44.5 / 47.3 44.0 / 38.2 50.2 / 99.9 72.8 / 99.5 48.2 / 48.1 69.8 / 98.5 75.3 / 92.5 99.3 / 100.0

Guided 54.9 / 66.6 40.6 / 42.3 53.4 / 52.5 74.2 / 81.4 69.2 / 70.8 58.3 / 63.4 86.6 / 100.0 75.7 / 85.1 76.1 / 92.0

DALL-E 51.8 / 61.3 55.9 / 58.0 57.0 / 62.5 79.8 / 99.1 71.6 / 79.9 52.4 / 51.6 88.5 / 97.3 89.5 / 96.8 98.8 / 99.8

VQ-Diffusion 50.0 / 71.0 38.6 / 38.3 51.7 / 66.7 100.0 / 100.0 100.0 / 100.0 77.1 / 82.6 96.3 / 100.0 83.5 / 97.7 100.0 / 100.0

LDM
200 steps 52.0 / 64.5 61.7 / 61.7 56.4 / 50.9 95.6 / 99.9 73.4 / 83.3 52.6 / 51.9 94.2 / 99.1 90.2 / 97.1 98.6 / 99.8

200 w/ CFG 51.6 / 63.1 58.4 / 58.5 56.5 / 52.1 94.0 / 99.8 80.7 / 89.1 51.9 / 52.6 95.9 / 99.2 77.3 / 88.6 94.9 / 99.1

100 steps 51.9 / 63.7 62.0 / 62.6 56.6 / 51.3 95.8 / 99.8 74.1 / 84.0 53.0 / 54.0 94.8 / 99.2 90.5 / 97.0 98.7 / 99.9

Glide
100-27 53.0 / 71.3 48.9 / 46.9 50.4 / 40.8 82.8 / 99.1 87.0 / 94.5 59.4 / 64.1 87.4 / 93.2 90.7 / 97.2 94.4 / 99.1

50-27 54.2 / 76.0 51.7 / 49.9 52.0 / 42.3 84.9 / 98.8 88.5 / 95.4 64.2 / 68.3 90.7 / 95.1 91.1 / 97.4 94.7 / 99.4

100-10 53.3 / 72.9 54.9 / 52.3 53.6 / 44.3 87.3 / 99.7 88.3 / 95.4 58.8 / 63.2 89.4 / 94.9 90.1 / 97.0 94.2 / 99.2

Mean 52.4 / 70.1 51.7 / 51.8 53.2 / 50.2 84.5 / 97.8 80.6 / 89.2 57.6 / 60.0 89.4 / 97.7 85.4 / 94.6 95.0 / 98.8

AP. Besides, for the other 2-class supervision setting, sim-
ilar trends are observed with the ones under 4-class su-
pervision, when compared with pre-trained-based methods.
Moreover, we also compare FatFormer with representa-
tive image-based [3, 45, 48] and frequency-based methods
[11, 12, 20, 21, 37] in Table 1. Our approach can also easily
outperform all of them with a larger improvement.

The above evidence indicates the necessity of forgery
adaptation for pre-trained models. Beyond the impressive
performance, more importantly, our FatFormer provides an
effective paradigm of how to incorporate pre-trained models
in the synthetic image detection task.

Comparisons on diffusion model dataset. To further

demonstrate the effectiveness of FatFormer, we provide
comparisons with existing detection methods on the dif-
fusion model dataset [35]. The results are shown in Ta-
ble 2. Note that all the compared methods are trained on
4-class ProGAN data. This test setting is more challenging
as forged images are created by various diffusion models
with completely different generating theories and processes
from GANs. Surprisingly, FatFormer generalizes well for
diffusion models, achieving 95.0% ACC and 98.8% AP.

Compared with pre-trained-based LGrad [46] and
UniFD [35], FatFormer also works better than both of them
when handling diffusion models. For example, our ap-
proach surpasses UniFD by 9.6% ACC and 4.2% AP. More-
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Table 3. Ablation experiments for FatFormer. Evaluated on GANs dataset. Default settings are marked in gray .

