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Abstract— To develop the next generation of intelligent Li-
DARs, we propose a novel framework of parallel LiDARs and
construct a hardware prototype in our experimental platform,
DAWN (Digital Artificial World for Natural). It emphasizes the
tight integration of physical and digital space in LiDAR systems,
with networking being one of its supported core features. In the
context of autonomous driving, V2V (Vehicle-to-Vehicle) tech-
nology enables efficient information sharing between different
agents which significantly promotes the development of LiDAR
networks. However, current research operates under an ideal
situation where all vehicles are equipped with identical LiDAR,
ignoring the diversity of LiDAR categories and operating fre-
quencies. In this paper, we first utilize OpenCDA and RLS (Re-
alistic LiDAR Simulation) to construct a novel heterogeneous
LiDAR dataset named OPV2V-HPL. Additionally, we present
HPL-ViT, a pioneering architecture designed for robust feature
fusion in heterogeneous and dynamic scenarios. It uses a graph-
attention Transformer to extract domain-specific features for
each agent, coupled with a cross-attention mechanism for the fi-
nal fusion. Extensive experiments on OPV2V-HPL demonstrate
that HPL-ViT achieves SOTA (state-of-the-art) performance in
all settings and exhibits outstanding generalization capabilities.

I. INTRODUCTION

LiDAR sensor plays a crucial role in vehicle perception
systems that enables the understanding of 3D structural
information. Driven by the rapid development of artificial
intelligence and communication technologies, LiDAR sys-
tems are steadily advancing toward digitization, networking,
and intelligence [1]. To construct smart LiDARs, we propose
a novel parallel LiDAR framework based on the theory of
parallel intelligence [2], [3]. It aims to efficiently utilize
software systems to enhance the sensing capabilities of
physical LiDARs, emphasizing the significance of digital
space in LiDAR systems. We have also developed a hardware
prototype using the parallel sensing platform known as
DAWN [4]. Parallel LiDARs can utilize software to redefine
hardware operations to achieve adaptive perception of the
scene. The full name of DAWN is “Digital Artificial World
for Natural” and it is a comprehensive platform designed
for developing the next-generation intelligent sensors. In this
paper, the networking capabilities of parallel LiDARs with a
focus on autonomous driving scenarios will be investigated.
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Fig. 1. A heterogeneous scenario with different LiDARs.

V2V (Vehicle-to-Vehicle) technology enables efficient data
sharing among autonomous vehicles which can effectively
improve their perception performance [5]. Compared to shar-
ing raw data [6] and detection results [7], [8], intermediate
feature sharing is the prevailing method in V2V cooperative
perception [9], [10], [11], [12]. It can not only achieve high
perception accuracy but also conserve valuable communi-
cation bandwidth. Currently, several datasets have been re-
leased for evaluating fusion methods in V2V, such as OPV2V
[13] collected in the CARLA simulator [14], and V2V4Real
[15] gathered from real-world scenarios. However, these
datasets all assume that each agent is equipped with an
identical LiDAR, representing a significant simplification of
real scenes. As illustrated in Figure 1, it is common to
observe that different LiDAR systems are employed in the
same scenario. Besides, each vehicle also has the flexibility
to adjust the working frequency of its LiDARs, introducing
an additional heterogeneity of frequency. Furthermore, the
proposed software-defined adaptive parallel LiDARs will
exacerbate sensor heterogeneity in the real application.

In this work, our primary focus lies in achieving robust co-
operative perception among heterogeneous parallel LiDARs
in V2V, with the aim of minimizing model performance
degradation in complex scenarios. To investigate this is-
sue, our first step involves the collection of a new dataset
that encompasses diverse LiDAR sensors. Considering the
high costs of collecting data in physical contexts, we use
OpenCDA [16] in conjunction with RLS (Realistic LiDAR
Simulation) [17] to construct a novel dataset in the CARLA
simulator known as OPV2V-HPL. We replay all scenes from
OPV2V and perform data collection using four high-fidelity
LiDAR models in RLS at two different operating frequencies.
Then a novel HPL-ViT (Heterogeneous Parallel LiDARs-
Vision Transformer) framework for feature fusion among
different LiDARs is introduced. It effectively leverages prior

ar
X

iv
:2

30
9.

