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Abstract

The research fields of parametric face models and 3D
face reconstruction have been extensively studied. How-
ever, a critical question remains unanswered: how to tai-
lor the face model for specific reconstruction settings. We
argue that reconstruction with multi-view uncalibrated im-
ages demands a new model with stronger capacity. Our
study shifts attention from data-dependent 3D Morphable
Models (3DMM) to an understudied human-designed skin-
ning model. We propose Adaptive Skinning Model (ASM),
which redefines the skinning model with more compact
and fully tunable parameters. With extensive experiments,
we demonstrate that ASM achieves significantly improved
capacity than 3DMM, with the additional advantage of
model size and easy implementation for new topology. We
achieve state-of-the-art performance with ASM for multi-
view reconstruction on the Florence MICC Coop bench-
mark. Our quantitative analysis demonstrates the impor-
tance of a high-capacity model for fully exploiting abun-
dant information from multi-view input in reconstruction.
Furthermore, our model with physical-semantic parameters
can be directly utilized for real-world applications, such as
in-game avatar creation. As a result, our work opens up
new research directions for the parametric face models and
facilitates future research on multi-view reconstruction.

1. Introduction

In the field of 3D face modeling, there have been exten-
sive studies achieving satisfying performance for high-end
applications with the setting of camera rig [4, 5, 17, 11]
and low-end applications with a single in-the-wild im-
age [9, 10, 33]. However, middle-end settings, such as
inputting multi-view high-quality images of people stand-

ing still, are less explored. Its inputs are more curated than
the low-end setting, although they are still uncalibrated, un-
like the high-end one. The reconstruction performance of
the middle-end setting is on par with the low-end setting
and far behind the high-fidelity scan in the high-end set-
ting [30, 2], meaning that the more curated input is not
fully exploited. Such an understudied scenario has increas-
ing real-world demand with the widespread use of mobile
phones with high-quality cameras and the need for precise
reconstruction, such as avatar creation and facial animation.

A key preliminary decision factor for 3D face model-
ing is a proper choice of face representation, as there is
no one representation that fits all. For low-end applica-
tions with noisy and insufficient images, an intrinsically ill-
posed problem, parametric face models with strong prior are
crucial to guarantee robust and stable reconstruction with
consistent topology [9, 10, 33]. For high-end applications
with abundant constraints from multiple calibrated images,
high capacity in the form of raw vertices is essential to
achieve high-fidelity scans with fine-grained details within
the Multi-view Stereo (MVS) framework. Compared to the
low end, an ideal representation for middle-end reconstruc-
tion would raise the need for capacity and reduce the need
for prior. However, previous studies of multi-view recon-
struction use parametric face models interchangeably as in
low-end applications [13, 1]. We argue that face represen-
tation needs to be tailored for middle-end applications with
more attention on representation capacity.

The parametric face model is an extensively researched
field. The majority of studies are based on the 3D Mor-
phable Face Model (3DMM), which was originally intro-
duced in the pioneering work of Blanz and Vetter [6]. The
following studies continue improving the 3DMM method
by either improving the amount and diversity of data or
proposing new methods for dimensional reduction given
such data. Meanwhile, a different trend exists in the game
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and film industries where the parametric face models are
mainly represented in the form of human-designed skinning
models. These models employ a set of controllable bones
and skinning weights which determine the degree to which
each vertex on the mesh is influenced by the surround-
ing bones. This representation has shown sufficient capa-
bility for extensive applications such as facial animation
and avatar customization [14, 25, 26]. Comparing human-
designed skinning models with data-based 3DMM for 3D
face modeling is an interesting yet understudied topic.

In this study, we investigate the design of parametric face
models, with a particular focus on the previously less ex-
plored middle-end 3D face modeling. A parametric face
model with high capacity is desired to accommodate extra
constraints from multiple images. The capacity of 3DMM
heavily relies on the collection of facial scan data, which
is prohibitively expensive. On the contrary, the capacity
of human-designed skinning models can be easily adjusted
by simply tuning the number of parameters for bones and
skinning weights. Thus it is much more cost-effective to
increase capacity with skinning models, making it an ideal
candidate for middle-end application.

With a closer look into standard skinning models with
the vanilla Linear Blend Skinning (LBS), we find its ca-
pacity can be even further improved. Standard skinning
models, for example with hundreds of bones on tens of
thousands of vertices, usually have tens of parameters for
bone position, hundreds of parameters for transformation,
and millions of parameters for skinning weights. Such a
large number of skinning weights have to be determined be-
forehand and remain fixed in following 3D face modeling.
They are usually determined either by professional anima-
tors or via learning from data [18, 19] with certain initial
estimation [3]. Since skinning weights relies on the bone
position, which also has to be predefined and fixed, thus
leaving transformation as the only variable in face model-
ing. Within this paradigm, improving model capacity relies
on increasing the number of bones or improving predefined
skinning weights. We refer to these standard skinning mod-
els as Static Skinning Models (SSM). We argue that the cur-
rent paradigm of SSM fundamentally limits capacity, as the
critical skinning weights are fixed.