(a) Forgery-aware adapter implementations. In the
proposed framework, both image (img) and frequency
(freq) domains are essential for building generalized
forgery representation.

w/ img domain w/ freq domain ACCM APM

✓ ✓ 98.4 99.7
✓ × 95.4 99.6
× ✓ 97.3 99.6

(b) Frequency band interactions.
Both inter- and intra-band attentions
are important for modeling forgery
traces in the frequency domain.

interaction ACCM APM

intra 97.4 99.7
inter 96.6 99.6

intra & inter 98.4 99.7

(c) Benefits of supervision in vision-language space.
On the model only with img input, text is first added
for building contrastive (contra) objectives. Then, we
apply the proposed augmented (aug) contra strategy.

input modality strategy ACCM APM

only img linear probe 95.3 99.2
img & text contra 96.4 99.6
img & text aug contra 98.4 99.7

(d) Text prompt designs. The auto embedding and img condition
can benefit the performance, especially by considering the corre-
lation between prompt and img patch tokens.

prompt designs w/ img condition ACCM APM

fixed template × 95.5 99.6
auto embedding × 96.4 99.6
auto embedding CLS token 98.1 99.7
auto embedding patch tokens 98.4 99.7

(e) Model components. Both components are essential in our FatFormer. We also
conduct an extra experiment to test the zero-shot performance by removing the
forgery-aware adapter and language-guided alignment.

module components ACCM APM

none for zero-shot 66.6 74.3
forgery-aware adapter 95.3 99.2

language-guided alignment 91.5 98.1
forgery-aware adapter & language-guided alignment 98.4 99.7

over, we find that even with powerful CLIP as the pre-
trained model, UniFD only achieves a similar result (about
85% ACC) like PatchFor [3]. We argue this is mainly be-
cause the fixed pre-trained paradigm is prone to yield de-
tectors with insufficient learning regarding forgery artifacts.
Thus, our FatFormer, which presents an adaptive trans-
former framework with forgery adaptation and reasonable
contrastive objectives, can achieve much better results.

4.3. Ablation study

We conduct several ablation experiments to verify the effec-
tiveness of key elements in our FatFormer. Unless specified,
we report the mean of accuracy (ACCM ) and average preci-
sion (APM ) on the GANs dataset under the training setting
of 4-class ProGAN data.
Forgery-aware adapter implementations. We ablate the
effects of considering the image domain and frequency do-
main in the forgery-aware adapter. The results are shown
in Table 3a. We observe severe performance degradation
when removing either of these two domains, especially for
the frequency domain with over −3.0% ACC gaps. We
conclude that both image and frequency domains are essen-
tial in FatFormer for synthetic image detection. The image
forgery extractor collects the local low-level forgery arti-
facts, e.g., blur textures, while the frequency forgery extrac-
tor explores and gathers the forgery clues among different
frequency bands, together building a comprehensive local
viewpoint for the adaptation of image features.

For the frequency forgery extractor, both interactions
built by inter-band and intra-band attentions are important
in our FatFormer. Table 3b shows the ablation.
Benefits of supervision in vision-language space. Ta-
ble 3c provides the comparisons between different super-
vising strategies for FatFormer, including (i) linear prob-
ing with image modality, (ii) vanilla contrastive objectives
between image CLS token and text prompt embeddings,
which masked out the text-guided interactor, and (iii) our

augmented contrastive objectives. The results demonstrate
that introducing text prompts for contrastive supervision
benefits the generalization of detection. We conjecture this
is mainly because CLIP provides a stable alignment be-
tween real image and text representation with pre-training,
thus yielding a mismatching when handling a fake image
with text prompts. As potential evidence, we find that only
adopting LGA can still achieve an accuracy of 91.5% ACC
(Table 3e). Besides, we observe that the proposed aug-
mented contrastive objectives can further boost generaliz-
ability by directing the image encoder to concentrate on
forgery-related representations, bringing a 2.0% ACC gain
over the vanilla implementation.
Text prompt designs. Table 3d gives the results of con-
structing the text prompt with different prompt designs and
image conditions. The results validate that both auto con-
text embeddings and image conditions are important in text
prompt designs. Compared with using a fixed hand-crafted
template, e.g., ‘this photo is’, the design of auto context em-
bedding improves by 0.9% ACC, due to its abstract explo-
ration in word embedding spaces. Besides, it is better to
adopt image patch tokens as conditions to enhance these
auto context embeddings, containing more local context de-
tails, rather than the global image CLS token.
Model components. Tabel 3e gives the ablation of two
proposed model components, i.e., forgery-aware adapter
and language-guided alignment. Large performance drops
(−6.9% ACC and −1.6% AP) are observed when adopt-
ing the previous fixed pre-trained paradigm by removing
the forgery-aware adapter. This explains the necessity of
forgery adaptation of pre-trained models. On the other
hand, the proposed language-guided alignment, which con-
siders the augmented contrastive objectives in the vision-
language space, also provides better supervision for the
forgery adaptation than simply adopting binary labels,
bringing 3.1% ACC and 0.5% AP gains.

