
High-throughput Visual Nano-drone to Nano-drone Relative
Localization using Onboard Fully Convolutional Networks

Luca Crupi1, Alessandro Giusti1, and Daniele Palossi12

Abstract— Relative drone-to-drone localization is a funda-
mental building block for any swarm operations. We address
this task in the context of miniaturized nano-drones, i.e., ∼10 cm
in diameter, which show an ever-growing interest due to novel
use cases enabled by their reduced form factor. The price
for their versatility comes with limited onboard resources,
i.e., sensors, processing units, and memory, which limits the
complexity of the onboard algorithms. A traditional solution to
overcome these limitations is represented by lightweight deep
learning models directly deployed aboard nano-drones. This
work tackles the challenging relative pose estimation between
nano-drones using only a gray-scale low-resolution camera
and an ultra-low-power System-on-Chip (SoC) hosted onboard.
We present a vertically integrated system based on a novel
vision-based fully convolutional neural network (FCNN), which
runs at 39 Hz within 101 mW onboard a Crazyflie nano-drone
extended with the GWT GAP8 SoC. We compare our FCNN
against three State-of-the-Art (SoA) systems. Considering the
best-performing SoA approach, our model results in a R2 im-
provement from 32 to 47% on the horizontal image coordinate
and from 18 to 55% on the vertical image coordinate, on a real-
world dataset of ∼30 k images. Finally, our in-field tests show
a reduction of the average tracking error of 37% compared to
a previous SoA work and an endurance performance up to the
entire battery lifetime of 4 min.

SUPPLEMENTARY VIDEO MATERIAL

In-field tests: https://github.com/idsia-robotics/FCNN.

I. INTRODUCTION

Precise drone-to-drone relative pose estimation is a fun-
damental skill for many swarm operations [1], [2]. Drones
capable of precisely localizing peers in the flock can adjust
their attitude to maintain desired formations [1] or to op-
timize their trajectories to maximize their effectiveness [2],
e.g., in search-and-rescue or inspection missions. Palm-sized
quadrotors, also called nano-drones, represent an uprising
class of flying robotic platforms with a weight of less than
50 g and a sub-10 cm diameter [3], [4], [5], see Figure 1-A.
Thanks to their small form factor, these miniaturized flying
robots enable novel application scenarios in cluttered and
narrow indoor environments [6], [7], e.g., industrial plants,
collapsed buildings, etc., as well as in human surroundings,
being harmless even in case of a crash [8]. Additionally,
nano-drones are extremely cheap platforms compared to

This work was partially supported by the Secure Systems Research Center
(SSRC) of the UAE Technology Innovation Institute (TII) and the Swiss
National Science Foundation (SNSF) through the NCCR Robotics.

1L. Crupi, A. Giusti, and D. Palossi are with the Dalle Molle In-
stitute for Artificial Intelligence, USI-SUPSI, Lugano, 6962, Switzerland
name.surname@idsia.ch

2D. Palossi is also with the Integrated Systems Laboratory, ETH Zürich,
Zürich, 8092, Switzerland

Fig. 1. A) The observer nano-drone performing the tracking of a target
nano-drone. B) Three samples recorded infield with the camera feed, the
pose, and the depth map computed by the fully convolutional neural
network.

traditional kg-scale multi-rotors due to their simplified design
and electronics. Conversely, their size severely constrains
onboard resources, such as sensors, memory capacity, and
computational power. For this reason, many autonomous
nano-drones run onboard convolutional neural networks
(CNNs) for their perception [3], [4], [5] instead of complex
geometrical computer vision pipelines [9].

This work addresses the relative drone-to-drone pose es-
timation with nano-drones relying only on their onboard
hardware. Among many successful technologies employed
in drone pose estimation, some of them are prevented
aboard nano-drones due to power consumption, weight, and
form factor (e.g., LIDAR [10]), while others require power-
hungry radio (up to 100s mW) [11] and additional ad-hoc
infrastructure [12], such as ultra-wideband (UWB) anchors
and WiFi routers. For these reasons, many State-of-the-Art
(SoA) nano-drone systems [3], [4], [5], including ours, ad-
dress this problem only by employing cheap vision sensors,
e.g., gray-scale low-resolution cameras, and CNNs running
aboard nano-drones. Therefore, our contribution results
in a novel vision-based fully convolutional neural network
(FCNN), tailored on the ultra-limited resources aboard a
commercially-available Crazyflie nano-drone, extended with
the GWT GAP8 multi-core System-on-Chip (SoC). Our
FCNN predicts three 20×20 pixel output maps, starting from
a gray-scale input image of 160×160 pixels. Two of the
three maps are used to solve the relative pose estimation
task, i.e., the 2D position of the drone in the u, v image
space and the depth map (d). The third map predicts the
per-pixel probability of the target drone’s LED state (i.e.,
on/off), which is a strongly correlated task w.r.t. the pose