A neglected fact is that skinning weights, though de-
fined with the form of a high dimensional matrix, always
result in low dimensional patterns, being smooth, concen-
trated, and sparse. As the human face is strongly struc-
tured, the movement space of each vertex is highly corre-
lated and restricted. So skinning weights does not need to
be defined in high dimension in the first place. We propose
the Adaptive Skinning Model (ASM), which defines skin-
ning weights in a more compact form by Gaussian Mixture
Model (GMM). This new design significantly reduces the
dimension of skinning weights to be on par with the trans-

formation matrix. Thus, all parameters of skinning weights,
transformation, and bone position can be solved simultane-
ously. Compared to SSM, our model achieve significantly
increased capacity with even fewer total parameters. Addi-
tionally, ASM can be easily replicated with arbitrary topol-
ogy by eliminating both the need for scan data as in 3DMM
and data-driven skinning model and the need for laborious
manual design as in SSM.

The main contributions of this paper are as follows:

• A novel parametric face model is proposed, named ASM,
which outperforms existing models in terms of capacity,
model size, easy implementation with arbitrary topology,
and manual editing with semantic parameters.

• We redefine the skinning model with fully tunable param-
eters by introducing a more compact skinning weights
representation with Gaussian Mixture Model.

• We demonstrated that the new model can be applied for
multi-view 3D face reconstruction achieving state-of-the-
art performance, and also in-game avatar creation.

2. Related Work
3D Morphable Models was first proposed by Blanz and
Vetter [6] as a parametric face model. They used Princi-
pal Component Analysis (PCA) to reduce a set of topology-
consistent face mesh into a low-dimensional space as a set
of basis representing facial shape and texture. Paysan et
al. [21] introduced Basel Face Model (BFM), which is a
widely used 3DMM in recent years, calculated from reg-
istered 3D scans from 100 male and 100 female faces.
FLAME [16] become popular in recent years, which used
3,800 face scans to construct a shape basis and 33,000 scans
to construct the expression basis. FaceScape [31] collected
high-quality facial data of 938 individuals and each with 20
expressions to build 3DMM with the bilinear PCA method.

To further improve the representation capacity of
3DMM, increasing attention has been drawn into non-linear
dimensionality reduction methods, especially using neural
networks to train and reduce facial library to latent vec-
tor features [23, 27, 7, 32]. Ranjan et al. [23] introduced
CoMA to extract the latent vector features from the mesh
using an encoder-decoder network structure, resulting in
better representations of the mesh from the training sets.
Zheng et al. [32] proposed ImFace, which uses Signed Dis-
tance Function (SDF) and implicit neural representation to
model human faces, achieving impressive results. Never-
theless, either linear or non-linear 3DMM methods are data
dependent, making these methods intrinsically difficult to
generalize and scale, considering collecting a large number
of high-quality 3D facial models is prohibitively expensive.
Skinning Model has a group of bones placed in 3D space,
which can be controlled by the bones’ translation, rota-
tion, and scaling parameters. Once binding the bones with



a mesh by defining the vertex-bone skinning weights ma-
trix, the mesh can be deformed together with the bones via
LBS. Skinning models have human-friendly semantic pa-
rameters, enabling the easy human design of bone place-
ment and skinning weights. Besides, these models do not
need to store basis and are computationally efficient. With
these advantages, skinning models are widely used in the
game and film industry for character modeling and anima-
tion for the whole body and face.

Although popular in the game industry, skinning mod-
els receive less attention in 3D face modeling research.
JNR [28] is the closest study to ours, which models face
shape entirely by a skinning model with 52 bones and
learned skinning weights. To the best of our knowledge,
JNR is the only previous study that applies skinning mod-
els for face registration and reconstruction. Our study dif-
fers substantially from JNR in terms of design concepts and
experimental findings. Firstly, JNR reduced the skinning
weight matrix using a neural network, while we redesigned
the skinning model in a compact form in the first place, so
that further dimension reduction or data-dependent learning
are completely avoided, and all the parameters of skinning
weights and bone positions can be freely learned online.
Secondly, JNR demonstrated that skinning models achieved
slightly worse capacity than state-of-the-art (SOTA) meth-
ods, such as FLAME, while our model achieved SOTA per-
formance for both capacity and multi-view reconstruction.

