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Abstract

Rapidly increasing quality of AI-generated content makes it difficult to distinguish
between human and AI-generated texts, which may lead to undesirable conse-
quences for society. Therefore, it becomes increasingly important to study the
properties of human texts that are invariant over text domains and various profi-
ciency of human writers, can be easily calculated for any language, and can robustly
separate natural and AI-generated texts regardless of the generation model and sam-
pling method. In this work, we propose such an invariant of human texts, namely
the intrinsic dimensionality of the manifold underlying the set of embeddings of
a given text sample. We show that the average intrinsic dimensionality of fluent
texts in natural language is hovering around the value 9 for several alphabet-based
languages and around 7 for Chinese, while the average intrinsic dimensionality
of AI-generated texts for each language is ≈ 1.5 lower, with a clear statistical
separation between human-generated and AI-generated distributions. This property
allows us to build a score-based artificial text detector. The proposed detector’s
accuracy is stable over text domains, generator models, and human writer profi-
ciency levels, outperforming SOTA detectors in model-agnostic and cross-domain
scenarios by a significant margin.

1 Introduction

Modern large language models (LLMs) generate human-looking texts increasingly well, which may
also lead to worrisome consequences [Fagni et al., 2021, Adelani et al., 2020, Stokel-Walker, 2022],
so the ability to detect AI-generated texts (artificial text detection, ATD) becomes crucial for media,
education, politics, creative industries and other spheres of human social activities. A straightforward
idea would be to train a classifier to detect artificial text; many such classifiers exist [Zellers et al.,
2019, Gehrmann et al., 2019, Solaiman et al., 2019], but most of them are designed to detect samples
of individual generation models, either using the model itself [Mitchell et al., 2023] or training on a
dataset of its generations. This leads to poor generalization to new models and unknown data domains.
Another idea, known as watermarking, is to inject some detectable artifacts into model generations;
Kirchenbauer et al. [2023] propose to intentionally inject statistical skew that can be detected in a
text sample. However, later works showed that the watermark detector can be broken by adversarial
attacks, e.g. by text perturbations or paraphrasing [He et al., 2023]. Since text generation is constantly
evolving, Sadasivan et al. [2023] claim that perfect artificial text detection is impossible; Krishna
et al. [2023] address this statement and propose a retrieval-based detector that could be implemented
by text generation service providers: they should store the hash value of every text generated by their
model and retrieve it by request. This approach works even for a perfect human-like text generator,
but it does not apply to publicly available models, and there already are plenty.
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(a) AI generated (b) human written (c)

Figure 1: Real and artificial text have different intrinsic dimension: (a-b) idea; (c) actual results.

In this work, we show that the intrinsic dimension of text samples can serve as a helpful score
function allowing to separate artificial and generated texts in a very general setting, without additional
knowledge about the generator. The only assumption is that generation is good enough to create fluent
grammatical samples of length ≈ 200 words. We propose a method based on persistent homology
dimension theory, which allows to estimate the dimension of text samples with high accuracy, and
show that the proposed dimension-based classifier outperforms other artificial text detectors with a
large margin in the general-purpose setup, for a very wide class of generators.

Many works have estimated the intrinsic dimension of data representations [Pope et al., 2021,
Barannikov et al., 2021], neural network weights [Ansuini et al., 2019], or parameters needed to
adapt to some downstream task [Aghajanyan et al., 2021], but these objects are very complex. Even
if we are certain that a dataset fits into some surface in a high-dimensional feature space, it is not easy
to estimate its dimension due to various kinds of noise (natural irregularities, measurement noise,
numerical approximations) and the ambiguity of estimating a surface from a sparse set of points.

We estimate the geometry of every text sample as a separate object. Since texts generated by modern
LLMs are fluent and usually do not contain grammatical, syntactical, or local semantic inconsistencies,
we are interested in global sample geometry rather than properties that could be detected in short
text spans. We show that the persistent dimension estimator provides an excellent way to deal with
textual data: it turns out that real texts have a higher intrinsic dimension than artificial ones (Fig. 1).
We propose an efficient method to implement the estimator and evaluate its classification ability in
various settings, proving its robustness for artificial texts detection and showing that it works equally
well across a number of different languages.

Our main contributions are: (1) we propose to estimate the intrinsic dimensionality of natural
language texts with the persistent homology dimension estimator and develop an efficient algorithm
for computing it; (2) we show that the intrinsic dimension serves as a good score for artificial text
detection for modern LLMs; in cross-domain and cross-model settings our method outperforms
other general purpose classifiers by a large margin, is robust to adversarial attacks, and works for
all considered languages; (3) we show that our text detector reduces the bias against non-native
speakers in comparison to available ATD models; (4) we release a multilingual dataset of generations
produced by GPT3.5 and natural texts from the same domain in order to enable further ATD research.
Below, Section 2 reviews related work, Section 3 introduces instrinsic dimension and its estimation
with persistent homology, Section 4 applies it to artificial text detection, Section 5 presents our
experimental evaluation, Section 6 discusses the limitations, and Section 7 concludes the paper.

