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ABSTRACT
In the field of online sequential decision-making, we address the

problem with delays utilizing the framework of online convex opti-

mization (OCO), where the feedback of a decision can arrive with

an unknown delay. Unlike previous research that is limited to Eu-

clidean norm and gradient information, we propose three families

of delayed algorithms based on approximate solutions to handle

different types of received feedback. Our proposed algorithms are

versatile and applicable to universal norms. Specifically, we intro-

duce a family of Follow the Delayed Regularized Leader algorithms

for feedback with full information on the loss function, a family

of Delayed Mirror Descent algorithms for feedback with gradient

information on the loss function and a family of Simplified Delayed

Mirror Descent algorithms for feedback with the value information

of the loss function’s gradients at corresponding decision points.

For each type of algorithm, we provide corresponding regret bounds

under cases of general convexity and relative strong convexity, re-

spectively. We also demonstrate the efficiency of each algorithm

under different norms through concrete examples. Furthermore,

our theoretical results are consistent with the current best bounds

when degenerated to standard settings.
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1 INTRODUCTION
In modern society, a plethora of dynamic data has been generated

in multiple domains, including Internet records, financial markets,

consumer behaviors, and more. These data are revealed in a se-

quential manner and require rapid comprehension and updating.

Correspondingly, online learning systems [3, 8] need real-time

decision-making due to the continuous influx of new observational

data. The advent of large-scale applications, including but not lim-

ited to portfolio selection [14], online recommendation system [26],

proactive resource allocation [13], online web ranking [18], and

online shortest path planning [19], has generated substantial in-

terest in the field of online learning. Over the past few years, the

integration of convex optimization techniques [7, 9] has brought
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about a transformation in the design of online learning algorithms,

resulting in more efficient solutions and reliable theoretical analysis.

Therefore, online convex optimization (OCO) [30, 31] has emerged

as a powerful framework for modeling the problem of sequential

decision-making. For instance, in the context of portfolio selection,

the strategy of an online investment aims to maximize returns by

allocating the current wealth, without relying on any preconceived

statistical assumptions. OCO is performed in a sequence of consec-

utive iterations. At each iteration 𝑡 , the agent (investor) selects a

decision 𝒙𝑡 from a closed convex set (optional investment strate-

gies) X ⊆ R𝑛 . After submitting the decision, the agent receives

information from the adversary regarding the loss function (market

behavior) 𝑓𝑡 : X −→ R and suffers an instantaneous loss (invest-

ment return) 𝑓𝑡 (𝒙𝑡 ). Due to the difficulty of attempting to maximize

absolute wealth in an adversarial market, our algorithm can only

maximize our wealth by comparing it to the returns achieved by

a relatively advanced investment strategy and optimizing accord-

ingly. The goal of the agent is to choose a sequence of decisions

𝒙 [𝑇 ] = (𝒙1, . . . , 𝒙𝑇 ) that minimizes the regret:

Reg𝑇 :=

𝑇∑︁
𝑡=1

𝑓𝑡 (𝒙𝑡 ) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝒙∗),

where 𝑇 is the time horizon, and 𝒙∗ = arg min𝒙∈X
∑𝑇
𝑡=1

𝑓𝑡 (𝒙) is
the optimal decision in hindsight. In other words, regret is the gap

between the cumulative loss of the agent and that incurred by a

given sequence of comparators.

The standard framework of OCO assumes that the agent has

immediate access to the information of the loss function 𝑓𝑡 before

making the subsequent decision at iteration 𝑡 + 1. In many practical

scenarios, there exists a temporal gap between the decision-making

process of the agent and the reception of the corresponding feed-

back. As an example of portfolio scenarios, it is typical to encounter

unknown delays between making an investment and receiving re-

turns, and the return cycles for different investments could also be

asynchronous. Two variants of standard Online Gradient Descent

(OGD) algorithm [15, 20], namely Delayed Online Gradient Descent

(DOGD) algorithm [29] and Delayed Online Gradient Descent for

Strongly Convex functions (DOGD-SC) [32], have been specifically

designed to address the challenge of unknown delays in general

convex and strongly convex functions, respectively.