3. Method
In this section, we will begin by providing a brief

overview of the Linear Blend Skinning (LBS) method, fol-
lowed by an introduction to our proposed Adaptive Skin-
ning Model (ASM).

3.1. Linear Blend Skinning

LBS is a fundamental algorithm used for skeletal shape
deformation in computer graphics [15]. It requires three
types of input data: vertex data from a polygon mesh, bone
transformation data in the skeleton, and skinning weight
data that defines the influence of each bone on each ver-
tex. Given a vertex v ∈ R3, the LBS algorithm computes
its deformed position v′ as follows:

v′ =

J∑
j=1

wjTjv (1)

where v and v′ are in homogeneous coordinate format, wj

is the skinning weight of bone j on vertex v with the con-
straint

∑J
j=1 wj = 1, Tj ∈ R4×4 is the bone j’s trans-

formation matrix and J is the total number of bones. In
Eq. 1, the deformation is performed by Tj according to the
following formula:

Tj = Ml2w
j Mw2l

j = Ml2w
p Mtrs(τj)B

−1
j (2)

where the vertex v is firstly projected from world space
to local bone space by world-to-local transformation ma-
trix Mw2l

j and then projected back into world space using
Ml2w

j . Ml2w
j can be decomposed into its parent bone’s

transformation matrix Ml2w
p multiply its local transforma-

tion Mtrs(τj), where transformation parameters τ ∈ R9

includes the translation, rotation, and scale parameters of
the bone and Mtrs(·) is the composite matrix of these trans-
formation parameters. Mw2l

j is defined as the inverse of
pre-calculated bind-pose matrix Bj ∈ R4×4.

Based on Eq. 1 and Eq. 2, for the vanilla LBS-based
skinning model, only transformation parameters τ can be
adjusted to perform skeletal animation, while the skinning
weights and initial bone position are frozen during anima-
tion, which significantly limits its capacity in 3D modeling.

3.2. Adaptive Skinning Model

The goal of this work is to improve the parametric face
model for middle-end applications, where capacity is our
key consideration. To further enlarge the capacity of the
vanilla LBS-based skinning model, we redesign its skinning
weights and binding strategy by introducing GMM skin-
ning weights and dynamic binding. The proposed Adaptive
Skinning Model (ASM) can be written as:

ASM(v|ζ,π,µ,Σ, τ ) =

J∑
j=1

W g(v|ζj ,π,µ,Σ)Ml2w
p Mtrs(τj)Bj(F

′(ζ))−1v
(3)

whereW g(·) denotes GMM skinning weight function. B(·)
is no longer the pre-calculated bind-pose matrix, but the
standard bind-pose calculation method which takes posi-
tions and orientation in the world space of all the bones as
inputs and outputs the bind-pose for each bone. F ′(·), ζ,
π, µ, Σ, and τ will be described in detail below. Fig. 1
presents an overview of our proposed framework.

GMM Skinning Weights. Since skinning weights on the
vertices are independent of each other, it is difficult to di-
rectly parameterize skinning weights, especially without
training data. Observing that skinning weights painted by
human artists resemble a mixture of multiple Gaussian dis-
tributions, we introduce Gaussian Mixture Model (GMM)
to simulate the hand-painting process, so that we can build
a more compact representation while maintaining strong ca-
pacity. Considering that the UV space can fully utilize the
structural information among mesh vertices, we calculate
2D-GMM skinning weights based on the unwrapped UV
map.

Given the vertex vi on the polygon mesh, there exists
a known unwrapping function ui = F (vi) that maps the
topology of the mesh vertices indices to the UV map coor-
dinate ui ∈ R2. The skinning weight of the point on the
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Figure 1. Illustration of Adaptive Skinning Model. The bone positions in the UV space are adjusted by the parameters ζ, which also
provide an initial guess for the GMM skinning module. The parameters π,µ,Σ generate personal-specific skinning weights for each bone
in the UV space, which is then wrapped into 3D space to obtain the updated skinning model. The output 3D mesh is deformed using LBS
with the parameters τ . ASM can be used for tasks such as multi-view reconstruction and scan registration.