15
57

2v
1 

 [
cs

.C
V

] 
 2

7 
Se

p 
20

23



Fig. 2. Hardware prototype of parallel LiDARs in DAWN platform.

information regarding LiDAR categories and operating fre-
quencies to optimize its performance. Each vehicle initially
generates BEV (Bird’s Eye View) feature maps and shares
them with connected agents. The received feature maps
are subsequently merged through HPL-ViT which com-
prises multi-scale graph-attention and bi-directional cross-
attention architectures. Extensive experiments on OPV2V-
HPL demonstrate that HPL-ViT consistently attains SOTA
(state-of-the-art) results in all experimental scenarios. It
exhibits substantial improvements in scenes with greater
heterogeneity. Besides, HPL-ViT presents impressive gen-
eralizability in dynamic scenarios and with varying ego
LiDAR, delivering a performance improvement of at least
3.3% over other fusion methods. The main contribution of
this paper can be summarized as follows:

• To the best of our knowledge, this is the pioneering
work that explores the heterogeneity of LiDAR systems
in V2V. We utilize the combined power of OpenCDA
and RLS to construct OPV2V-HPL, which is an en-
hanced version of OPV2V.

• We propose an innovative HPL-ViT framework to im-
prove feature interaction among diverse LiDARs. Our
approach incorporates category and frequency encod-
ings for graph attention computations without imposing
a significant increase in communication bandwidth.
Then bi-directional cross-attention mechanism is in-
troduced to merge features from both category and
frequency branches.

• Each module in HPL-ViT can be seamlessly integrated
into other methods to further improve perception per-
formance. We will soon release our dataset and codes.

II. RELATED WORK

A. Parallel LiDARs

Parallel LiDARs represent a novel category of intelligent
LiDARs founded on parallel intelligence [2]. Parallel intelli-
gence is a pioneering methodological framework introduced
by Prof. Fei-Yue Wang [18], which emphasizes the tight
integration of physical and digital realms. It has found exten-
sive applications across various domains, including control
[19], [20], sensing [21], [22], and autonomous driving [23],
[24]. In the context of parallel sensing, an experimental

platform known as DAWN has been constructed [4]. It sup-
ports the development of next-generation intelligent sensors
such as LiDARs and the light field system [25]. [2] pro-
poses the framework of parallel LiDARs which consists of
three primary parts: descriptive, predictive, and prescriptive
LiDARs. Descriptive LiDARs aim to construct complete
digital LiDAR systems; predictive LiDARs underscore the
significance of computational experiments in cyberspace;
while prescriptive LiDARs facilitate real-time interaction
between physical and digital LiDARs. As shown in Figure
2, [4] introduces a hardware prototype of parallel LiDAR in
DAWN. It allows for real-time optimization of perceptual
resource allocation assisted by digital LiDARs in high-
definition maps. [26] creates a point cloud dataset of parallel
LiDARs under adverse weather, and [3] discusses the self-
maintenance problem. In this article, we focus on the robust
cooperative perception of heterogeneous parallel LiDARs in
autonomous driving.

B. LiDAR-based 3D Object Detection

LiDAR sensors can provide accurate depth and structural
information in autonomous driving which can be used for
scene understanding and object identification. According to
different data representations, the LiDAR-based 3D object
detection method can be categorized into four types [27].

• Point-based methods are specifically designed for the
unique structural properties of point clouds which di-
rectly extract features at the individual point level.
PointNet [28], [29] stands out as a pioneering work
in point-based methods that utilizes MLP to efficiently
capture point-wise features and a lot of subsequent
works attempt to optimize feature extraction using graph
operators [30] or Transformer architecture [31].

• Grid-based methods firstly partition point clouds into
regular 2D or 3D voxels and extract features using
the standard convolution networks in 2D vision tasks.
VoxelNet [32] is the first work to generate features
using 3D CNN and SECOND [33] proposes a novel
sparse convolution to efficiently reduce computation. On
the other hand, PointPillars [34] projects point clouds
into the BEV perspective and adopts 2D CNN for data
processing, which offers significant advantages in terms
of processing speed.