However, these existing algorithms [29, 32] that solely rely on

gradient feedback and Euclidean norm are not well-equipped to

handle more universal scenarios competently. Firstly, in the online

setting, adversaries who provide feedback to the agent typically

withhold prior disclosure of the information type. Consequently,

these gradient-based algorithms become ineffective once the feed-

back provided is not in the form of gradients.
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Secondly, gradient descent-based algorithmsmay face challenges

when computing projections efficiently for certain objective func-

tions and constraint domain sets. As an example, let’s consider

the constant-rebalanced portfolio (CRP) consisting of 𝑛 stocks, the

portfolio decision is represented by a probability distribution over

the set of 𝑛 stocks. Computing the Euclidean projection onto the

probability simplex could be computationally expensive.

Last but not least, theoretical analysis typically involves decom-

posing regret into a normal term caused by optimization steps and

a delayed term caused by delayed feedback. The delayed term we

have established encompasses the dual norm of gradients, which ac-

tually live in the dual space, that is a distinct space from the primal

space of decisions. The reason why these gradient-based delayed

algorithms work effectively is that, in the specific case, the dual

space coincides with the primal space. But, it is a very particular

case that arises when the Euclidean norm is utilized. Instead, in

universal cases, decisions and gradients exist in separate spaces.

Given the limitations of existing algorithms, in this paper, we

propose three families of approximate algorithms based on types

of the received feedback information. Particularly, in the universal

space, we have specifically designed diverse regularization func-

tions for different norms. These regularization functions quantify

the divergence between variables in the primal and dual spaces and

enable the mapping between these two spaces. For example, when

it comes to efficiently handling the probability simplex problem, a

common strategy is to employ the negative entropy function. In

high-dimensional optimization tasks like image or speech process-

ing, the utilization of the 𝐿1 norm plays a crucial role in feature selec-

tion. By adjusting the parameter 𝑝 within the range of 1 and 2, one

can explore the impact of the 𝑝-norm and fine-tune the optimization

approach accordingly. Furthermore, we conduct an approximate

solution in the optimization step, wherein the decision-making

process in each iteration is guided by an approximate minimizer

rather than an exact minimizer of the optimization problem. This

approach is commonly utilized in iterative optimization problems

because it is often impractical to achieve solutions with infinite

precision.

Our contributions are summarized as follows:

• Firstly, we propose three types of online algorithms to han-

dle delayed feedback. Our theoretical analysis differs from

gradient descent-based algorithms as it involves addressing

universal norms and approximate solutions, which poses a

challenge.

• For the full information feedback of loss functions, we pro-

pose a family of follow the delayed regularized leader algo-

rithms to handle the general convex functions and relative

strongly convex functions, respectively. Notably, we replace

the conventional concept of strong convexity with the more

general notion of relative strong convexity.

• For the gradient information feedback, we introduce a family

of delayed mirror descent algorithms. Moreover, we show-

case the versatility and superiority of our proposed algo-

rithms by applying them to examples with various norms.

• When feedback is limited to the value information of loss

functions’ gradients, we introduce a family of simplified

delayed mirror descent algorithms. we demonstrate that

despite the reduced amount of information obtained, it can

achieve regret bounds comparable to those obtained with

full information or gradient information.

Organization. We mention the existing work related to our pa-

per in Section 2. In Section 3, we introduce the formal definitions,

assumptions and examples. In Section 4, we present a family of

follow the delayed regularized leader algorithms based on full in-

formation feedback for both general and relative strongly convex

cases, and also provide examples to illustrate their performance.

In Section 5, we utilize the delayed gradient information to design

a family of delayed mirror descent algorithms. In Section 6, we

develop a family of simplified delayed mirror descent algorithms

that can handle situations where feedback is reduced to the value

information of loss functions’ gradients. We end off the paper with

the conclusion and future work in Section 7. Additionally, we pro-

vide the numerical simulations and a detailed theoretical analysis

in the appendix.