UV map influenced by bone j is:

W (v|ζj ,π,µ,Σ) =

K∑
k=1

πkN (F (v)|µk + ζj ,Σk) (4)

where πk ∈ R (
∑K

k=1 πk = 1), µk ∈ R2, Σk ∈ R3 are the
GMM parameters, andK controls the complexity of GMM.
ζj ∈ R2 is the projection of the bone j onto UV space,
and we use this projection as an initial guess of GMM’s
center. To find this projection, we firstly project the bone j
with initial placement position ψ0

j ∈ R3 in 3D space along
with the z-axis (i.e. front-view) and then search the nearest
vertex with index t as a proxy to obtain:

ζj = F (vt) (5)

For the LBS-based skinning model, it is necessary to en-
sure that all the skinning weights on vertex v are normalized
to 1, thus we combine 2D GMM-based skinning weights
among all bones according to the following rule:

W g(v|ζj ,π,µ,Σ) =
W (v|ζj ,π,µ,Σ)∑J
i=1W (v|ζi,π,µ,Σ)

(6)

where J is the total number of bones. With this method, we
can compress a large number of skinning weights into a few
2D GMM parameters and introduce the UV spatial prior as
a constraint.

Dynamic Bone Binding. In the previous GMM skin-
ning weights calculation, ζj is the UV position of the pre-
defined bone j. Taking these estimations as the initial-
ization and jointly optimizing ζ with skinning weights is
a straightforward way to further increase model capacity.
During the joint optimization process, the gradient not only
comes from W g(·), but also from the bind-pose calculation
Bj(F

′(ζ)), where F ′(ζj) should be a differentiable wrap-
ping function that maps the given UV map coordinate ζj

to the corresponding 3D position ψj . Here we define this
wrapping function as follows:

ψj = F ′(ζj) = αvA + βvB + γvC − vt +ψ
0
j

α, β, γ = Barycentric(ζj ,uA,uB ,uC)
(7)

where α, β and γ are the barycentric weights of ζj with
respect to the triangle fABC which ζj fall within. The ver-
tices of triangle fABC are uA = F (vA), uB = F (vB),
and uC = F (vC). vt is the same vertex referred in Eq. 5
and ψ0

j is the initial position of bone j.
Once we wrap ζ to the 3D position ψ by vertex inter-

polation, we can use B(ψ) to calculate the updated bind-
pose matrix and evaluate the loss subsequently. As the
whole process is differentiable, ζ can be joint optimized
with GMM skinning weights using backpropagation.

Up to this point, we achieve a fully parameterized rep-
resentation of the LBS-based skinning model. The detailed
proof process and formulas can be found in the supplemen-
tal materials.

3.3. Implementation Details.

To set up the initial placement of the bones, we used
Blender1 and placed J = 84 bones with a hierarchical
structure, which provides higher degrees of freedom than
JNR [28]. We used Blender’s automatic skinning weights
generation method to obtain the initial skinning weights
and fit our GMMs for initial parameters ζ, π, µ, and Σ.
These parameters serve as the starting point for optimiza-
tion when using ASM in reconstruction tasks. For differ-
ent scenarios, we suggest using different K values for the
GMM model (K = 2 ∼ 5). In total, each bone of ASM has
(11+K∗6) tunable parameters, which is sufficient for com-
plete 3D model reconstruction. The dimension counting is
shown in Tab. 1.

1Available: https://www.blender.org



Parameters ζ π µ Σ τ

Dimension 2 K K ∗ 2 K ∗ 3 9

Table 1. Dimension of the parameters for each bone to be solved.
Since Σ is a symmetric matrix, it has only 3 degrees of freedom.

4. Experiments
4.1. Model Characteristics

Representation capacity of parametric face models is a
crucial feature for our middle-end application. The ca-
pacity is assessed by fitting the models to 3D face scans
and measuring the scan-to-mesh error. We utilized the
Adam optimizer in PyTorch [20] with a learning rate of
1e-3 and 300 iterations to solve the transformation parame-
ters of rigid ICP and the model parameters as an optimiza-
tion problem. Our error measurement adhered to the NoW-
benchmark [24] prototype and was confined to the same fa-
cial region for fair comparison among models with different
face coverage. We used two publicly available datasets: the
LYHM dataset [8], which includes 1,212 scanned meshes
of neutral faces with inconsistent topology, and a dataset
from FaceScape [31], with the same setting as ImFace [32],
containing 10 individuals with 20 different expressions per
person, resulting in 200 total meshes with consistent topol-
ogy.

Methods LYHM FaceScape

BFM [21] 0.372±0.163 0.462±0.052

FLAME [16] 0.246±0.072 0.341±0.039

CoMA [23] 0.756±0.186 1.088±0.162

FaceScape [31] 0.341±0.185 0.216±0.048

ImFace [32] 0.339±0.119 0.257±0.061

MetaHuman [12] 0.234±0.089 0.269±0.063

Ours 0.228±0.072 0.210±0.025

Table 2. Scan-to-fitting error with the metric of 3D-Normalized
Mean Error (NME) (mm). (Lower is better)
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Figure 2. Scan-to-fitting cumulative error curve.