• Point-voxel-based methods use a hybrid architecture to
extract features at both point and voxel levels. PV-
RCNN [35] is a typical model that can learn features
from different data representations at each stage.

• Range-based methods convert point clouds into an
image-like format which can be regarded as a sparse
depth map recording range information [36]. Advanced
2D object detection approaches can be directly used for
feature extraction, providing the potential convenience
for multimodal data fusion.

For the sake of real-time performance, we choose Point-
Pillars for intermediate feature extraction in our study.



Fig. 3. The process of cooperative perception with heterogeneous parallel LiDARs in V2V.

Fig. 4. HPL-ViT.

C. Cooperative Perception

Cooperative perception aims to utilize V2V or V2I
(Vehicle-to-Infrastructure) technologies to enhance the vehi-
cle’s perceptual performance. Recent public dataset releases
have significantly advanced this field, such as OPV2V [13]
and V2XSet [9] acquired in CARLA, as well as V2V4Real
[15] and DAIR-V2X [37] captured in physical settings.

Current research on V2V focuses on LiDAR-based 3D
object detection and it can be divided into three main
approaches: early, intermediate, and late fusion. Early fusion
directly transmits raw point cloud data to the ego car [6],
while late fusion only sends the generated 3D bounding
boxes [7]. Intermediate fusion [9], [10], [11], [12], [13]
extracts neural features at first and then shares them for
fusion, achieving a balance between bandwidth and model
accuracy. V2VNet [38] is a pioneering work that proposes a
spatial-aware mechanism to share compressed feature maps.
DiscoNet [39] adopts a graph-based structure to fuse fea-
tures, and [13] suggests a novel single-head self-attention
fusion method. MPDA [40] is an interesting work that in-
vestigates the impact of heterogeneous models on perceptual
performance. A learnable resizer module is applied to align
feature maps of varying sizes and a domain classifier is used
for domain invariant feature extraction. [41] also considers
the difference between LiDARs and cameras in cooperative
perception. In contrast to previous works, we focus on the

issue of heterogeneous LiDARs in V2V and propose a novel
HPL-ViT framework to improve feature fusion performance.

III. METHODOLOGY

In this work, we address a more practical scenario of
V2V in autonomous driving, wherein vehicles are equipped
with diverse LiDAR sensors operating at varying frequencies.
Each vehicle can communicate with its surroundings, and our
primary focus lies in LiDAR-based 3D object detection. As
illustrated in Figure 3, the overall framework consists of four
main parts: feature extraction, data compression and sharing,
HPL-ViT for fusion, and a detection head.

A. Main Architecture

1) Feature Extraction: To optimize inference speed, we
integrate the grid-based PointPillar for extracting intermedi-
ate features from the raw point cloud. It initially partitions
the point cloud into individual pillars and generates a pseudo
image in the BEV perspective. Then a multi-scale CNN
backbone is employed to extract BEV feature maps F (i) ∈
RH×W×C . i represents the agent index, while H , W , and C
correspond to the height, width, and channels, respectively.

2) Data Compression and Sharing: To reduce data trans-
mission bandwidth, we use 1×1 convolution kernels to
compress the feature map into F (i)

′ ∈ RH×W×C0(C0 < C).
The compressed feature maps are subsequently transmitted to
the ego vehicle for intermediate feature fusion. In addition,
each agent is required to share information regarding the
category and operating frequency of their installed LiDARs.
Given our focus on the heterogeneity of LiDARs in this
study, we do not consider factors such as position errors
and communication delays during data transmission.

3) HPL-ViT: HPL-ViT is a novel vision transformer ar-
chitecture that utilizes concatenated feature maps as its input.
Figure 4 provides an overview of the HPL-ViT framework.
Our approach begins by applying multi-scale heterogeneous
graph-attention mechanisms to enhance feature interactions
in both the category and frequency domains. After aligning
the features across multiple scales, we feed them into a
bidirectional cross-attention module for fusion. Although
HPL-ViT incorporates multi-scale computations, it retains



Fig. 5. (a). A heterogeneous graph-attention block. (b). The constructed
heterogeneous graphs.

consistent dimensions for input and output feature maps,
preventing the loss of fine-grained details caused by down-
sampling.