2 RELATEDWORK
2.1 The Standard OCO
When 𝑑𝑡 = 1 for each 𝑡 ∈ [𝑇 ], our problem is degenerated to the

standard framework of OCO [10, 31]. In the context of OCO, the

type of feedback received by the agent is a crucial aspect in the

development of online learning algorithms. When the feedback con-

sists of the full information of loss functions, a natural approach is

to select the decision that optimizes the loss history for all previous

iterations, i.e., 𝒙𝑡+1 = arg min𝒙∈X
∑𝑡
𝜏=1

𝑓𝜏 (𝒙), commonly known as

the Follow the Leader (FTL) algorithm [1, 31]. Furthermore, to en-

sure stability and prevent oscillations between decisions, the Follow

the Regularized Leader (FTRL) algorithm [24, 28] selected the deci-

sion that minimizes the sum of previous losses and an additional

regularization term𝜓 with a learning rate 𝜂𝑡 as follows:

𝒙𝑡+1 = arg min

𝒙∈X

{
𝑡∑︁

𝜏=1

𝑓𝜏 (𝒙) +
1

𝜂𝑡
𝜓 (𝒙)

}
, (1)

When the revealed feedback is in the form of gradient informa-

tion of the loss function, a helpful way to understand the algorithm’s

performance is to perceive it as minimizing a local estimate of the

original loss function. By the definition of convexity, a linear bound

for the function 𝑓𝑡 around 𝒙𝑡 could be constructed by

∀𝒙 ∈ X, ˜𝑓𝑡 (𝒙) := 𝑓𝑡 (𝒙𝑡 ) + ⟨∇𝑓𝑡 (𝒙𝑡 ), 𝒙 − 𝒙𝑡 ⟩.
Unfortunately, the direct minimization of a linear function may not

lead to an effective online algorithm since the minimum of a linear

function can approach negative infinity over unbounded domains.

This issue could be addressed by confining the minimization of the

lower bound within a specific neighborhood of 𝒙𝑡 . Online Mirror

Descent (OMD) algorithm [6, 16] achieved this by utilizing the

Bregman divergence, as illustrated below:

𝒙𝑡+1 = arg min

𝒙∈X

{
⟨∇𝑓𝑡 (𝒙𝑡 ), 𝒙⟩ +

1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 )

}
. (2)

Both FTRL and OMD have been shown to obtain regret bounds

of O(
√
𝑇 ) and O(ln𝑇 ) for general convex and strongly convex

functions, respectively. Notably, when the regularization term is

specified as 𝜓 = 1

2
∥ · ∥2

2
, OMD is equivalent to the well-studied
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projection-basedOGD [4, 35], which employed the following update

rule: 𝒙𝑡+1 = ΠX (𝒙𝑡 − 𝜂𝑡∇𝑓𝑡 (𝒙𝑡 )), where ΠX (·) is the Euclidean

projection onto the closed convex set X.

Despite the extensive research on standard OCO algorithms,

the practical issue of delayed feedback has not been adequately

addressed.

2.2 The Delayed OCO
For the scenario where all delays are fixed and known, i.e., 𝑑𝑡 = ¯𝑑

for each 𝑡 ∈ [𝑇 ], the seminal work of [33] addressed this issue

by dividing the total 𝑇 iterations into
¯𝑑 subsets and maintaining a

base algorithm on each subset. By utilizing the standard OGD algo-

rithm as the base, [33] achieved an O(
√

¯𝑑𝑇 ) regret bound for gen-

eral convex functions. [36] investigated the same delayed case and

demonstrated that incorporating delayed gradients during each gra-

dient descent step in the standard OGD algorithm also yields regret

bounds of O(
√

¯𝑑𝑇 ) and O( ¯𝑑 ln𝑇 ) for convex losses and strongly

convex functions, respectively.

Moreover, [23] extended the approach proposed in [33] to handle

a more challenging scenario where delays are arbitrary but time-

stamped and achieved a regret bound of O(
√
𝑑𝑇 ), where 𝑑 denotes

the maximum delay. In a similar vein, [22] employed the one-point

gradient estimator [17] to introduce a comparable approach for the

bandit setting.