The proposed ASM is compared to widely used and

Figure 3. Exemplar fitting result. GT Scans stand for the ground
truth scan used for fitting.

SOTA parametric face models, including BFM [21] with
entire 199 parameters of identity and 79 parameters of ex-
pression, FLAME [16] with entire 300 parameters of iden-
tity and 100 parameters of expression, FaceScape [31],
CoMA [23], and ImFace [32]. For CoMA, we used a 64-
dimensional latent vector and retrain on its public datasets,
considering the original 8-dimensional latent vector will
limit its performance. For nonlinear 3DMM (CoMA, Im-
Face) the latent vector serves as parameters during fit-
ting while the weights of the decoder network are fixed.
Additionally, the state-of-the-art human-designed skinning
model from MetaHuman Creator [12] is also compared,
which included 887 bones, far more than our model.
JNR [28] was not compared as its implementation and data
were not published.

Results in the form of mean error with standard devi-
ation and cumulative error curve are shown in Tab. 2 and
Fig.2 respectively, with some examples shown in Fig. 3.
Within the group of linear 3DMM, FLAME has the highest
capacity and stable performance on both datasets. The ex-
traordinary performance of FaceScape on its own dataset is
illusive. When tested on a new dataset of LYHM, its perfor-
mance dropped significantly, which illustrates the difficulty
of generalization, a shared problem for all data-dependent
methods. For non-linear 3DMM methods, CoMA had dif-
ficulty fitting these two datasets. ImFace behaves well on
FaceScape datasets, but degrades on the LYHM dataset,



similarly to FaceScape. Noted that both ImFace and
FaceScape were trained using the FaceScape datasets, and
both suffer from the generalization issue. Skinning models,
including MetaHuman and our proposed ASM, though less
studied previously, outperformed all data-dependent mod-
els. The intrinsic design of skinning models makes it very
cost-effective to increase capacity by simply adding more
parameters. Compared to the MetaHuman, the proposed
ASM further improved capacity on both datasets with fewer
tunable parameters, demonstrating the contribution of con-
verting fixed skinning weights into compact and tunable
skinning weights. Besides, skinning models avoid training
data and the derived generalization issue, thus, leading to
consistently excellent performance on both datasets.
Implementation cost is a practical consideration when
adapting a face model to a new topology. It is common
that different topologies are used by different groups in
various applications. Off-the-shelf 3DMM brought certain
topologies, which may not be the desired ones in some ap-
plications. Adapting 3DMM to a new topology requires
re-topologizing its data library and replicating the dimen-
sion reduction process, which is cumbersome for large-
scale data as shown in Tab. 4. It is even impossible if the
data library is not accessible considering the risk of privacy.
On the other hand, MetaHuman is a sophisticated human-
designed SSM with 887 bones. Adapting MetaHuman to
a new topology requires tremendous domain expertise and
time-consuming painting of skinning weights.

In contrast, the implementation of our model is simply
determining the number of bones and placing them on a fa-
cial mesh, which can be easily replicated on any new topol-
ogy. For example, 84 bones are used in this work, which
takes around 20 minutes in total to go through the mak-
ing process. As a demonstration, our original model with
the topology from BFM is duplicated twice with the topol-
ogy of FLAME and topology of a game character 2. Note
the number and initial location of bones are kept the same
among these three models. The representation capacity of
these three models is tested on the LYHM datasets, with re-
sults shown in Tab. 3 and some examples shown in Fig. 4.
Our method is robust for all different topologies.

Topology BFM FLAME GAME
3D-NME↓ 0.228±0.072 0.236±0.029 0.235±0.063

Table 3. Representation capacity of ASM with different topology.

Model size refers to the disk space required to store the
model, which is divided into the fixed part and headcount
proportional part. The fixed part comes from the 3DMM
basis, weights of neural networks, and predefined skin-
ning weights. The headcount proportional part comes from

2We obtain the mesh file from the open game mods community:
https://steamcommunity.com/sharedfiles/filedetails/?id=2326367687

Figure 4. Exemplar fitting results of ASM with different topolo-
gies. BFM-T, FLAME-T, and GAME-T stand for the topology of
BFM, FLAME, and a game character respectively.

3DMM parameters, feature vectors of the neural networks,
and skinning model tunable parameters. As shown in Fig. 5,
our model size is significantly lower than all other models,
especially within the range of 100 faces, which is a common
range for real-world applications. This makes our model
advantageous for mobile device applications.

0 10 100 1K 3K
Number of Face

500KB
1MB

10MB

100MB

1GB

BFM
FLAME
CoMA
JNR
FaceScape
ImFace
Metahuman
Ours

Figure 5. Model size as a function for storing the number of faces.