ar
X

iv
:2

40
2.

13
75

6v
1

 [
cs

.C
V

]
 2

1
Fe

b
20

24

https://github.com/idsia-robotics/FCNN

estimation but outside the scope of this work.
In addition to the FCNN design, we contribute with i)

full vertical deployment of our FCNN, i.e., from the Python
design/training down to the C code execution on the nano-
drone’s SoC; ii) a thorough comparison with three different
SoA systems; iii) a detailed assessment of our FCNN run-
ning onboard the nano-drone, i.e., inference rate and power
consumption; iv) an in-field evaluation of our closed-loop
system regarding endurance and generalization capability.
On a ∼30 k images real-world testing dataset, our FCNN
outperforms three SoA models [3], [4], [5] designed for the
same nano-drone and the same pose estimation task (i.e.,
output u, v, and d).

On average on our testing set, over the three outputs,
our fully convolutional neural network (FCNN) achieves
an R2 score of 0.48 while [3] scores 0.3, [4] obtains -
0.57, [5] achieves -0.05. In terms of onboard inference
rate, on the GAP8 SoC, we achieve a real-time performance
of 39 frame/s, while [3] achieves 48 frame/s, [4] achieves
∼5 frame/s, and [5] achieves ∼5 frame/s. Finally, when
our system is deployed in the field, it shows remarkable
performances: i) continuous tracking of the target nano-
drone for the entire duration of its battery (∼4 min); ii)
generalization capabilities with ∼1 min uninterrupted flights
in three different never-seen-before environments; iii) and a
reduction of the tracking error of 37%, 52%, and 23% on
the x, y, and z coordinates respectively, compared to [3].

II. RELATED WORK

Relative pose estimation between drones can leverage var-
ious types of sensors. Although, given the strict constraints
of nano-drones, i.e., payload, power envelope, and size, not
all available technologies are affordable, e.g., GPS [13],
LIDAR [10], etc. GPS-based solutions give their best perfor-
mance outdoors, while in indoor environments, they estimate
the position with a 6 m-10 m error [14]. Another technology
for 3D localization relies on infrared-based systems. As an
example, the solution proposed in [15] comes with the crucial
disadvantage of adding more than 120 g onboard and thus is
unusable on our nano-drone.

Radio-based solutions employing ultra wideband
(UWB) [16], [17], [11] and WiFi [12] can provide accurate
pose estimation (sub-10 cm) and they can be deployed
onboard nano-drones [16], [11]. However, they come with
two big disadvantages. On the one side, they require ad-hoc
infrastructure such as UWB anchors [16], [17], WiFi
routers [12], etc., that is not always affordable/deployable.
Conversely, UWB-based localization systems need power-
hungry devices mounted onboard. In the case of [16]
342 mW are necessary to power the UWB module onboard
the nano-drone.

Vision-based systems, instead, use cameras that are avail-
able in lightweight and reduced form factors fitting the pay-
load and size of our nano-drone. Furthermore, they require
reduced power, and they do not need ground infrastructure.

Vision-based systems, instead, do not require any ground
infrastructure as well as additional systems mounted onboard

Fig. 2. Architecture of our model.

drones since cameras are generally part of the standard
equipment.

convolutional neural networks (CNNs) offer a viable so-
lution to meet the real-time constraint and are explored for
drone pose estimation tasks [3]. In [3], the authors propose a
vision-based neural network that solves position estimation
as a regression problem. This network uses as input a
160×96 gray-scale camera frame and produces as output four
scalar variables representing the relative position of the peer
drone expressed in x, y, z, and ϕ, i.e., the relative yaw angle.
This approach can only work with one nano-drone as a target
since the network estimates only one position. In contrast,
our FCNN can tackle multi-drone pose estimation since the
output is not bounded apriori to estimate the position of only
one drone. Furthermore, the output is produced having as a
receptive field the entire image possibly failing to capture
local details [18] that are crucial for this application since
the nano-drone can be detected in only 0.06% of the entire
image [3].