In the most general delayed case, where each feedback could

be delayed arbitrarily and the time stamp of each feedback could

also be unknown. [27] presented a data-dependent regret bound

for the delayed setting, assuming the decision set is unbounded.

The celebrated work [29] proposed an effective method named

DOGD and obtained a regret bound of O(
√
𝐷𝑇 ), where 𝐷𝑇 is the

cumulative delays. DOGD, given by

𝒙𝑡+1 = ΠX

𝒙𝑡 − 𝜂𝑡

∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑘 )
 ,

needs to query the gradient at each iteration 𝑡 and update the deci-

sion with the sum of those gradients queried at the set of iterations

F𝑡 . [25] proposed DBGD, which employed an (𝑛+1)-point gradient
estimator [2] to approximate gradients in the bandit setting. [11]

expanded [29] to the decentralized optimization over a network.

[32] adopted a time-varying learning rate connected with the total

number of observable feedback to address the delayed optimiza-

tion problem with strongly convex loss functions and obtained an

O(𝑑 ln𝑇 ) regret bound.
To date, most studies on delayed OCO have relied on the Eu-

clidean norm to measure the distance between the decision points.

However, it is unclear whether these algorithms can be extended to

accommodate other types of norms. This paper gives an affirmative

answer by proposing three families of FTDRL, DMD and SDMD

algorithms.

Compared to the previous delayed gradient descent-based al-

gorithms, our proposed algorithms exhibit advancements in the

following aspects. Firstly, we introduce three targeted algorithms

that address different types of feedback related to function infor-

mation, gradient information, and value information, respectively.

Secondly, our algorithms are grounded on universal norms, instead

of a specific Euclidean norm, and demonstrate superiority across

diverse examples. Thirdly, we employ an approximate solution

approach for each optimization problem.

3 FORMAL NOTATIONS
First, to provide a more concrete definition of the delayed setting,

we introduce the following notation. Let 𝑑𝑡 ∈ Z+ denote a non-

negative integral delay at iteration 𝑡 . At the end of iteration 𝑡+𝑑𝑡 −1,

the feedback queried at iteration 𝑡 is received and can be used

in iteration 𝑡 + 𝑑𝑡 . In the standard setting, where there are no

delays, 𝑑𝑡 = 1 for all 𝑡 . We denote the set of iterations that receive

feedback at the end of iteration 𝑡 as F𝑡 . The maximum delay and

the total delay (up to iteration 𝑇 ) are denoted by 𝑑 = max𝑡 ∈[𝑇 ] 𝑑𝑡
and 𝐷𝑇 =

∑𝑇
𝑡=1

𝑑𝑡 , respectively.

In this paper, we denote the 𝑛-dimensional real vector space

equipped with an inner product ⟨·, ·⟩ and a norm ∥ · ∥ by R𝑛 . The
dual norm of ∥ · ∥ is defined as ∥𝒙 ∥★ := sup𝒚∈R𝑛 :∥𝒚 ∥≤1

⟨𝒙,𝒚⟩ for
each 𝒙 ∈ R𝑛 . We use the notation X ⊆ R𝑛 to denote a closed

convex set and {𝑓𝑡 : X −→ R}𝑡≥1 to denote a sequence of convex

loss functions. Moreover, let𝜓 : D −→ R be a convex function such

that it is differentiable in its non-empty interior D◦
:= intD and

such that we have X ⊆ D◦
.

Definition 1. For a convex function 𝑓 : X −→ R and 𝒙 ∈ X, a
vector ∇𝑓 (𝒙) ∈ R𝑛 is the gradient of 𝑓 at 𝒙 , then ∇𝑓 (𝒙) satisfies the
inequality

∀𝒚 ∈ X, 𝑓 (𝒚) ≥ 𝑓 (𝒙) + ⟨∇𝑓 (𝒙),𝒚 − 𝒙⟩.
Definition 2. The Bregman divergence with respect to function

𝜓 is given by

∀𝒙 ∈ D,𝒚 ∈ D◦, 𝐵𝜓 (𝒙 ;𝒚) = 𝜓 (𝒙) −𝜓 (𝒚) − ⟨∇𝜓 (𝒚), 𝒙 −𝒚⟩.
Assumption 1. The primal norm of the decision is bounded by 𝑅

and the dual norm of the gradient is bounded by 𝐺★, i.e.,

∀𝒙 ∈ X, 𝑡 ∈ [𝑇 ], ∥𝒙 ∥ ≤ 𝑅, ∥∇𝑓𝑡 (𝒙)∥★ ≤ 𝐺★.