Methods CPU GPU Dim. Data

BFM [21] 0.082s 0.007s 278 200
FLAME [16] 0.028s 0.002s 406 3,800
CoMA [23] 1.880s 0.012s 64 12
FaceScape [31] 30.661s 0.034s 351 938
ImFace [32] 94.660s 20.816s 256 355
MetaHuman [12] 0.489s 0.007s 7,983 -

Ours 2.658s 0.066s 1,932 1

Table 4. Statistics of different face models. CPU and GPU refer
to inference time measured on CPU or GPU. Dim refers to the
dimension of parameters. Data refers to the number of individuals
used to construct the face model.

Inference time refers to the time it takes to generate a face
mesh given the input parameters. Inference time measure-
ment was conducted with a batch size of 32 and averaged
over 1,000 repetitions. It was measured on either CPU of
Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz or the GPU
of NVIDIA Tesla V100 32G. As shown in Tab. 4, the pro-
posed ASM is slower compared to linear 3DMM (BFM and
FLAME) and SSM (Metahuman), but still within an accept-
able range. ImFace with a much longer inference time in-
creases the difficulty of being used.



4.2. Model Application

3D face reconstruction with middle-end setting is our tar-
geted application, which refers to multi-view high-quality
uncalibrated images of people staying still. There is no
public dataset directly in line with this setting. The Flo-
rence MICC benchmark is widely used for multi-view 3D
face reconstruction with three subsets (Coop, indoor, and
Outdoor). The Coop and Indoor subsets have video seg-
ments of 53 individuals with stable indoor lighting, differ-
ing by camera distance, portrait distance for Coop, and roof
camera for Indoor. Coop is closer to our targeted setting,
and both were used in our evaluation. For each video seg-
ment, we manually selected 15 frames at different angles
with close expressions.

Multi-view 3D face reconstruction is solved as an opti-
mization problem with our proposed face model and pho-
tometric consistency constraints [13, 1]. A learning-based
method [9] is used to serve as initialization to accelerate
the convergence of optimization. For detailed experimen-
tal settings, please refer to the supplementary materials. As
shown in the Tab. 5, We achieved SOTA performance on the
Florence MICC Coop benchmark. For the Indoor bench-
mark with video taken in the distance, which is out of our
targeted setting, methods with the advantage of robustness
should be used, such as [29].

Methods Coop↓ Indoor↓

Piotraschke and Blanz [22] 1.68 1.67
Deng et al. [9] 1.60 1.61
Wood et al. [29] 1.43 1.42
Ours 1.34 1.53

Table 5. Multi-view reconstruction error with metric of 3D-
RMSE(mm) on Florence MICC benchmark. (↓Lower is better.)

The MICC benchmark does not accurately represent our
intended setting due to the allowance of speech and fa-
cial expression changes during video collection. To ad-
dress this limitation, we conducted further evaluations on
the FaceScape dataset, which captures a large number of
high-definition images synchronously using a camera rig.
Calibration results were dropped, and we randomly selected
3, 5, 10, and 20 images from 10 subjects to conduct multi-
view 3D face reconstruction using various models, includ-
ing BFM, FLAME, ASM-K2, ASM-K5, and MetaHuman,
while maintaining consistent settings as previously stated.
ASM-K2 and ASM-K5 refer to our model with different pa-
rameter K settings, with ASM-K2 being the default setting
used in all other experiments. Additionally, we compared
the results of our approach to MVS implemented by pho-
togrammetry software.

Tab. 6 and Fig. 6 demonstrate that skinning models, in-
cluding ours and MetaHuman, outperform 3DMM (BFM

and FLAME) in the multi-view setting. Skinning models
can continuously improve results with more views, while
3DMM exhibits a less noticeable improvement. This high-
lights the importance of using skinning models with higher
capacity to accommodate more constraints from multi-view
input. MVS fails with only 3 or 5 images, but achieves high-
fidelity results with 20 images, as expected. While MetaHu-
man results exhibit bizarre shapes, our model achieves nat-
ural and high-fidelity results. This can be attributed to the
fact that MetaHuman adds extra bones, far beyond the phys-
ical number of joints on the human face. As a result, the
added capacity may not align well with the actual human
face, resulting in an unnatural appearance. In contrast, our
proposed model increases capacity in a more balanced man-
ner by allowing all skinning model parameters to be tuned
simultaneously, leading to a better representation of the hu-
man face.