Works in [4], [5] propose a network based on
YOLOv3 [19] that, given an input image produces two maps
of 28×40 pixels each. The first map represents the pose in
the image space, and the second map estimates the distance.
These approaches are trained with 900 and 50 k simulated
images. The fine-tune is then performed with 192 and ∼8 k
real images for [4], [5] respectively. The networks are then
tested with 48 and 250 images, respectively, of the same
domain used to perform the fine-tuning. The approaches pro-
posed by [4], [5] need 78.7 Mmultiply-accumulate operations
(MACs), which is more than 8.3× the MACs required by our
FCNN. Finally, assuming the same efficiency achieved with
our FCNN, i.e., 2.2 MACs/cycle, these networks would run
on the GAP8 SoC at a maximum of 4.6 frame/s, insufficient
for an effective tracking.

III. SYSTEM DESIGN

Robotic platform: The nano-drone employed for this
work is a 27 g Bitcraze Crazyflie 2.1, featuring an STM32
MCU that runs the low-level flight controller and the state
estimation task. The nano-drone is extended with a 4.4 g
AI-deck board, which provides a monocular QVGA gray-
scale camera (HIMAX HM01B0), a GWT GAP8 System-on-
Chip (SoC) and 8/64 MB off-chip DRAM/Flash memories.
The STM32 and the GAP8 can communicate via a UART
bidirectional interface. To increase the drone’s stability, we

employ a second extension board named Flow-deck, which
provides height measurement with a Time-of-Flight (ToF)
sensor and ∆x and ∆y displacement with a down-looking
optical-flow camera.

The GAP8 SoC is designed with two power domains.
The former, called fabric controller (FC), has one core in
charge of data transfer and code offloading to the latter, the
cluster (CL), which boosts the execution of computationally
intensive kernels thanks to its eight parallel cores. The on-
chip memory hierarchy is organized into two levels: a fast
64 kB L1 memory within the CL and a slower 512 kB
L2 memory. The SoC provides two direct memory access
(DMA) engines that enable efficient transfers with memories
and peripherals. It lacks floating-point units, forcing the
adoption of integer-quantized arithmetic to avoid expensive
soft-float computations.

Neural network model: We tackle the drone pose es-
timation problem with the FCNN architecture depicted in
figure 2. Given a 160×160 grayscale image, it outputs three
20×20 maps: the first represents drone presence in the
corresponding area of the input; the second is its depth;
the third is the LED state. From the first map, we extract
the (u, v) drone image-space coordinates by calculating the
barycenter of the activations. Drone depth is extracted as
the weighted average of the depth map, using values of the
presence map (rescaled such that they sum to 1) as weights.
The same approach extracts a scalar value for the LED state
(probability that the LED is on) from the LED map.

Datasets: Training and testing datasets1 have been
recorded in a 10x10x2.6 m room equipped with an 18-camera
OptiTrack motion capture system. We recorded 72 flights of
∼210 s each that are equally split between the training and
the testing sets. Considering an average acquisition speed of
4 fps, we recorded in total ∼60 k samples. Consequently,
both the testing and the training sets count ∼30 k samples
each. Every sample is composed of a 160×160 pixels camera
image, the 3D relative pose between the two drones, and the
state, i.e., on or off, of the LEDs onboard the target drone.
The 3D pose and the LED state are converted into three maps
to allow the training of our FCNN.

Deployment: Our robot platform does not feature a
floating point unit. To avoid the expensive overheads of
emulating floating points with integer arithmetic, we deploy
our network in the int8 domain. We convert our floating point
network into an int8 network thanks to the QuantLib tool.
Furthermore, we automatically generate C code for the target
drone using DORY [20], a tool that relies on the PULP-NN
kernels [21]. These kernels require all the data to be stored
in L1 to be processed. As such, DORY takes care of the
memory management to exploit the full memory hierarchy
of GAP8 and automatically load tensors in L1 from L2 when
needed. DORY is not limited to L1 transfers and can exploit
the full hierarchy of memories available on the platform,
which includes L1, L2, RAM, and flash memories. Our
network is designed in such a way that all weights, runtime
code, and images (double buffered) fit in the L2 memory,
i.e., they are under 512 kB; this prevents heavy overheads

for RAM memory transfer.