2 Related work

Artificial text detection (ATD) becomes increasingly important with modern LLMs. GPT-2 [Radford
et al.] was accompanied by a work by Solaiman et al. [2019] on potential dangers and defences against
them; the best ATD classifier there was based on supervised fine-tuning of RoBERTa [Liu et al., 2019].
Supervised approaches can work well for other generative models and data domains [Krishna et al.,
2023, Guo et al., 2023, He et al., 2023] but they do not generalize to other text domains, generation
models, and even sampling strategies [Bakhtin et al., 2019, Solaiman et al., 2019]. In the zero-shot
setting, Solaiman et al. [2019] threshold the average log-probability score of a sample calculated
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by some pre-trained language model (LM). DetectGPT [Mitchell et al., 2023] treats log-probability
calculation as a function, estimates its curvature in a small neighbourhood of the text, and shows
that this curvature score is smaller for artificial texts (there are “flat” regions around them); however,
DetectGPT needs the likelihood to come from the same LM as the sample.

We focus on developing an ATD model that could generalized to unseen text generation models
and domains. Zellers et al. [2019] detect generated texts perfectly with a discriminator model built
on top of the generator, but the quality drops significantly when the generator changes, even with
supervised adaptation; a similar “model detects itself” setup was adopted by Mitchell et al. [2023].
Solaiman et al. [2019] show that a simple score-based approach by the likelihood score works well in
the “model detects itself” setting but does not generalize to different generator and discriminator;
as for transferability, they show that a supervised classifier generalizes well when it is trained on
the output of a more complex model and transferred to a less complex one but not in the reverse
direction. Bakhtin et al. [2019] consider different types of generalization: in-domain (train and test
generators are the same), cross-corpus (train and text generators fine-tuned on different corpora), and
cross-architecture (train and test generators have different architectures but the same training corpora);
their model shows good in-domain generalization ability, handles relatively well cross-architecture
generalization, but loses quality in cross-corpus generalization. Mitchell et al. [2023] demonstrate
the stability of their method over text domains compared to supervised models, which are better on
in-domain data but lose efficiency in a cross-domain setting. Finally, Krishna et al. [2023] show all
methods failing dramatically against the DIPPER paraphrase attack (except for a lower-performing
approach developed for text quality ranking Krishna et al. [2022]). We also note Liang et al. [2023]
who show the bias of artificial text detectors against non-native speakers and show that all existing
detectors can be broken by generating texts with controllable complexity.

Geometrical and topological methods have shown their usefulness for analysing the intrinsic dimen-
sionality of data representations. Some works focus on data manifolds [Pope et al., 2021, Barannikov
et al., 2021] and others consider hidden representations of neural networks and investigate through
the lens of intrinsic dimensionality. Ansuini et al. [2019] apply TwoNN to internal representations in
CNNs, establish a connection to the model’s generalization ability. Birdal et al. [2021] show that
the generalization error of these models can be bounded via persistent homology dimension. Vision
transformers were also investigated in [Xue et al., 2022] and [Magai and Ayzenberg, 2022]. Moreover,
intrinsic dimensionality was connected to the generalization of Transformer-based LLMs [Aghajanyan
et al., 2021]. Valeriani et al. [2023] analyze the intrinsic dimensionality of large Transformer-based
models. Topological properties of the inner representations of Transformer-based models [Vaswani
et al., 2017], including BERT [Devlin et al., 2019] and HuBERT [Hsu et al., 2021], were successfully
applied for solving a wide variety of tasks, from artificial text detection [Kushnareva et al., 2021] and
acceptability judgement [Cherniavskii et al., 2022] to speech processing [Tulchinskii et al., 2022].

3 Intrinsic dimension and persistent homology dimension

Informally speaking, the intrinsic dimension of some subset S ⊂ Rn is the number of degrees of
freedom that a point moving inside S has. This means that in a small neighbourhood of every point S
can be described as a function of d parameters, d ≤ n, and this number cannot be reduced. This idea
is formalized in the notion of a d-dimensional manifold in Rn: it is a subset M ⊂ Rn where for each
point x ∈ M there exists an open neighborhood which is equivalent to an open ball in Rd for some
value d. Importantly, if M is a connected set then d should be the same for all its points, so we can
talk about the dimension of the entire manifold.

Data representations often use excessive numbers of features, some of which are highly correlated.
This overparametrization has been noticed many times [Hein and Audibert, 2005, Kuleshov et al.,
2017, Pope et al., 2021], and the idea that real data lies (approximately) on some low-dimensional
manifold in the feature space is known as the manifold hypothesis [Goodfellow et al., 2016]. However,
there are obstacles to estimating the intrinsic dimension of a dataset. First, a real dataset can be a
combination of sets of different dimensions. Second, data can be noisy and contain outliers. Moreover,
real data can have a complicated hierarchical structure, so different approximation methods lead to
different intrinsic dimension values. For an analogy, consider the observations of a single spiral galaxy
that consists of separate points (stars, planets etc.) but forms a compact 3-dimensional manifold. At
some level of approximation the galaxy looks like a disk, which is 2-dimensional, but if we take
a closer look we discover the structure of a 3-dimensional core and basically 1-dimensional arms.
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Moreover, if we add observations over time, the dataset will consist of 1-dimensional trajectories
of individual points that exactly correspond to well-defined mathematical trajectories (the noise
here comes only from measurement errors); these trajectories form an approximate 3-dimensional
cylinder in 4-dimensional space with a much higher level of noise around its borders. As a result,
the dimension of the entire object can be estimated by any number from 1 to 4 depending on the
detector’s sensitivity to noise and outliers, preference for global or local features, and the way to
average the values of non-uniform distribution of the points.