4) Detection Head: We utilize two 1×1 convolution lay-
ers as the detection head, with one responsible for bounding
box regression and the other for classification.

B. HPL-ViT

1) Multi-scale Heterogeneous Graph-attention: Interme-
diate features extracted from different LiDARs exhibit dis-
tinctive characteristics. To address this challenge, we cate-
gorize the LiDAR’s heterogeneity into two types: category
and frequency, and then propose multi-scale heterogeneous
graph-attention to capture domain-specific information. Fig-
ure 5(a) illustrates a complete heterogeneous graph-attention
block which comprises a graph-attention and a local self-
attention layer. The graph-attention layer enhances feature
interactions at the same spatial location across different
feature maps. Additionally, we introduce multi-scale feature
computation to extract more comprehensive semantic infor-
mation at different granularity levels.

Figure 5(b) illustrates the heterogeneous graphs with each
node representing an individual vehicle. We take the category
heterogeneous graph as an example to explain its details.
Each vehicle node i stores the compressed BEV feature map
F (i)

′
and its installed LiDAR category C(i). Eij represents

the edge connecting nodes i and j. Although we use a multi-
head attention mechanism, we only present a single-head
attention scenario in the description for clarity. Multi-head
attention can be easily achieved by concatenating features
extracted from multiple heads. Firstly, we utilize liner layers
to generate the query Q(i), key K(i), and value V (i) vectors
from F (i)

′
. It should be noted that each C(i) corresponds

to a unique set of linear layers. Furthermore, we define two
sets of learnable parameters, WAtt

eij and W v
eij , which are used

for weighting attention maps and values:

Attx(i, j) = softmax(Qx(i)W
Att
eij Kx(j)), (1)

Msgx(i, j) = Vx(j)W
v
eij , (2)

Fig. 6. A bidirectional cross-attention module.

x ∈ R2 denotes the spatial location in feature maps.
Following that, we finalize the feature update for node i:

Gx(i) =
∑

j∈N(i)

Attx(i, j)Msgx(i, j), (3)

N(i) includes all other vehicle nodes engaged in data
interaction with node i. We then incorporate a local self-
attention layer to promote feature interactions within each
node. To acquire multi-scale features, we downsample the
input features and align them using inverse convolution.
We independently concatenate output features from the fre-
quency and category branches to generate Fc(i) and Ff (i).

2) Bidirectional Cross-Attention: A novel bidirectional
architecture stacked with multiple local and global cross-
attention blocks is proposed to integrate features from dif-
ferent branches. Figure 6 presents the structure of a single
cross-attention module.

We begin by aggregating multi-vehicle features into Fc

and Ff ∈ RN×H×W×C , where N represents the count of
connected vehicles. These tensors are then partitioned into
(Hm , W

m , N × m2, C), where each window includes Nm2

tokens for feature interaction. m denotes the window size.
The cross-attention module adopts distinct linear layers to
generate queries, keys, and values for each branch. The
query in the current branch is designed to access the key
and value components of another branch. Following this, the
fused feature is processed through an MLP layer with skip
connections, ensuring robust gradient backpropagation:

Ca = softmax(
QaKb√

dc
)Vb, (4)

C
′

a = Ca + Fa, (5)

C”
a = MLP (LN(C

′

a)) + C
′

a, (6)

The pairs (a, b) corresponds to either
(category, frequency) or (frequency, category), with
dc representing the feature length. Q, K, and V with
subscripts denote the query, key, and value for their
respective branches. To enhance the receptive field, we



adopt an axis-swapping strategy [42], [43] for extracting
global semantic information without introducing additional
complexity. Local attention efficiently captures object-level
details, while global attention uses discrete sampling to
aggregate scene-level global information. We also utilize
multi-head attention in our actual implementation.