As shown in Figure 4, using language-guided align-
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Figure 4. Comparison of model attention with (w/ ) and without (w/o) language-guided alignment. We visualize the gradient norm of
FatFormer (second row) and FatFormer without language-guided alignment (first row) by [43]. FatFormer provides more responses among
semantic foreground patches in fake images, while almost no response for real ones. The salient region is visualized by bright color.

ment obtains more concentration on semantic foreground
patches, where anomalies, e.g., unrealistic objects, textures,
or structures often occur. Therefore, our FatFormer can ob-
tain generalized forgery representations by focusing on lo-
cal forgery details, resulting in the improvement of the gen-
eralizability of synthetic image detection.

4.4. More analysis

Here, we analyze our FatFormer on different architectures
and pre-training strategies.
Analysis on different architectures. While FatFormer
is constructed upon the identical CLIP framework [38] as
employed in UniFD [35], the proposed forgery adaptation
strategy is transferrable to alternative architectures. Pre-
sented in the upper section of Table 4 are the ACCM and
APM scores for four distinct architectures, including two
variations of multi-modal structures pre-trained by CLIP
and two variants of image-based Swin transformer [31] pre-
trained on ImageNet 22k [8]. The comparisons between
models with and without FatFormer verify the efficacy of
integrating forgery adaptation among different pre-trained
architectures, significantly facilitating the performance of
synthetic image detection.
Analysis on different pre-training strategies. We further
conduct an assessment of the efficacy of forgery adaptation
across models employing different pre-training strategies.
Utilizing ViT-L [10] as the baseline, we validate two well-
known pre-training approaches: MAE [15] and CAE [6].
The evaluations are shown in the lower segment of Table 4.
We observe that incorporating the forgery adaptation in our
FatFormer can lead to a consistent increase in performance
across diverse pre-training strategies, demonstrating the ro-
bustness and transferability of our approach.

5. Conclusion
In this paper, we present a novel adaptive transformer, Fat-
Former, for generalizable synthetic image detection. With
two core designs, including the forgery-aware adapter and

Table 4. Analysis on different architectures and pre-training
strategies. Beyond UniFD, the forgery adaptation in FatFormer
can also consistently boost various architectures and different pre-
training strategies. We report the mean of ACC and AP (in the
formulation of ACCM / APM ) on both GANs and diffusion model
(DMs) datasets. ‘IN-22K’= ImageNet 22k.

Architecture Pre-training w/ Ours GANs DMs

ViT-B/16
Text-512 CLIP [38]

× 83.8 / 94.4 77.2 / 91.1

✓ 95.3 / 99.5 91.6 / 97.8

ViT-L/14
Text-768 CLIP [38]

× 89.1 / 98.3 85.4 / 94.6

✓ 98.4 / 99.7 95.0 / 98.8

Swin-B IN-22K [8]
× 82.5 / 93.8 72.2 / 88.8

✓ 89.6 / 98.2 76.1 / 96.1

Swin-L IN-22K [8]
× 86.4 / 95.7 74.4 / 90.8

✓ 90.7 / 98.4 79.3 / 96.7

ViT-L/16

MAE [15]
× 75.7 / 92.8 70.9 / 92.3

✓ 85.2 / 96.7 88.5 / 98.4

CAE [6]
× 76.1 / 95.9 64.9 / 91.7

✓ 88.1 / 98.0 76.1 / 96.2

language-guided alignment, for the forgery adaption of pre-
trained models, the proposed approach outperforms the pre-
vious fixed pre-trained paradigm by a large margin. Be-
sides, the forgery adaption in FatFormer is also flexible,
which can be applied in various pre-trained architectures
with different pre-training strategies. We hope FatFormer
can provide insights for exploring better utilization of pre-
trained models in the synthetic image detection field.
Limitations and future works. FatFormer generalizes well
on most generative methods, while we still have space to
improve in diffusion models, e.g., Guided [9]. Elucidating
the distinctions and associations among images produced
by diffusion models and GANs is needed to build stronger
forgery detectors. The investigation of this problem is left
in future work. Besides, how to construct a better pretext
task special for synthetic image detection in pre-training is
also worth a deeper study.
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A. Appendix
In this appendix, we first discuss the potential negative soci-
etal impacts (refer to Section A.1) that may arise in practical
scenarios. Then, an in-depth exploration of ablation studies
(explicated in Section A.2) is presented, delineating the in-
fluence of hyper-parameters employed within our approach.
Lastly, a comprehensive analysis is conducted to assess the
efficacy of forgery adaptation in enhancing robustness (out-
lined in Section A.3) against image perturbations.