Thus, it is natural that there exist several different methods for intrinsic dimension (ID) estimation,
and we have to choose the one most suitable for the task at hand. For example, many ID estimators
are based on constructing a global mapping of the data into a lower-dimensional linear subspace,
with either linear projection (e.g., PCA), kernel-based methods, or distance-preserving nonlinear
transformations. However, in our preliminary experiments these type of dimensional estimation have
seemed to be losing the key information for artificial text detection.

We focus on the persistent homology dimension estimator (PHD) [Schweinhart, 2021], which belongs
to the class of fractal dimension approaches. Consider a ball of radius r inside a d-dimensional
manifold M . As r grows, the volume of the ball increases proportionally to rd. Let x1, ..., xN be
points uniformly sampled from M . Then the expected number of points in a ball of radius r also
changes as rd with r. Naturally, real datasets usually do not correspond to the uniform distribution of
points, but this issue can be overcome by considering the asymptotic behaviour of the number of points
in an r-ball as r → 0. In this case, it suffices for the data distribution to be smooth and therefore close
to uniform in the neighbourhood of every point. Accurate straightforward estimation of d based on the
above observation is not sample-efficient but there exist several approximate approaches, including
MLE dimension that evaluates the data likelihood [Levina and Bickel, 2004], TwoNN dimension that
uses the expected ratio of distances from the given point to its two nearest neighbours [Facco et al.,
2017], and MADA [Farahmand et al., 2007] that uses the first order expansion of the probability mass
function. We also report MLE-based results as it’s performance is comparable to PHD in some tasks.

We propose to use persistence homology dimension (PHD) that has several appealing properties
compared to other fractal intrinsic dimension estimators. First, the above methods operate locally
while PHD combines local and global properties of the dataset. Second, according to our experiments,
this method is sample-efficient and redundant to noise (see below). Third, it has a solid theoretical
background that connects topological data analysis, combinatorics, and fractal geometry [Adams
et al., 2020, Birdal et al., 2021, Jaquette and Schweinhart, 2020, Schweinhart, 2021].

The formal definition of PHD is based on the concept of the persistent homology for a set of points
in a metric space, which is the basic notion of topological data analysis (TDA) [Chazal and Michel,
2017, Barannikov, 1994, 2021]. TDA tries to recover the underlying continuous shape for a set of
points by filling in the gaps between them that are smaller than some threshold t, and studying the
topological features of the resulting object as t increases. Each persistent homology PHi in a sequence
PH0,PH1, . . . is defined by the set of topological features of dimension i: 0-dimensional features
are connected components, 1-dimensional features are non-trivial cycles, 2-dimension features are
tunnels, etc. For each feature we calculate its “lifespan”, a pair (tbirth, tdeath), where tbirth is the
minimal threshold where the feature arises, and tdeath is the threshold where it is destroyed.

Following Adams et al. [2020], we introduce persistent homology dimension as follows. Con-
sider a set of points X = {x1, . . . , xN} ⊂ Rn. We define the α-weighted sum as Ei

α(X) =∑
γ∈PHi(X) |I(γ)|α, where I(γ) = tdeath(γ)− tbirth(γ) is the lifespan of feature γ. For i = 0, Ei

α

can be expressed in terms of the minimal spanning tree (MST) of X: its edges map to lifespans
of 0-dimensional features γ ∈ PH0(X) [Bauer, 2021, Birdal et al., 2021]. Thus, the definition of
E0

α(X) is equivalent to E0
α(X) =

∑
e∈MST(X) |e|α, where |e| is the length of edge e.

There is a classical result on the growth rate of E0
α(X) [Steele, 1988]: if xi, 0 < i < ∞ are

independent random variables with a distribution having compact support in Rd then with probability
one E0

α(X) ∼ Cn
d−α
d as n → ∞, where equivalence mean that the ratio of the terms tends to one.

It shows that E0
α tends to infinity with N if and only if α < d. Now one can define the intrinsic

dimension based on MST as the minimal value of α for which the score is bounded for finite samples
of points from M [Schweinhart, 2021]:

dimMST(M) = inf{d | ∃C such that E0
d(X) ≤ C for every finite X ⊂ M},
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Figure 2: A comparison of ID estimators with noise on artificial datasets; lower is better.

and a sequence of PH dimensions as

dimi
PH(M) = inf{d | ∃C such that Ei

d(X) ≤ C for every finite X ⊂ M}.

We now see that dimMST(M) = dim0
PH(M) for any manifold M . This fact, together with the

growth rate result above, provides a sample-efficient way to estimate dim0
PH(M) [Birdal et al.,

2021]: sample subsets Xni
= {x1, . . . , xni

} ⊂ M of ni elements for a growing sequence of ni, for
every subset find its MST and calculate E0

α(Xni
), and then estimate the exponent of the growth rate

of the resulting sequence by linear regression between logE0
α(Xni

) and log n, since we know that
logE0

α(Xni
) ∼ (1− α

d ) log ni + C̃ as ni → ∞.

Next, we show empirically that our method of ID estimation via PHD approximates the real dimension
of a manifold well and is well suited for the conditions mentioned earlier: presence of noise and small
number of samples. To compare with other ID estimators, we utilize a benchmark by Campadelli
et al. [2015] designed specifically for the evaluation of ID estimation methods and used the scikit-
dimensions library [Bac et al., 2021] with efficient implementations of 12 approaches to ID estimation,
popular for different tasks. We evaluated many of these approaches on artificial datasets from Bac et al.
[2021], 1000 samples each, without noise. Choosing three “winners”—MLE, TwoNN, and MADA—
we evaluated their sample efficiency and noise tolerance in comparison with our implementation of
the PHD estimator. Fig. 2 shows the results: PHD is the only method tolerant to noise, and it does not
degrade when the data is scarce. It outperforms all other methods in the noisy setup for any sample
size. The second-best method is MLE, which performs relatively well on small samples (200–500) in
noisy settings and has a small variance. Below we will show that as a result, MLE is also applicable
to artificial text detection, but it lags a little behind PHD on average.