IV. EXPERIMENTS

A. Dataset

Our experiments utilize OPV2V-HPL, which is an en-
hanced iteration of OPV2V. OPV2V [13] is the first large-
scale V2V dataset collected in CARLA, comprising a total of
11,464 data frames. It’s split into training, validation, and test
sets with 6,764, 1,981, and 2,719 frames, respectively. Each
data frame incorporates a combination of point cloud and
image data, all of which are captured using CARLA’s default
sensor models. RLS [17] is a high-fidelity LiDAR model
library with consistent parameters of physical LiDARs. We
select four different mechanical LiDARs from RLS and
replay OPV2V scenarios in OpenCDA for data collection.
These LiDARs include Hesai Panda64, Velodyne HDL64,
VLP32, and VLP16 models, each characterized by varying
beam counts and pitch angle distributions. It allows for the
accurate reconstruction of complex LiDAR interactions in
autonomous driving. Additionally, we also take into account
two different operating frequencies: 10 Hz and 20 Hz.

B. Experimental Setup

1) Evaluation Metrics: We use 3D object detection accu-
racy as the metric to evaluate different fusion methods. To
be more specific, we compute the AP (Average Precision) at
IoU (Intersection-over-Union) thresholds of 0.5 and 0.7. In
our experiments, we define the detection range as follows:
x∈ [−140.8, 140.8], and y∈ [−38.4, 38.4].

2) Implementation Details: PointPillars is utilized to gen-
erate intermediate feature maps, which are subsequently fed
into HPL-ViT. We also choose six other methods for com-
parative analysis, including no fusion baseline, OPV2V [13],
V2VNet [38], F-Cooper [44], CoBEVT [43], and late fusion.
We train all the models for 30 epochs using 8 Nvidia V100
GPUs and adopt the Adam optimizer. The initial learning rate
is configured at 0.001, and we employ the cosine annealing
with a warm-up strategy to dynamically adjust the learning
rate. Our loss function comprises two primary components:
a smooth L1 regression loss with a coefficient of 1, and a
focal classification loss with a coefficient of 2.

3) Experimental Scenarios: We establish three distinct
scenarios for evaluation under the assumption that all ego
vehicles are equipped with 20Hz Panda64 LiDARs.

• Normal scenario: In the normal scenario, all other
agents employ a 20Hz Panda64 LiDAR, ensuring con-
sistency with the LiDAR system of the ego vehicle.

• Hetero scenario 1: Vehicles in hetero scenario 1
are outfitted with different LiDARs which are chosen
randomly from the four LiDAR devices stated above.
Despite the diversity in LiDAR types, they all operate
at a uniform frequency of 20 Hz.

Fig. 7. Generalization performance in dynamic scenarios.

Fig. 8. Generalization performance with varying ego LiDARs.

• Hetero scenario 2: Hetero scenario 2 represents a more
intricate and realistic setting, considering both category
and frequency heterogeneity.

C. Quantitative Evaluation

1) Main Performance Analysis: Table I presents the per-
ceptual performance of all methods across different settings.
We observe that nearly all fusion methods have surpassed
the performance of no fusion baseline, and HPL-ViT can
achieve SOTA results in all scenarios. It’s worth noting
that the introduction of heterogeneous scenarios has had a
negative impact on all models, while HPL-ViT exhibits the
least degradation. As the degree of LiDAR’s heterogeneity
increases, we find a widening accuracy gap between HPL-
ViT and the second-ranked method. It can reach a significant
2.1% improvement in hetero scenario 2, which effectively
demonstrates its outstanding feature fusion capabilities in
complex and challenging environments.

2) Generalization Analysis: To evaluate the generalization
capabilities of HPL-ViT, we utilize models trained in hetero
scenario 2 and subject them to testing in a broader range
of settings. First, we fix the ego LiDAR as a Panda64
operating at 20Hz and adjust the ratio of other connected
LiDARs to create different scenarios. As illustrated in Figure
7, the horizontal axis signifies the proportion of collaborators
equipped with the same Panda64 at 20Hz, and it is evi-
dent that HPL-ViT consistently achieves SOTA performance
across all configurations. It’s worth noting that late fusion
has outperformed most intermediate fusion methods in our
experiments. Additionally, we introduce a change in the type
of ego LiDAR to further assess models, with results plotted
in Figure 8. We observe that many methods experience a
significant decrease in detection accuracy, while HPL-ViT
consistently maintains its top-ranking position. When de-
ployed on different LiDAR devices, it exhibits a noteworthy
accuracy improvement of at least 3.3%.