Images BFM FLAME ASM-K2 ASM-K5 MetaHuman MVS
3 1.64 1.56 1.30 1.29 1.47 -
5 1.56 1.54 1.06 1.06 1.34 -

10 1.52 1.48 0.94 0.92 1.15 0.88
20 1.50 1.33 0.86 0.84 1.04 0.55

Table 6. Multi-view reconstruction error with metric of 3D-RMSE
(mm) on selected FaceScape dataset. (↓Lower is better.)
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Figure 6. Multi-view reconstruction result on FaceScape.

To more accurately represent our middle-end environ-
ment, we obtained in-house data by capturing 6 images with
a high-quality mobile camera and requesting participants to
remain stationary. Using the same set-up, we performed
multi-view 3D face reconstruction and compared our model
to FLAME. We also executed MVS with the photogramme-
try software. Our model outperformed FLAME in produc-
ing more identifiable results, as depicted in Fig. 7, while
MVS failed. These findings demonstrate that our model is



the suitable parametric face model for middle-end applica-
tions.

Input Images FLAME Ours MVS

Figure 7. Multi-view reconstruction result on in-house data.

In-game avatar creation is another application benefiting
from the proposed model, which is to customize in-game
avatars given input images. Character’s face is mostly rep-
resented in the form of skinning models with certain topol-
ogy in games [25, 26]. Our model belongs to skinning
models and can be easily adapted to new topology, there-
fore, the reconstruction results of our model can be directly
transferred into the game system without a performance
drop. The implementation of reconstruction has the same
setting as above, except the model is based on the topol-
ogy from the game, as previously illustrated in Fig. 4. As
shown in Fig. 8, in-game avatar from reconstruction result is
achieved, and post-editing is allowed, due to the advantage
of the skinning model with physical-semantic parameters.

(a) (b) (c) (d)

Figure 8. (a) exemplar image out of 5; (b) customized avatar with
reconstruction result; (c) avatar with further manual edit, for exam-
ple, adjusting the bones of the nose wing; (d) the original avatar.

4.3. Ablation study

An ablation study was conducted to investigate the key
design components for fitting and reconstruction perfor-
mance using the LYHM and MICC datasets, respectively.
The study utilized the following methods: SSM, which is a
static skinning model with fixed bone binding and skinning

weights provided by Blender. DBB refers to dynamic bone
binding and makes the bone position a tunable variable.
GSW refers to GMM skinning weights, which makes skin-
ning weights tunable parameters. RD refers to replacing the
initial skinning weights provided by Blender with random
ones. Tab. 7 shows that the default setting in previous eval-
uations is the setting for the last row. Results indicate that
SSM has a higher representation capacity than most 3DMM
models, with the exception of FLAME, leading to improved
multi-view reconstruction performance. Converting bone
location and skinning weights into tunable parameters fur-
ther improves capacity. Careful consideration is required
for the initialization of GMM skinning weight.

SSM DBB GSW RD Registration Reconstruction

X 0.322±0.118 1.36±0.48

X X 0.282±0.094 1.36±0.46

X X X X 0.416±0.107 1.47±0.45

X X X 0.228±0.072 1.34±0.51

Table 7. Ablation study on registration (with metric of 3D-NME)
and reconstruction (with metric of 3D-RMSE).

5. Discussion
This study demonstrates that statistical face models have

varying characteristics and should be tailored for specific
applications. When dealing with low-quality input, such
as the MICC Indoor benchmark, 3DMM with strong prior
achieves robust and state-of-the-art performance. However,
for high-quality input captured within a camera rig, para-
metric face models are unnecessary, and MVS with raw ver-
tices achieve high-quality facial scans, which are considered
the ground truth. For intermediate-level applications us-
ing high-quality but uncalibrated images, skinning models
with higher capacity, such as the proposed model, achieved
state-of-the-art performance on MICC Coop benchmark,
uncalibrated data from FaceScape, and our in-house data.
Compared to a sophisticated human-designed static skin-
ning model, ASM with fully tunable parameters can further
improve capacity in a more natural and effective way.

This study does not cover other aspects of multi-view
reconstruction, such as constraint or optimization design.
We believe that our proposed model with higher capacity
will facilitate future research on multi-view reconstruction,
enabling better use of increased capacity to improve recon-
struction performance.

6. Conclusion
We propose ASM to address the gap of tailored face

models for middle-end reconstruction with multi-view un-
calibrated images. ASM offers stronger capacity than data-



dependent 3DMM with compact and fully tunable param-
eters. Our experiments demonstrate that ASM achieves
SOTA performance for multi-view reconstruction on the
MICC Coop benchmark, and its high capacity is crucial to
exploit abundant information from multi-view input. The
semantic parameters of ASM also make it suitable for real-
world applications like in-game avatar creation. The study
opens up new research directions for the parametric face
model and facilitates future research on multi-view recon-
struction.