4 Methodology

We consider consistent text samples of medium size, with length ≈ 300 tokens; we assume that
each text contains a complete thought or is devoted to a single topic. We estimate the dimension
of each text sample, considering it as a separate manifold. To do this, we obtain contextualized
embeddings for every token in the text by a pretrained Transfromer encoder. In our experiments, we
use RoBERTa-base [Liu et al., 2019] for English and XLM-R [Goyal et al., 2021] for other languages.
Each embedding is a numerical vector of a fixed length, so we view it as a point in the Euclidean
space. We drop the artificial first and last tokens (<CLS> and <SEP>) and evaluate the persistent
homology dimension of the resulting point cloud using the growth rate theorem (see Section 3).

Given a set of points S, |S| = n, we first sample subsets Si ⊂ S, i = 1, . . . , k whose sizes n1, . . . , nk

are uniformly distributed in [1, n]. For each Si we calculate its persistent score E1
0(Si) (just E(Si)

below); this can be done with a classical MST algorithm in linear time. Then we prepare a dataset
consisting of k pairs D = {(log ni, logE(Si))} and apply linear regression to approximate this set
by a line. Now the dimension d can be estimated as 1

1−κ , where κ is the slope of the fitted line.

In general, our method for PHD calculation is similar to the the computational scheme proposed by
Birdal et al. [2021]. But since we are dealing with sets that are much smaller and less uniformly
distributed, their algorithm becomes unstable, with variance up to 35% of the value from different
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Table 1: Intrinsic dimensions of English texts of different genres.
Wikipedia articles Fiction stories Question answering

(Reddit) (Stack Exchange)

PHD 9.491± 1.010 9.212± 1.288 9.594± 1.29
MLE 11.827± 0.768 11.553± 1.197 12.131± 1.004

Figure 3: Boxplots of PHD distributions for different generating models in comparison to human-
written text on Wikipedia data. Embeddings are obtained from RoBERTa-base LM.

random seeds; moreover, if one of the subsets Si slips into a local density peak and has an unusually
low persistence score, the algorithm may even produce a meaningless answer (e.g., negative d).

To overcome this issue, we add several rounds of sampling and averaging to improve the stability of
calculation. We estimate the expectation Es⊂S,|s|=ni

[E(s)] for a given ni instead of direct calculation
of E(Si) for a single sample. For that, we perform the whole process of computing d several times,
averaging the results. Details of our sampling schema can be found in the Appendix.

Finally, we construct a simple single-feature classifier for artificial text detection with PHD as the
feature, training a logistic regression on some dataset of real and generated texts.

5 Experiments

Datasets. Our main dataset of human texts is Wiki40b [Guo et al., 2020]. We measured intrinsic
dimension of fiction stories on the target split of the WritingPrompts dataset [Fan et al., 2018], a
collection of short texts written by Reddit users. For multilingual text detection experiments, we
generated a new WikiM dataset for 10 languages by GPT3.5-turbo. We use the header and first
sentence from a Wikipedia page as the prompt and ask the model to continue. In cross-domain and
paraphrase robustness experiments, we use Wiki and Reddit datasets (3k samples each) [Krishna
et al., 2023] that use two consecutive sentences (Wiki) or the question (Reddit) as a prompt and
generate texts by GPT2-XL, OPT13b, and GPT3.5-davinci-003. Following their pipeline for Reddit,
we have also generated a StackExchange dataset by GPT3.5-davinci-003 as the third domain. We
select questions posted after 2019-08-01 from non-technical categories, where both question and
answer have rating more then 10, and clean them removing HTML artifacts. In order to assess the
bias in our estimator, we use the data provided by Liang et al. [2023].

Intrinsic dimensionality of real and generated texts. First, we observe an intriguing fact: the
intrinsic dimension of natural texts is mostly concentrated between values 9 and 10, while the
dimension of generated texts is lower and is approximately equal to 8, regardless of the generator.
This is illustrated in Figure 3. Table 1 shows that this value is stable across different text genres but
slightly varies for different languages: it is approximately equal to 9±1 for most European languages,
slightly larger for Italian and Spanish (≈ 10± 1), and lower for Chinese and Japanese (≈ 7± 1);
details are shown in Fig. 4. But we always observe a clear difference between this distribution and
generated texts on the same language (see Appendix for more experiments).

Next, we check how the PHD estimation depends on the base model that we use for text embedding
calculation. Fig. 5 demonstrates that PHD changes slightly with the change of the base LM, decreasing
for models with fewer parameters. RoBERTa-base embeddings provide the best variance for PHD
estimation, so we use this model for all further experiments in English, and XLM-R of the same size
for multilingual experiments.
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Figure 4: Boxplots of PHD distributions in different languages on Wikipedia data. Embeddings are
obtained from XLM-RoBERTa-base (multilingual).

Figure 5: Boxplots of PHD distributions obtained by different LMs on English Wikipedia data.