TABLE I
3D OBJECT DETECTION ACCURACY IN DIFFERENT SCENARIOS.

Normal scenario Hetero scenario 1 Hetero scenario 2

Methods AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7

No Fusion 43.3 14.3 43.3 14.3 43.3 14.3

Late Fusion 64.6 37.3 57.5 29.2 59.2 30.1

OPV2V [13] 51.1 18.2 48.1 16.0 44.0 13.6

V2VNet [38] 66.3 37.3 64.8 35.3 64.3 33.2

F-Cooper [44] 49.3 19.3 48.3 15.4 46.5 13.5

CoBEVT [43] 66.7 37.8 64.4 35.4 64.0 34.5

HPL-ViT 67.3 (+0.6) 38.3 (+0.5) 65.9 (+1.1) 36.4 (+1.0) 66.4 (+2.1) 36.6 (+2.1)

Fig. 9. 3D object detection visualization. Green and red bounding boxes represent the ground truth and predicted, respectively. (a)-(c) are visualization
results in Hetero scenario 2 with Panda64 as the ego LiDAR, while (d)-(e) use VLP16 as the ego LiDAR.

3) Ablation Study: We conduct comprehensive ablation
studies to evaluate the influence of each component in HPL-
ViT. As depicted in Table II, each component contributes
positively to object detection accuracy. The absence of HC-
GA or HF-GA has a similar adverse effect, while the omis-
sion of multi-scale strategy results in the most significant
2.3% drop in AP@0.7.

TABLE II
ABLATION STUDIES OF EACH COMPONENT IN HPL-VIT.

HC-GA HF-GA Bi-CA Multi-scale AP@0.5 / AP@0.7

✓ ✓ ✓ 65.2 / 36.2

✓ ✓ ✓ 65.2 / 35.7

✓ ✓ ✓ 65.4 / 35.4

✓ ✓ ✓ 64.1 / 34.1

✓ ✓ ✓ ✓ 66.4 / 36.6

D. Qualitative Evaluation

In Figure 9 (a)-(c), we provide visualizations of no fusion,
late fusion, and HPL-ViT in hetero scenario 2, respectively.
Then we change the ego LiDAR to a VLP16 operating at
20Hz to present their generalization capabilities, and the

testing results are plotted in Figure 9 (d)-(f). It is evident that
the no fusion baseline displays numerous missing detections.
Although the detection results exhibit noticeable improve-
ment with late fusion, there are still instances of missed
detections and false positives. In contrast, when compared to
the aforementioned methods, HPL-ViT can further enhance
detection accuracy by not only eliminating false positives but
also attaining more precise bounding box positions.

V. CONCLUSIONS

In this paper, we focus on cooperative perception in
autonomous driving to facilitate the construction of parallel
LiDAR networks. This is the first work that investigates the
issue of heterogeneous LiDAR sensors in V2V. We collect
a novel dataset named OPV2V-HPL and present HPL-ViT,
which is a vision Transformer architecture for robust feature
fusion among heterogeneous parallel LiDARs. Extensive ex-
periments have demonstrated that HPL-ViT can attain SOTA
performance with strong generalizability in all scenarios. In
future work, we will extend our research into real-world
scenarios and remain committed to the development of a
networked parallel LiDAR system.



REFERENCES

[1] R. Roriz, J. Cabral, and T. Gomes, “Automotive lidar technology:
A survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 6282–6297, 2022.

[2] Y. Liu, Y. Shen, L. Fan, Y. Tian, Y. Ai, B. Tian, Z. Liu, and F.-Y.
Wang, “Parallel radars: from digital twins to digital intelligence for
smart radar systems,” Sensors, vol. 22, no. 24, p. 9930, 2022.

[3] Y. Liu, Y. Shen, Y. Tian, Y. Ai, B. Tian, E. Wu, and L. Chen, “Radar-
verses in metaverses: A cpsi-based architecture for 6s radar systems in
cpss,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 53, no. 4, pp. 2128–2137, 2022.