One potential area for future work is to explore decou-
pling the identity and expression of the skinning parameters
to enable expression transfer between different individuals
and customization of personal-specific expressions.
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[3] Ilya Baran and Jovan Popović. Automatic rigging and anima-
tion of 3d characters. ACM Transactions on graphics (TOG),
26(3):72–es, 2007.

[4] Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner,
and Markus Gross. High-quality single-shot capture of fa-
cial geometry. In ACM SIGGRAPH 2010 papers, pages 1–9.
2010.

[5] Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel,
Paul Beardsley, Craig Gotsman, Robert W Sumner, and
Markus Gross. High-quality passive facial performance cap-
ture using anchor frames. In ACM SIGGRAPH 2011 papers,
pages 1–10. 2011.

[6] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999.

[7] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7213–7222, 2019.

[8] Hang Dai, Nick Pears, William Smith, and Christian Duncan.
Statistical modeling of craniofacial shape and texture. Inter-
national Journal of Computer Vision, 128:547–571, 2020.

[9] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde
Jia, and Xin Tong. Accurate 3d face reconstruction with
weakly-supervised learning: From single image to image set.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition workshops, pages 0–0, 2019.

[10] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.
Learning an animatable detailed 3d face model from in-
the-wild images. ACM Transactions on Graphics (ToG),
40(4):1–13, 2021.

[11] Graham Fyffe, Koki Nagano, Loc Huynh, Shunsuke Saito,
Jay Busch, Andrew Jones, Hao Li, and Paul Debevec. Multi-
view stereo on consistent face topology. In Computer Graph-
ics Forum, volume 36, pages 295–309. Wiley Online Library,
2017.

[12] Epic Games. Metahuman creator. Available:
https://www.unrealengine.com/en-US/metahuman-creator,
2021.

[13] Matthias Hernandez, Tal Hassner, Jongmoo Choi, and Ger-
ard Medioni. Accurate 3d face reconstruction via prior con-
strained structure from motion. Computers & Graphics,
66:14–22, 2017.

[14] Doug L James and Christopher D Twigg. Skinning mesh ani-
mations. ACM Transactions on Graphics (TOG), 24(3):399–
407, 2005.

[15] Ladislav Kavan. Part i: direct skinning methods and defor-
mation primitives. In ACM SIGGRAPH, volume 2014, pages
1–11, 2014.

[16] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier
Romero. Learning a model of facial shape and expression
from 4d scans. ACM Trans. Graph., 36(6):194–1, 2017.

[17] Tianye Li, Shichen Liu, Timo Bolkart, Jiayi Liu, Hao Li,
and Yajie Zhao. Topologically consistent multi-view face in-
ference using volumetric sampling. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3824–3834, 2021.

[18] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan,
and Kun Zhou. Neuroskinning: Automatic skin binding
for production characters with deep graph networks. ACM
Transactions on Graphics (TOG), 38(4):1–12, 2019.

[19] Xiaoyu Pan, Jiancong Huang, Jiaming Mai, He Wang,
Honglin Li, Tongkui Su, Wenjun Wang, and Xiaogang Jin.
Heterskinnet: A heterogeneous network for skin weights pre-
diction. In Proceedings of the ACM on Computer Graphics
and Interactive Techniques, volume 4. Association for Com-
puting Machinery, 2021.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[21] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model for pose
and illumination invariant face recognition. In 2009 sixth
IEEE international conference on advanced video and sig-
nal based surveillance, pages 296–301. Ieee, 2009.

[22] Marcel Piotraschke and Volker Blanz. Automated 3d face
reconstruction from multiple images using quality measures.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3418–3427, 2016.

[23] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 704–720, 2018.



[24] Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael J
Black. Learning to regress 3d face shape and expression
from an image without 3d supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7763–7772, 2019.

[25] Tianyang Shi, Yi Yuan, Changjie Fan, Zhengxia Zou, Zhen-
wei Shi, and Yong Liu. Face-to-parameter translation
for game character auto-creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 161–170, 2019.

[26] Tianyang Shi, Zhengxia Zuo, Yi Yuan, and Changjie Fan.
Fast and robust face-to-parameter translation for game char-
acter auto-creation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages 1733–1740,
2020.

[27] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable
model. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7346–7355, 2018.

[28] Noranart Vesdapunt, Mitch Rundle, HsiangTao Wu, and
Baoyuan Wang. Jnr: Joint-based neural rig representation
for compact 3d face modeling. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XVIII 16, pages 389–405.
Springer, 2020.

[29] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Matthew
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