Artificial text detection. We show that intrinsic dimension can lead to a robust method of artificial
text detection. In all experiments below, we use the one-feature thresholding classifier (see Section 4).

Comparison with universal detectors. First, we show that our detector is the best among general-
purpose methods designed to detect texts of any domain, generated by any AI model, without access to
the generator itself. Such methods are needed, e.g., for plagiarism detection. To be applicable in real
life, the algorithm should provide high artificial text detection rate while avoiding false accusations
of real authors. Besides, it should be resistant to adversaries who transform the content generated by
popular AI models to reduce the chance to be caught.

Here we adopt the experimental settings by Krishna et al. [2023] and use the baseline results
presented there. We compare PHD and MLE with two general-purpose detectors: GPTZero [Tian,
2023], targeted to detect the texts generated by contemporary LLMs (GPT-3, GPT-4, ChatGPT,
BARD), and OpenAI [OpenAI, 2023] announced together with the ChatGPT model in order to reduce
the expected social harm. Our third baseline is DetectGPT [Mitchell et al., 2023], which is a state of
the art thresholding classifier that evaluates text samples by the probability curvature obtained via the
generator model. It works best when the base model coincides with the generator model (“model
detects itself”) but the authors claim that it can generalize to cross-model setup with reasonable
quality. RankGen [Krishna et al., 2022] is a method originally developed for ranking hypotheses
during text generation; it demonstrates a surprising ability to handle adversarial attacks.

Following Krishna et al. [2023], we report the detection accuracy with false positive rate (FPR) fixed
at 1%. Table 2 shows that our PHD-based classifier outperforms all baselines with a large margin:
+10% for GPT-3.5, +14% for OPT. Note that DetectGPT uses GPT-2 as the base model, which
explains its results for GPT-2. PHD is also invulnerable to the DIPPER paraphrasing attack [Krishna
et al., 2023]. When generated texts are transformed by DIPPER, they lose some characteristic features
of the generator, which causes a dramatic drop in quality for most detectors; but for the PHD classifier
the accuracy of artificial text detection even increases slightly after this perturbation. Interestingly, the
MLE dimension estimator also works quite well for this task, and even achieves 6% better detection
for GPT-3.5 generations; but its adversarial robustness is significantly worse.
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Table 2: Artificial text detection (accuracy at 1% FPR) for open-ended generation using Wikipedia
prompts. DIPPER was run with Lex=60, Order=60.

Generator Existing Solutions Our methods
DetectGPT OpenAI GPTZero RankGen PHD MLE

GPT-2 70.3* 21.6 13.9 13.5 25.2 23.8
+ DIPPER 4.6 14.8 1.2 28.5 27.6 19.7
OPT 14.3 11.3 8.7 3.2 28.0 26.7
+ DIPPER 0.3 10.0 1.0 13.5 30.2 22.1
GPT-3.5 0.0 30.0 7.1 1.2 40.0 46.7
+ DIPPER 0.0 15.6 1.8 7.3 41.2 33.3

Table 3: Cross-domain and cross-model accuracy of PHD and RoBERTa-based classifiers on data from
three different domains and three different models; classes are balanced in training and evaluation.

RoBERTa-cls Intrinsic Dimension (PHD)
Train \ Eval Wikipedia Reddit StackExchange Reddit Wikipedia StackExchange

Wikipedia 0.990 0.535 0.690 0.843 0.781 0.795
Reddit 0.388 0.997 0.457 0.855 0.776 0.773

StackExchange 0.525 0.473 0.999 0.834 0.778 0.800

Train \ Eval GPT2 OPT GPT3.5 GPT2 OPT GPT3.5

GPT2 0.992 0.993 0.933 0.769 0.759 0.832
OPT 0.988 0.997 0.967 0.769 0.763 0.837

GPT3.5 0.937 0.982 0.990 0.759 0.757 0.843

Table 4: Quality of artificial text detection in different languages (ROC-AUC) for ChatGPT text.
Language: cn-zh en fr de it jp pl ru es uk

PHD 0.709 0.781 0.790 0.767 0.831 0.737 0.794 0.777 0.833 0.768
MLE 0.650 0.770 0.804 0.788 0.852 0.753 0.850 0.816 0.853 0.821

Cross-domain and cross-model performance. Table 3 shows that our ID estimation is stable across
text domains; consequently, our proposed PHD text detector is robust to domain transfer. We compare
the cross-domain ability of PHD with a supervised classifier obtained by fine-tuning RoBERTa-base
with a linear classification head on its CLS token, a supervised classification approach used previously
for artificial texts detection with very high in-domain accuracy [Solaiman et al., 2019, Guo et al., 2023,
He et al., 2023]. We split data into train / validation / test sets in proportion 80%/10%/10%. Table 3
reports the results of the classifier’s transfer between three datasets of different text styles—long-form
answers collected from Reddit, Wikipedia-style texts, and answers from StackExchange—using
data generated by GPT-3.5(davinci-003). Although supervised classification is virtually perfect on
in-domain data, it fails in cross-domain evaluation, while the PHD classifier is not influenced by
domain transfer. On average, the PHD classifier slightly outperforms the supervised baseline, while
being much more stable. Table 3 also reports cross-model transfer ability, where the classifier is
trained on the output of one generation model and tested on another. We consider generations of
GPT-2, OPT, and GPT-3.5(davinci-003) in the Wiki domain and observe that the PHD classifier,
again, is perfectly stable. This time, RoBERTa-base supervised classifier handles the domain shift
much better and outperforms PHD on average, but it has a higher cross-domain generalization gap.
This means that we can expect the PHD classifier to be more robust to entirely new AI models.