[4] Y. Liu, B. Sun, Y. Tian, X. Wang, Y. Zhu, R. Huai, and Y. Shen,
“Software-defined active lidars for autonomous driving: A parallel
intelligence-based adaptive model,” IEEE Transactions on Intelligent
Vehicles, pp. 1–10, 2023.

[5] A. Caillot, S. Ouerghi, P. Vasseur, R. Boutteau, and Y. Dupuis,
“Survey on cooperative perception in an automotive context,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
14 204–14 223, 2022.

[6] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, and D. Li, “Object
classification using cnn-based fusion of vision and lidar in autonomous
vehicle environment,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4224–4231, 2018.

[7] Z. Song, F. Wen, H. Zhang, and J. Li, “A cooperative perception
system robust to localization errors,” in 2023 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2023, pp. 1–6.

[8] R. Xu, W. Chen, H. Xiang, X. Xia, L. Liu, and J. Ma, “Model-agnostic
multi-agent perception framework,” in 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), 2023, pp. 1471–1478.

[9] R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit:
Vehicle-to-everything cooperative perception with vision transformer,”
in European conference on computer vision. Springer, 2022, pp. 107–
124.

[10] Z. Lei, S. Ren, Y. Hu, W. Zhang, and S. Chen, “Latency-aware col-
laborative perception,” in European Conference on Computer Vision.
Springer, 2022, pp. 316–332.

[11] Y. Hu, S. Fang, Z. Lei, Y. Zhong, and S. Chen, “Where2comm:
Communication-efficient collaborative perception via spatial confi-
dence maps,” Advances in neural information processing systems,
vol. 35, pp. 4874–4886, 2022.

[12] J. Li, R. Xu, X. Liu, J. Ma, Z. Chi, J. Ma, and H. Yu, “Learning for
vehicle-to-vehicle cooperative perception under lossy communication,”
IEEE Transactions on Intelligent Vehicles, vol. 8, no. 4, pp. 2650–
2660, 2023.

[13] R. Xu, H. Xiang, X. Xia, X. Han, J. Li, and J. Ma, “Opv2v:
An open benchmark dataset and fusion pipeline for perception with
vehicle-to-vehicle communication,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 2583–2589.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[15] R. Xu, X. Xia, J. Li, H. Li, S. Zhang, Z. Tu, Z. Meng, H. Xiang,
X. Dong, R. Song et al., “V2v4real: A real-world large-scale dataset
for vehicle-to-vehicle cooperative perception,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 13 712–13 722.

[16] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma, “Opencda:
An open cooperative driving automation framework integrated with
co-simulation,” in 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), 2021, pp. 1155–1162.

[17] X. Cai, W. Jiang, R. Xu, W. Zhao, J. Ma, S. Liu, and Y. Li, “Analyzing
infrastructure lidar placement with realistic lidar simulation library,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 5581–5587.

[18] F.-Y. Wang, “Parallel system methods for management and control of
complex systems,” CONTROL AND DECISION., vol. 19, pp. 485–489,
2004.

[19] Q. Wei, H. Li, and F.-Y. Wang, “Parallel control for continuous-
time linear systems: A case study,” IEEE/CAA Journal of Automatica
Sinica, vol. 7, no. 4, pp. 919–928, 2020.

[20] F.-Y. Wang, “The dao to metacontrol for metasystems in metaverses:
The system of parallel control systems for knowledge automation and
control intelligence in cpss,” IEEE/CAA Journal of Automatica Sinica,
vol. 9, no. 11, pp. 1899–1908, 2022.

[21] Y. Shen, Y. Liu, Y. Tian, and X. Na, “Parallel sensing in metaverses:
Virtual-real interactive smart systems for “6s” sensing,” IEEE/CAA
Journal of Automatica Sinica, vol. 9, no. 12, pp. 2047–2054, 2022.

[22] Y. Liu, Y. Shen, C. Guo, Y. Tian, X. Wang, Y. Zhu, and F.-Y. Wang,
“Metasensing in metaverses: See there, be there, and know there,”
IEEE Intelligent Systems, vol. 37, no. 6, pp. 7–12, 2022.