IV. RESULTS

A. Regression performance

We evaluate the performance of our model on the testing
set by measuring separately for each of the three position
outputs (u, v, and d): the coefficient of determination metric
(R2), and the Pearson correlation coefficient w.r.t. the ground
truth. The former is a standard metric for regression perfor-
mance and reaches 1.0 only for the ideal regressor. The latter
captures the linear correlation between predictions and the
ground truth and is unaffected by additive and multiplicative
bias. Table I reports the performance of our FCNN compared
with State-of-the-Art (SoA) approaches by:

a) Li et al. [4];
b) Moldagalieva et al. [5];
c) Bonato et al. [3].
Approaches a) and b) are tested in two configurations each:

using the pre-trained networks provided by the authors23; and
using the training approach described by the authors, fine-
tuned on our testing environment following the procedure
and dataset sizes described in the respective papers [4], [5].
More specifically, approach a) was first trained on the 800
images training set provided by the authors and subsequently
fine-tuned with 192 images from our testing environment; for
b) we first trained the network with the 50 k images provided
by the authors, and then we fine-tuned it with more than 8216
from our testing environment. Approach c) is a regression
model that provides outputs as coordinates in 3D space; to
compare them to ours, they are projected back in the u, v,
and d coordinates.

We observe that, on both metrics, our model significantly
outperforms all the competing approaches on the u and v
variables and performs on par with on approach c) on d.
It is worth noting that approaches a) and b) are trained and
finetuned on different (and smaller) datasets than c) and ours.

Figure 3 compares the predictions vs. ground truths for
each output (columns) for each of the six models (rows).
Each dot in each plot represents one testing sample. An ideal
predictor yields points on the diagonal (dashed line). Note
that, even though our FCNN approach provides as output a
position map quantized as 20x20 pixels, u, and v coordinates
are extracted as the barycenter of such map, which yields
continuous values.

Figure 4 reports the distribution of image-space distances
between the predicted (u, v) point and the ground truth.
As a lower bound, all graphs report in the background the
performance of the dummy predictor that always returns the
center of the image. The median error of our approach is 9
pixels, halving the value achieved by model c); on the other
hand, the fine-tuned variant of b) yields a lower median error
(7.38 pixels). This is likely since this model relies on an
argmax operation to obtain the output coordinates from the
activation map in the last layer, compared to our barycenter
approach. The former is an aggressive approach that yields
precise predictions for most samples but yields large errors

Fig. 3. Predictions vs. ground truths for each model (rows), for different
outputs (cols). The dashed lines represent a perfect predictor.

for ambiguous cases since it commits to the most likely
output; the latter is more conservative, sacrificing accuracy
on easy samples to reduce errors on challenging images. The
difference between the two is clearly visible in Figure 3.

In terms of computational requirements, a) and b) come
at the disadvantage of being 8.3 times more computationally
expensive than our method and, as such, are unsuitable for
applications with high-fps requirements, such as the tracking
task we describe below.

B. Onboard performance assessment

We evaluate the performance of our FCNN on the
GAP8 SoC for what concerns the power consumption
and the inference rate in two conditions: minimum power
(VDD@1.0 V FC@25 MHz CL@25 MHz) and maximum
performance (VDD@1.2 V FC@250 MHz CL@175 MHz).
While the first is useful when the drone acts as a smart
sensor, as reported in [3], the latter is crucial in order to
achieve good agile control performance, maximizing the

TABLE I
TEST SET REGRESSION PERFORMANCE.