PHD-based classification for other languages. Table 4 presents the results of PHD-based artificial
text detection for Wikipedia-style texts generated by ChatGPT. in 10 languages. Text embeddings
were obtained with XLM-RoBERTa-base, the multi-language version of RoBERTa. As quality metric
we report the area under ROC-curve (ROC-AUC). We see that both ID classifiers provide solid
results for all considered languages, with the average quality of 0.78 for PHD and 0.8 for MLE; MLE
performs better for almost all languages. The worst quality is on Chinese and Japanese (PHD 0.71
and 0.74, MLE 0.65 and 0.75 respectively), the best is for Spanish and Italian (PHD 0.83, MLE 0.85
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Figure 6: Comparison of GPT detectors in non-standard environment. Left: bias against non-native
English writing samples. Right: decrease in performance due to prompt design.

for both). Note that the best and worst classified languages are those with the largest and smallest ID
values in Fig. 4; we leave the investigation of this phenomenon for further research.

Non-native speaker bias. Finally, we show how our model helps to mitigate the bias present in
ML-based artificial text detectors. We follow Liang et al. [2023] who demonstrate that current
artificial text detectors are often too hard on texts written by non-native speakers. We use OpenAI and
GPTZero as the baselines (see Appendix for more results) and PHD and MLE classifiers, choosing
the thresholds was chosen on data unrelated to this task, as the equal error classifier on introductions
of Wikipedia articles (real vs GPT-3.5-turbo) where it achieved EER of 26.8% for PHD and 22.5%
for MLE. On the left, Fig. 6 shows false positive rates (FPR) for three sets of student essays: TOEFL
essays by non-native speakers (red), same texts processed by GPT-4 asked to improve the text (grey),
and native speakers (blue). First, blue bars are almost invisible for all detectors because the FPR
for a native speaker is very small (< 1%) while non-native speakers can be wrongly accused by
OpenAI and GPTZero in 58% and 52% of the cases respectively. The PHD classifier reduces this
discriminating rate by 2x, showing FPR 26% for non-native speakers. After GPT-4 polishing, this
rate further decreases to 7.7% compared to 19% for GPTZero. Interestingly, OpenAI also deals with
GPT-4 polished texts suprisingly well, its FPR drops by 15x. The MLE detector also demonstrates
less biased behaviour compared to baselines, but worse than PHD. On the right, Fig. 6 shows the
true positive rates (TPR) of these methods on essays generated by ChatGPT. Red bars show that
our classifiers greatly outperform baselines. Grey bars demonstrate the robustness of ID detectors
to changes in generation style via prompt design. If the adversary asks ChatGPT to generate a text
with some predefined level of complexity (“use simple words”, or “more complex words”), baseline
systems fail to correctly recognize such texts while both ID classifiers keep high detection rate.

6 Limitations and broader impact

We see three main limitations of our method. First, it is stochastic in nature. PH dimensions of texts
from the same generator vary widely, and the estimation algorithm is stochastic as well, which adds
noise, while rerolling the estimation several times would slow down the method. Second, “out of
the box” our method can detect only “good” (fluent) generators with relatively small temperature of
generation. The PH dimension of “bad” or high-temperature generators is actually higher on average
than for real texts, so the detector will need to be recalibrated. Third, we have tested only on several
relatively high-resource languages and we do not know how the method transfers to low-resource
languages; this is a direction for future work. Nevertheless, our method provides a new tool for
recognizing fake content without discriminating non-native speakers, which is also much more robust
to model change and domain change than known tools.

7 Conclusion

We have introduced a novel way of estimating the intrinsic dimension of a text sample. We find that
this dimension is approximately the same for all human-written samples in a given language, while
texts produced by modern LLMs have lower dimension in average, which allows us to construct an
artificial text detector. Our comprehensive experimental study proves the robustness of this classifier
to domain shift, model shift, and adversarial attacks. We believe that we have discovered a new
interesting feature of neural text representations that should be studied further.
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(a) Point cloud, concentrated around the straight
line; PHD ≈ 1.0

(b) Point cloud, concentrated around two curved
intertwined lined; PHD ≈ 1.5

Figure 7: An example of difference between intrinsic dimensionality (PHD) of a point clouds of
different geometric shapes. The point cloud, concentrated around more complex structure (7b) has
bigger PHD, than a point cloud, concentrated around simpler structure (7a)

A Theory

A.1 Formal definition of Persistent Homology

Persistent homology is a sequence of homology groups and linear maps parameterized by a filtration
value. Here’s the formal definition. Given a filtered chain complex (K, ∂) with filtration values
λ1 < λ2 < . . . < λn, we have a sequence of chain complexes: Kλ0

⊆ Kλ1
⊆ Kλ2

⊆ . . . ⊆ Kλn
=

K. For each λj , the i-th homology group Hi(Kλj
) denotes the factor vector space Hi(Kλj

) =
ker ∂|

K
(i)
λj

/ im ∂|
K

(i)
λj

. The inclusion Kλj
⊆ Kλj+r

induces a linear map fj,j+r : Hi(Kλj
) →

Hi(Kλj+r ). By definition, Persistent Homology PHi of the filtered chain complex is the collection
of the homology groups Hi(Kλj

), and the linear maps between them: PHi = {Hi(Kλj
), fj,j+r}j,r.