A.1. Broader impacts

The development of synthetic image detection tools, while
aiming to combat misinformation, may lead to unintended
consequences in content moderation. Legitimate content
that exhibits characteristics similar to forgeries may be mis-
takenly flagged, impacting normal information (based on
image modality) sharing. These issues need further research
and consideration when deploying this work to practical ap-
plications for content moderation.

A.2. More Ablations

We provide more ablation studies on the hyper-parameters
used in our FatFormer. The training and evaluating settings
are the same as Section 4.3.
Number of auto context embeddings. FatFormer com-
bines the enhanced context embeddings and [CLASS] em-
beddings to construct the set of possible text prompts. Here,
we ablate the effects of how a pre-defined number of con-
text embeddings in text prompts affects the performance in
the following table:

#embeddings ACCM APM

4 97.6 99.0
8 98.4 99.7
16 97.8 99.6

One can see that 8 auto context embeddings are good
enough and achieve better results than 16 embeddings.
Thus, we set the number as 8 by default in this paper.
Number of forgery-aware adapters. To achieve effective
forgery adaptation, FatFormer develops the forgery-aware
adapter and integrates it with the ViT image encoder. The
number of inserted forgery-aware adapters is to be explored.
The following table lists the relevant ablations:

#adapters ACCM APM

2 97.2 99.6
3 98.4 99.7
4 96.5 99.7

We observe that inserting 3 forgery-aware adapters in the
image encoder is able to achieve good performance. There-
fore, we set 3 as the default number of the forgery-aware
adapter in our FatFormer.
Kernel size of image forgery extractor. To capture low-
level image artifacts, we introduce a lightweight image

forgery extractor in the proposed forgery-aware adapter, in-
cluding two convolutional layers and a ReLU. We also ex-
plore settings of the kernel size of convolutional layers, as
follows:

kernel size ACCM APM

1 98.4 99.7
3 96.4 99.7
5 95.6 99.6

We find that using 1 × 1 kernel yields superior results in
constructing the image forgery extractor. We conjecture that
this is mainly because the intermediate image patch tokens
in ViT encode high-level semantic information of different
image patches, which may not provide useful low-level sim-
ilarity among adjacent positions like the ones in traditional
convolutional networks. Thus, larger kernels, designed to
fuse adjacent patch tokens, may introduce disturbance to
the modeling process of ViT and damage the performance.

A.3. Robustness on image perturbation

To evaluate the effects of forgery adaptation in FatFormer
on robustness, we apply several common image perturba-
tions to the test images, following [12, 46]. Specifically, we
adopt random cropping, Gaussian blurring, JPEG compres-
sion, and Gaussian noising, each with a probability of 50%.
The detailed perturbation configures can be found in [12].
Based on the GANs dataset, we compare our FatFormer
with UniFD [35] and LGrad [46], which adopts the fixed
pre-trained paradigm. The results are shown in the follow-
ing table:

Perturbation Method ACCM APM

Gaussian blurring
LGrad 78.5 83.2

UniFD 78.1 93.0

FatFormer 90.7 98.1

random cropping
LGrad 85.0 91.9

UniFD 88.9 98.1

FatFormer 98.2 99.7

JPEG compression
LGrad 69.5 81.2

UniFD 88.4 97.7

FatFormer 95.9 99.2

Gaussian noising
LGrad 69.1 79.4

UniFD 82.6 93.9

FatFormer 88.0 96.5

It can be observed that our approach exceeds UniFD by a
larger margin, e.g., over +12.0% facing Gaussian blurring.
This is mainly because FatFormer obtains well-generalized
forgery representations with the proposed forgery adaption,
as analyzed in Section 4.3.

Moreover, we also consider a more real-world scenario
by combining all four types of perturbation. The results
are illustrated in Figure 5. Compared with UniFD, our Fat-
Former also beats it on all testing GAN methods, further
suggesting the robustness improvement brought by forgery
adaptation.
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Figure 5. Robustness comparisons with combined four image perturbations. We report the accuracy results on the GANs dataset. By
considering the forgery adaptation, our FatFormer works better on all generative models than UniFD which adopts the fixed pre-trained
paradigm.
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