[23] F.-Y. Wang, N.-N. Zheng, D. Cao, C. M. Martinez, L. Li, and T. Liu,
“Parallel driving in cpss: A unified approach for transport automation
and vehicle intelligence,” IEEE/CAA Journal of Automatica Sinica,
vol. 4, no. 4, pp. 577–587, 2017.

[24] T. Liu, Y. Xing, X. Tang, H. Wang, H. Yu, and F.-Y. Wang, “Cyber-
physical-social system for parallel driving: From concept to appli-
cation,” IEEE Intelligent Transportation Systems Magazine, vol. 13,
no. 1, pp. 59–69, 2020.

[25] F. Wang, X. Meng, S. Du, and Z. Geng, “Parallel light field: The
framework and processes,” Chin. J. Intell. Sci. Technol, vol. 3, no. 1,
pp. 110–122, 2021.

[26] Y. Liu, Y. Tian, B. Sun, Y. Wang, and F.-Y. Wang, “Parallel lidars meet
the foggy weather,” IEEE Journal of Radio Frequency Identification,
vol. 6, pp. 867–870, 2022.

[27] J. Mao, S. Shi, X. Wang, and H. Li, “3d object detection for
autonomous driving: A review and new outlooks,” arXiv preprint
arXiv:2206.09474, 2022.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 652–660.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” Advances
in neural information processing systems, vol. 30, 2017.

[30] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d
object detection in a point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp.
1711–1719.

[31] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3d object detection
with pointformer,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 7463–7472.

[32] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4490–4499.

[33] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[34] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 12 697–12 705.

[35] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li,
“Pv-rcnn: Point-voxel feature set abstraction for 3d object detection,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 10 529–10 538.

[36] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K.
Wellington, “Lasernet: An efficient probabilistic 3d object detector
for autonomous driving,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 12 677–12 686.

[37] H. Yu, Y. Luo, M. Shu, Y. Huo, Z. Yang, Y. Shi, Z. Guo, H. Li,
X. Hu, J. Yuan et al., “Dair-v2x: A large-scale dataset for vehicle-
infrastructure cooperative 3d object detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 21 361–21 370.

[38] T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, and R. Ur-
tasun, “V2vnet: Vehicle-to-vehicle communication for joint perception
and prediction,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II
16. Springer, 2020, pp. 605–621.

[39] Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang, “Learning
distilled collaboration graph for multi-agent perception,” Advances in
Neural Information Processing Systems, vol. 34, pp. 29 541–29 552,
2021.

[40] R. Xu, J. Li, X. Dong, H. Yu, and J. Ma, “Bridging the domain gap
for multi-agent perception,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 6035–6042.

[41] H. Xiang, R. Xu, and J. Ma, “Hm-vit: Hetero-modal vehicle-to-
vehicle cooperative perception with vision transformer,” arXiv preprint
arXiv:2304.10628, 2023.



[42] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li,
“Maxvit: Multi-axis vision transformer,” in European conference on
computer vision. Springer, 2022, pp. 459–479.

[43] H. X. W. S. B. Z. J. M. Runsheng Xu, Zhengzhong Tu, “Cobevt:
Cooperative bird’s eye view semantic segmentation with sparse trans-
formers,” in Conference on Robot Learning (CoRL), 2022.

[44] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper:
Feature based cooperative perception for autonomous vehicle edge
computing system using 3d point clouds,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, 2019, pp. 88–100.


	INTRODUCTION
	Related Work
	Parallel LiDARs
	LiDAR-based 3D Object Detection
	Cooperative Perception

	Methodology
	Main Architecture
	Feature Extraction
	Data Compression and Sharing
	HPL-ViT
	Detection Head

	HPL-ViT
	Multi-scale Heterogeneous Graph-attention
	Bidirectional Cross-Attention


	Experiments
	Dataset
	Experimental Setup
	Evaluation Metrics
	Implementation Details
	Experimental Scenarios

	Quantitative Evaluation
	Main Performance Analysis
	Generalization Analysis
	Ablation Study

	Qualitative Evaluation

	CONCLUSIONS
	References