Network R2 score [%] Pearson [%]

u v d u v d

Li et al. [4] -88 -68 -174 18 17 16
Li et al. fine-tuned [4] -75 -66 -29 26 23 2
Moldagalieva et al. [5] -161 -94 -368 18 24 -16
Moldagalieva et al. fine-tuned [5] -12 -8 4 50 46 32
Bonato et al. [3] 32 18 42 58 47 66
FCNN 47 55 42 75 75 65

onboard inference rate of the model. In the minimum power
configuration, we are able to process 5.7 fps with a power
consumption of 10.7 mW. In the maximum performance
configuration, we achieved up to 39 Hz inference rate -
equivalent to almost 4.4 M cycles per frame on the GAP8
SoC - with a combined power consumption of the fabric
controller and the cluster that reaches 100.8 mW. The total
power requirement necessary for the full perception task
reaches 100.8 mW; it includes the camera acquisitions, the
memory transfers, and the GAP8 SoC processing. If consid-
ered together with the power required for the motors and the
Crazyflie electronics, it accounts only for 1.43% of the entire
power budget as reported in figure 5.

C. LED state classification

We use the third map produced as output by our network to
perform the LED classification task as reported in Section III.
We quantify binary classification performance with the Area
Under the ROC Curve (AUC) metric: as reported in Figure 6,
the approach yields an AUC of 0.83. A more detailed
analysis shows that when the target drone flies at the same
or lower height as the observer, the AUC exceeds 0.90. This
indicates very good classification performance and enables
applications in which LEDs are used as a low-bandwidth
communication device. In contrast, when the target drone
flies higher, the LEDs – placed on the top side of the drone
frame – are invisible, and classification becomes impossible
in many frames (AUC < 0.70).

D. In-field evalutation

Comparison with the SoA. We perform extensive in-
field tests of our FCNN compared with the SoA approach
by Bonato et al. [3]. The networks based on [4] and [5] are
not tested in-field due to the limited achievable frame rate
(5.2 fps).

The setup consists of two drones: one acts as a target
and flies a scripted 3D spiral path at a constant speed, as
defined in [3]; the second acts as an observer performing a
3D position tracking task of the target drone, freely moving
along the three spatial coordinates but keeping a constant
yaw. Without loss of generality, we assume that the observer
drone’s x axis is aligned with the world’s x axis. The desired
position of the observer drone is such that the target drone
is 0.8 m in front of it.

Fig. 4. Distribution of image-space distance error between (u, v) predictions and ground truths.

Fig. 5. System power breakdown while running the our approach in the
maximum performance configuration.

Fig. 6. LED prediction ROC curve for our FCNN

Figure 7 reports the in-field performance of the two tested
approaches. The performance of the drone controlled with
our approach is remarkably better for the whole duration
of the experiment, achieving a position tracking error under
0.1 m on each axis. Furthermore, as displayed in figure 7,
after the vertical dashed line, we achieved precise tracking
of the target drone also while landing. The observer drone
lands with a position error of ∼15 cm with respect to the
desired landing position. The in-field tracking error of this
test is reported in II for the two networks with the postfix text
“v 0.21”. The notation “v 0.21” represents the average speed
of the target during the path, namely 0.21 m

s . In this setting,
our approach reduces the average position tracking error by
37%, 52%, and 23%, respectively, on x, y, and z. All the
reported metrics have been computed in the time window
where both systems were working, i.e., before the vertical

Fig. 7. Trajectory comparison of the observer drone controlled with two
approaches vs the desired trajectory.

dashed line in figure 7. With the FCNN approach proposed
in this work, we are able to track the target drone with an
error below 10 cm on each axis, which is comparable to the
diameter of our Crazyflie nano-drone.

Increasing target velocities. The system with our FCNN
has been tested five times on the same path described
previously, per each configuration of speed, in particular for
v = 0.21 m

s , v = 0.34 m
s , and v = 0.59 m

s .
In Table II, we report the average tracking error on each

world-axis and the aggregate tracking error (|p− pd|) based
on the distance between the observer pose (p) and the desired
pose (pd) in the 3D space. In all the experiments, our FCNN
running onboard the observer drone successfully tracks the
target drone for the complete path. The maximum average
speed at which our system can operate is 2.8× higher than
the speed reported in Bonato et al. [3].

Endurance test. In figure 8, we report an endurance test
performed on 240 seconds, reaching the maximum time of
safe operation with one single battery. For the entire path, our
observer drone is capable of tracking the target on all the 3
axes. The target performs movements separately for each axis
as well as combined, such as circles stressing the accuracy
of the predictions in the 3 Degrees of Freedom (DoF).
Considering the average of 5 experiments, we achieved an
average tracking error of 0.08 m, 0.07 m, and 0.06 m for x,
y, and z respectively.