By the structure theorem of persistent homology, a filtered chain complex (K, ∂) is decomposed
into unique direct sum of standard filtered chain complexes of types I(bp, dp) and I(hp), where
I(b, d) is the filtered complex spanned linearly by two elements eb, ed, ∂ed = eb with filtrations
eb ∈ I

(i)
b , ed ∈ I

(i+1)
d , b ≤ d and I(h) is the filtered complex spanned by the single element ∂eh = 0

with filtration eh ∈ I
(i)
h [Barannikov, 1994]. This collection of filtered complexes I(bp, dp) and

I(hp)from the decomposition of K is called the i−th Persistence Barcode of the filtered complex
K. It is represented as the multiset of the intervals [bp, dp] and [hp,+∞). In Section 3, when we
speak loosely about the persistent homology PHi, we actually mean the i−th persistence barcode. In
particular the summation

∑
γ∈PHi

is the summation over the multiset of intervals constituting the
i−th persistence barcode.

A.2 Equivalence between PH0(S) and MST(S)

For the convenience of the reader, we provide a sketch of the equivalence between the 0-th persistence
barcodes and the set of edges of minimal spanning tree (MST).

First, recall the process of building of 0-dimensional persistence barcode Adams et al. [2020]. Given a
set of points S, we consider a simplicial complex K, consisting of points and all edges between them
(we don’t need to consider faces of higher order for H0 computation): K = {S} ∪ {(si, sj)|si, sj ∈
S}. Each element in the filtration Kλ0 ⊆ Kλ1 ⊆ Kλ2 ⊆ . . . ⊆ Kλn = K contains edges shorter
than the threshold λk: Kλk

= {S} ∪ {(si, sj)|si, sj ∈ S, ||si − sj || < λk}. The 0-th persistence
barcode is the collection of lifespans of 0-dimensional features, which correspond to connected
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components, evaluated with growths of the threshold λ. Let’s define a step-by-step algorithm of
the features’ lifespans evaluation. We are starting from λ = 0, when each point is the connected
component, so all the features are born. We will add edges to the complex in increasing order. On
each step, we are given a set of connected components and a queue of the remaining edges ordered
by length. If the next edge of the length λ connects two of the connected components to each other,
we claim the death of the first component, and add a new lifespan (0, λ) to the persistence barcode;
otherwise, we just remove the edge from the queue; its addition to the complex does not influence the
0−th barcode.

Now, we can notice, that this algorithm corresponds exactly to the classical Prime’s algorithm for
MST building, where the appearance of a new bar (0, λ) corresponds to adding the edge of the length
λ to MST.

B Algorithm for PHD computation

In Section 4 of the paper we described a general scheme for computation of Persistence Homology
Dimension. Here we give a more detailed explanation of the algorithm.

Input: a set of points S with |S| = n.

Output: dim0
PH(S).

1. Choose ni =
(i−1)(n−n̂)

k + n̂ for i ∈ 1, . . . k; hence, n1 = n̂ and nk = n. Value of k may
be varied, but we found that k = 8 is a good trade-off between speed of computation and
variance of PHD estimation for our data (our sets of points vary between 50 and 510 in size).
As for n̂, we always used n̂ = 40.

2. For each i in 1, 2, . . . k

(a) Sample J subsets S(1)
i , . . . S

(J)
i of size ni. For all our experiments we took J = 7.

(b) For each S
(j)
i calculate the sum of lengths of intervals in the 0th persistence barcode

E1
0(S

(j)
i ).

(c) Denote E(Si) as median of E1
0(S

(j)
i ), j ∈ 1, . . . J .

3. Prepare a dataset consisting of k pairs D = {(log ni, logE(Si))} and apply linear regression
to approximate this set by a line. Let κ be the slope of the fitted line.

4. Repeat steps 2-3 two more times for different random seeds, thus obtaining three slope
values κ1, κ2, κ3 and take final κF as their average.

5. Estimate the dimension d as 1
1−κF

C Additional experiments

C.1 Choice of some parameters in the formula for PHD

As was mentioned in Section 3, we estimate value of Persistent Homology Dimension from the slope
of the linear regression between logE0

α(Xni
) and log ni. Thus, the exact value of PHD of a text

actually depends on the non-negative parameter α. The theory requires it to be chosen less than the
intrinsic dimension of the text, and in all our experiments we fix α = 1.0.

Figure 8 shows how exact value of PHD of a natural and generated texts (of approximately same
length) depends on the choice of α.

Nonetheless, choice α = 1.0 seems to yield reasonable performance, but further investigations of
this issue are required.

For α ∈ [0.5; 2.5] our results, in general, lie in line with experiments from Birdal et al. [2021], where
performance of dim0

PH with α varying between 0.5 and 2.5 was studied on different types of data.
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Figure 8: PHD estimates at various α for a natural and a generated texts.

Table 5: Effect of paraphrasing on the intrinsic dimension of the text. Here we can see an uncommon
example of data where MLE and PHD behave differently — paraphrasing do not pose much trouble
for PHD (its quality even increases marginally), but the performance of MLE-based detector is
decreased significantly, especially for GPT-3.5.