Assumption 2. The regularization function𝜓 has𝐺𝜓 -Lipschitz
gradients on the set X, i.e.,

∀𝒙,𝒚 ∈ D, ∥∇𝜓 (𝒙) − ∇𝜓 (𝒚)∥★ ≤ 𝐺𝜓 ∥𝒙 −𝒚∥.
For convenience, we make 𝐺𝜓 = 𝜉𝐺★.

Assumption 3. The regularization function𝜓 is 𝜎-strongly con-
vex over D with respect to a norm ∥ · ∥, i.e.,

∀𝒙 ∈ D,𝒚 ∈ D◦, 𝐵𝜓 (𝒙 ;𝒚) ≥ 𝜎

2

∥𝒙 −𝒚∥2 .

Definition 3. (Relative strong convexity) If the loss function 𝑓𝑡
is 𝛾-strongly convex overX with respect to a convex and differentiable
function𝜓 , then,

∀𝒙,𝒚 ∈ X, 𝑡 ∈ [𝑇 ], 𝑓𝑡 (𝒙) − 𝑓𝑡 (𝒚) − ⟨∇𝑓𝑡 (𝒚), 𝒙 −𝒚⟩ ≥ 𝛾𝐵𝜓 (𝒙 ;𝒚) .
A noteworthy instance of relative strong convexity occurs when

we select𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
, and the classical strong convexity defini-

tion with respect to the Euclidean norm is recovered.

To showcase the effectiveness of our algorithms when applied to

different norms, we provide the following examples, each of which

corresponds to a distinct domain and regularizer. The choice of the

regularizer is primarily determined by its strong convexity with

respect to a particular norm.
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Algorithm 1 Follow the Delayed Regularized Leader for General

Convexity

1: Input: both 𝜂 and 𝒙1 depend on the choice of example

2: for 𝑡 = 1, . . . ,𝑇 do
3: Query 𝑓𝑡 and receive feedback {𝑓𝑘 : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: Make an approximate solution 𝒙𝑡+1:

𝑡∑︁
𝜏=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙𝑡+1) +
𝜓 (𝒙𝑡+1)

𝜂
≤

𝑡∑︁
𝜏=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒚∗𝑡+1
) +

𝜓 (𝒚∗
𝑡+1

)
𝜂

+ 𝜌𝑡 ,

where 𝒚∗
𝑡+1

= arg min

𝒙∈X

{∑𝑡
𝜏=1

∑
𝑘∈F𝑡 𝑓𝑘 (𝒙) +

1

𝜂𝜓 (𝒙)
}

6: else
7: 𝒙𝑡+1 = 𝒙𝑡
8: end if
9: end for

Example 1. In the Euclidean space, we consider X ∈ R𝑛 and
𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
. Note that the dual norm of ∥ · ∥2 is itself, and

𝐵𝜓 (𝒙;𝒚) = 1

2
∥𝒙 − 𝒚∥2

2
. Moreover, 𝜓 (·) is 1-strongly convex with

respect to norm ∥ · ∥2 over X. We assume that ∥∇𝑓𝑡 (𝒙)∥2 ≤ 𝐺2 and
∥𝒙 ∥2 ≤ 𝑅2 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].

Example 2. In the probabilistic simplex, we consider X = {𝒙 ∈
R𝑛+ : ∥𝒙 ∥1 = 1}. and𝜓 (𝒙) = ∑𝑛

𝜇=1
𝑥 (𝜇 ) ln𝑥 (𝜇 ) + ln𝑛. The dual norm

of ∥ · ∥1 is ∥ · ∥∞. Note that𝜓 (·) is 1-strongly convex with ∥ · ∥1. We
assume that ∥∇𝑓𝑡 (𝒙)∥∞ ≤ 𝐺∞ for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].