TABLE II
IN-FIELD TRACKING PERFORMANCE (AVERAGE OVER 5 RUNS) WITH

CHANGING AVERAGE SPEED

Configuration completed runs Avg tracking error [m]

x y z |p− pd| σ|p− pd|

Bonato et al. [3]
v 0.21

not reported 0.16 0.21 0.13 not rep. not rep.

FCNN (ours) v 0.21 5/5 0.09 0.10 0.10 0.19 0.08
FCNN (ours) v 0.34 5/5 0.10 0.15 0.14 0.26 0.12
FCNN (ours) v 0.59 5/5 0.12 0.31 0.16 0.41 0.15

Fig. 8. Infield endurance test of our FCNN model for up to 240s.

Generalization test. Furthermore, our system has been
tested in three other environments different from the one in
our training set, with several objects never seen in the train-
ing set, such as chairs, sofas, and bookcases. Although we
are not able to provide accurate quantitative measurements of
the tracking performance due to the lack of a motion capture
system in these environments, we provide a video to allow
a qualitative evaluation of our system in these never-seen-
before rooms. The target nano-drone for generalization tests
is operated through a controller while the observer drone
performs tracking in 3 DoF.

V. CONCLUSION

In this work, we address the drone-to-drone visual local-
ization task by employing resource-constrained nano-drones.
We propose a novel lightweight FCNN, i.e., 8× fewer
operations than SoA solutions [4], [5], which we vertically
integrate down to the onboard deployment on a Crazyflie
2.1 nano-drone extended with a GWT GAP8 SoC. On our
30 k samples real-world testing dataset, our model marks an
R2 score of 0.48 while, [3] obtains 0.3, [4] scores -0.57,
and [5] achieves -0.05. When deployed on the nano-drones
our lightweight FCNN reaches a real-time inference rate up
to 39 Hz with a minimal power consumption of 101 mW.
In-field tests demonstrate on average 37% lower tracking
error, compared to [3], which to the best of our knowledge is
the only SoA approach reaching real-time throughput, i.e.,

Fig. 9. Generalization in three different environments.

48 Hz, tracking a peer nano-drone. Furthermore, with our
FCNN, we achieve continuous tracking of a peer nano-drone
for the entire Crazyflies’s battery lifetime, i.e., 4 min. Finally,
our FCNN shows remarkable generalization capabilities, by
continuously tracking a target nano-drone for more than 1
minute, when deployed in three never-seen-before environ-
ments, namely coffee corner, office, and corridor.

NOTES
1https://github.com/idsia-robotics/drone2drone dataset
2https://github.com/shushuai3/deepMulti-robot
3https://tubcloud.tu-berlin.de/s/Sa5rN5JK7poGawrref

REFERENCES

[1] S. Guo, B. Alkouz, B. Shahzaad, A. Lakhdari, and
A. Bouguettaya, “Drone formation for efficient swarm energy
consumption,” in 2023 IEEE International Conference on
Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops). Los Alamitos,
CA, USA: IEEE Computer Society, mar 2023, pp. 294–
296. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
PerComWorkshops56833.2023.10150322

[2] G. A. Cardona and J. M. Calderon, “Robot swarm navigation and
victim detection using rendezvous consensus in search and rescue
operations,” Applied Sciences, vol. 9, no. 8, p. 1702, 2019.

[3] S. Bonato, S. C. Lambertenghi, E. Cereda, A. Giusti, and D. Palossi,
“Ultra-low power deep learning-based monocular relative localization
onboard nano-quadrotors,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 3411–3417.

[4] S. Li, C. De Wagter, and G. C. H. E. De Croon, “Self-supervised
monocular multi-robot relative localization with efficient deep neural
networks,” in 2022 International Conference on Robotics and Automa-
tion (ICRA), 2022, pp. 9689–9695.

[5] A. Moldagalieva and W. Hönig, “Virtual omnidirectional perception
for downwash prediction within a team of nano multirotors flying in
close proximity,” 2023.