DIPPER parameters

Method Original Lex 20 Lex 20 Lex 40 Lex 40 Lex 60 Lex 60
Order 60 Order 60 Order 60

PHD 7.30 7.33 7.35 7.42 7.45 7.51 7.51
±1.66 ±1.69 ±1.16 ±1.69 ±1.78 ±1.76 ±1.72

MLE 9.68 9.91 9.90 9.97 9.95 10.00 10.01
±1.31 ±1.22 ±1.24 ±1.22 ±1.21 ±1.18 ±1.15

C.2 Effect of paraphrasing on intrinsic dimension

As we show in paragraph Comparison with universal detectors experiments from Section 4, usage of
paraphrasing tools cause little effect on PHD-based detector ability to capture difference between
generated and natural texts. Here show how such tampering with generated sentences affects their
intrinsic dimension. Table 5 presents the mean values of PHD and MLE after applying DIPPER with
different parameters to the generation of GPT-3.5 Davinci. Where value of Order (re-ordering rate)
is not specified it means it was left at default value 0. Both parameters, Lex (lexical diversity rate)
and Order can vary from 0 to 100; for additional information please refer to , where DIPPER was
introduced.

Increase in lexical diversity entails slight grows of both mean PHD and mean MLE that, in theory,
should make our detectors less efficient. In case of PHD-based detector we do not observe this
decrease in performance, probably due to the mean shift being indeed rather small and caused mostly
by the right tail of the distribution — the texts that even before paraphrasing have high chance of
evading detection.

Meanwhile, increase of the re-ordering rate from 0 to 60 has almost no noticeable impact.

C.3 Non-native speaker bias

Here we present full results for our experiments on bias of ML-based artificial text detectors. On
Figure 9 we present baseline results for all detectors studied in Liang et al. [2023] that were not
included into main text of our article
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Figure 9: Comparison of GPT detectors in non-standard environment. Left: bias against non-native
English writing samples. Right: decrease in performance due to prompt design.

Figure 10: Boxplots of PHD distributions in different languages on Wikipedia data. Embeddings are
obtained from XLM-RoBERTa-base (multilingual).

C.4 Intrinsic dimension of texts in different languages

Figure 10 presents PHD of natural and generated texts in different languages on data from Wikipedia.
Embedding were obtained from the same multilingual model XLM-RoBERTa-base.

D Examples of generated texts
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Table 6: Examples of original text and text generated by ChatGPT. The common prompt parts are
highlighted in bold.

Original (English) Generated (English)

USS Mills (DE-383)
World War II North Atlantic operations
After shakedown out of Bermuda, Mills
trained nucleus crews for frigates and de-
stroyer escorts off Norfolk, Virginia, until
10 January 1944 when she began transat-
lantic convoy escort duty. On her second
voyage into the Mediterranean, Mills’ con-
voy was attacked before dawn 1 April 1944,
56 miles west of Algiers by German torpedo
bombers. SS Jared Ingersoll, a Liberty ship,
was hit and set blazing. Mills picked up sur-
vivors who had abandoned ship, and sent a
boarding party to extinguish her fires. British
tug HMS Mindfull and Mills then towed Jared
Ingersoll to Algiers.

USS Mills (DE-383)
World War II North Atlantic operations
After shakedown out of Bermuda, Mills
trained nucleus crews for frigates and de-
stroyer escorts off Norfolk, Virginia, until
10 January 1944 when she began transat-
lantic convoy escort duty. The Mills es-
corted her first two convoys in January and
February from New York City to the United
Kingdom, making four round trip crossings
by May 1944. During her North Atlantic op-
erations, Mills successfully thwarted several
attacks by German U-boats, and carried out
rescue operations for nearby ships in distress.
She also participated in sweeping the area for
mines in preparation for the Normandy inva-
sion.

Original (Spanish) Generated (Spanish)

Currulao
Instrumentos
Si la música involucra el uso de una chir-
imia que es popular en la costa norte, es-
pecíficamente en el Chocó: Tambor tamb-
ora, Cununos ("macho" y "hembra") y un
clarinete. Esta agrupación también puede in-
cluir un eufonio que, en algunos casos, reem-
plaza o acompaña a un saxofón. Si se trata
de un grupo de marimba que es popular en
el sur de la región, específicamente al sur del
Chocó, Valle del Cauca, Cauca y Nariño: la
marimba de chonta, los cununos ("hembra" y
"macho"), guasá y el tambor bajo.

Currulao
Instrumentos
Si la música involucra el uso de una chir-
imia que es popular en la costa norte, es-
pecíficamente en el Chocó: Tambor tamb-
ora, Cununos ("macho" y "hembra") y un
clarinete. El currulao es una danza musical
tradicional originaria de la región de la costa
Pacífica de Colombia, la cual se deriva de la
mezcla de las culturas africana, indígena y
española. El sonido del currulao es único y
se distingue por el uso de instrumentos que le
otorgan su ritmo y cadencia característicos.

Original (Polish) Generated (Polish)

Juan Machuca
Kariera klubowa
Całą karierę piłkarską Juan Machuca
spędził w klubie Unión Española, w którym
występował w latach 1969-1987. Z Unión
Española trzykrotnie zdobył mistrzostwo
Chile w 1973, 1975 i 1977. Na arenie między-
narodowej dotarł do finału Copa Libertadores
1975, w którym Unión uległ argentyńskiemu
Independiente Avellaneda.

Juan Machuca
Kariera klubowa
Całą karierę piłkarską Juan Machuca
spędził w klubie Unión Española, w którym
występował w latach 1969-1987. Był to
okres, w którym klub ten odnosił wiele
sukcesów, m.in. zdobył mistrzostwo Chile
w 1973 i 1975 roku oraz Puchar Chile w 1975
roku.
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