[6] K. Wahba and W. Hönig, “Efficient optimization-based cable force
allocation for geometric control of multiple quadrotors transporting
a payload,” CoRR, vol. abs/2304.02359, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2304.02359

[7] J. Burgués, V. Hernández, A. J. Lilienthal, and S. Marco,
“Smelling nano aerial vehicle for gas source localization and
mapping,” Sensors, vol. 19, no. 3, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/3/478

[8] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Muller, L. M.
Gambardella, L. Benini, A. Giusti, and J. Guzzi, “Fully onboard ai-
powered human-drone pose estimation on ultralow-power autonomous
flying nano-uavs,” IEEE Internet of Things Journal, vol. 9, no. 3, pp.
1913–1929, 2022.

[9] D. Palossi, F. Tombari, S. Salti, M. Ruggiero, L. Di Stefano, and
L. Benini, “Gpu-shot: Parallel optimization for real-time 3d local
description,” in 2013 IEEE Conference on Computer Vision and
Pattern Recognition Workshops. IEEE, 2013, pp. 584–591.

https://github.com/idsia-robotics/drone2drone_dataset
https://github.com/shushuai3/deepMulti-robot
https://tubcloud.tu-berlin.de/s/Sa5rN5JK7poGawr
https://doi.ieeecomputersociety.org/10.1109/PerComWorkshops56833.2023.10150322
https://doi.ieeecomputersociety.org/10.1109/PerComWorkshops56833.2023.10150322
https://doi.org/10.48550/arXiv.2304.02359
https://www.mdpi.com/1424-8220/19/3/478

[10] I. Ouattara, V. Korhonen, and A. Visala, “Lidar-odometry based
uav pose estimation in young forest environment,” IFAC-
PapersOnLine, vol. 55, no. 32, pp. 95–100, 2022, 7th IFAC
Conference on Sensing, Control and Automation Technologies
for Agriculture AGRICONTROL 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896322027549

[11] V. Niculescu, D. Palossi, M. Magno, and L. Benini, “Energy-efficient,
precise uwb-based 3-d localization of sensor nodes with a nano-uav,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5760–5777, 2023.

[12] G. Chi, Z. Yang, J. Xu, C. Wu, J. Zhang, J. Liang, and Y. Liu,
“Wi-drone: Wi-fi-based 6-dof tracking for indoor drone flight control,”
in Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, ser. MobiSys ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
56–68. [Online]. Available: https://doi.org/10.1145/3498361.3538936

[13] K. N. Tahar and S. Kamarudin, “Uav onboard gps in positioning
determination,” ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. XLI-B1, pp.
1037–1042, 06 2016.

[14] Z. Farid, R. Nordin, and M. Ismail, “Recent advances in wireless
indoor localization techniques and system,” Journal of Computer
Networks and Communications, vol. 2013, 01 2013.

[15] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “3-d relative
positioning sensor for indoor collective flying robots,” Autonomous
Robots, vol. 33, 08 2012.

[16] M. Pourjabar, A. AlKatheeri, M. Rusci, A. Barcis, V. Niculescu,
E. Ferrante, D. Palossi, and L. Benini, “Land & localize: An
infrastructure-free and scalable nano-drones swarm with uwb-based
localization,” 2023.

[17] M. Strohmeier, T. Walter, J. Rothe, and S. Montenegro, “Ultra-
wideband based pose estimation for small unmanned aerial vehicles,”
IEEE Access, vol. 6, pp. 57 526–57 535, 2018.

[18] S. Gao, Z. Li, Q. Han, M. Cheng, and L. Wang, “Rf-next: Efficient
receptive field search for convolutional neural networks,” IEEE Trans-
actions on Pattern Analysis; Machine Intelligence, vol. 45, no. 03, pp.
2984–3002, mar 2023.

[19] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
ArXiv, vol. abs/1804.02767, 2018. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:4714433

[20] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus,” IEEE Transactions on Computers, pp. 1–1,
2021.

[21] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
A computing library for quantized neural network inference at the
edge on risc-v based parallel ultra low power clusters,” in 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). IEEE, 2019, pp. 33–36.

https://www.sciencedirect.com/science/article/pii/S2405896322027549
https://www.sciencedirect.com/science/article/pii/S2405896322027549
https://doi.org/10.1145/3498361.3538936
https://api.semanticscholar.org/CorpusID:4714433
https://api.semanticscholar.org/CorpusID:4714433

	Introduction
	Related work
	System design
	Results
	Regression performance
	Onboard performance assessment
	LED state classification
	In-field evalutation

	Conclusion
	References