Example 3. In the case of 𝑝-norm, we consider 𝜓 (𝒙) = 1

2
∥𝒙 ∥2

𝑝

over X ∈ R𝑛 , where ∥𝒙 ∥𝑝 =

(∑𝑛
𝜇=1

|𝑥 (𝜇 ) |𝑝
) 1

𝑝 and 1 < 𝑝 ≤ 2. Note

that the dual norm of ∥ · ∥𝑝 is ∥ · ∥𝑞 , where 1

𝑝 + 1

𝑞 = 1. 𝜓 (·) is
(𝑝 − 1)-strongly convex with respect to the norm ∥ · ∥𝑝 . We assume
∥𝒙 ∥𝑝 ≤ 𝑅𝑝 and ∥∇𝑓𝑡 (𝒙)∥𝑞 ≤ 𝐺𝑞 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].

4 FOLLOW THE DELAYED REGULARIZED
LEADER

When an agent has access to the full information of loss functions

at each iteration, the FTRL algorithm is a commonly used approach.

Motivated by the standard FTRL algorithm presented in Eq. (1),

which does not incorporate delays, we replace the standard history

from beginning to iteration 𝑡 with the outdated history of revealed

loss functions in the iteration set {F𝜏 : 𝜏 ∈ [𝑡]}.

4.1 Sublinear Regret for General Convexity
When the loss function is general convex, we propose a Follow

the Delayed Regularized Leader for General Convexity (FTDRL-

GC) algorithm. The detailed update procedures are summarized in

Algorithm 1. The optimization problem arising in our algorithm

is only required to be solved approximately (up to an additive

error 𝜌𝑡 ). This is commonly observed in iterative optimization

problems, since in general they cannot be solved exactly. Moreover,

approximating the optimization problem induces a sequence of

errors that complicates the regret analysis of the algorithm.

By setting a constant learning rate, the regret bound is formally

stated in the following theorem.

Algorithm 2 Follow the Delayed Leader for Relative Strong Con-

vexity

1: Input: make an arbitrary decision 𝒙1 ∈ X
2: for 𝑡 = 1, . . . ,𝑇 do
3: Query 𝑓𝑡 and receive feedback {𝑓𝑘 : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: Make an approximate solution 𝒙𝑡+1:

𝑡∑︁
𝜏=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙𝑡+1) ≤
𝑡∑︁

𝜏=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒚∗𝑡+1
) + 𝜌𝑡 ,

where 𝒚∗
𝑡+1

= arg min

𝒙∈X

{∑𝑡
𝜏=1

∑
𝑘∈F𝑡 𝑓𝑘 (𝒙)

}
6: else
7: 𝒙𝑡+1 = 𝒙𝑡
8: end if
9: end for

Theorem 1. Under Assumptions 1 and 3, let the maximum ap-

proximate error 𝜌𝑡 =
𝜂𝐺2

★

8𝜎 ,∀𝑡 ∈ [𝑇 ], Algorithm 1 satisfies

Reg𝑇 ≤
𝜂𝐺2

★(𝑇 + 4𝐷𝑇 )
𝜎

+ 𝜓 (𝒙∗) −𝜓 (𝒙1)
𝜂

.

Proof. For convenience, we set Φ𝑡,𝑖𝑘 (𝒙) =
∑𝑡−1

𝜏=1

∑
𝑠∈F𝜏 𝑓𝑠 (𝒙) +∑

𝑠∈F𝑡,𝑘 𝑓𝑠 (𝒙)+𝑓𝑘 (𝒙)+ 1

𝜂𝜓 (𝒙) andΦ0 (𝒙) = 1

𝜂𝜓 (𝒙). At each iteration
𝑡 in FTDRL-GC, for each 𝑘 ∈ F𝑡 , we view the update process as

|F𝑡 | segments as

Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘+1) ≤ Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) + 𝜌𝑡,𝑖𝑘 ,𝒚

∗
𝑡,𝑖𝑘+1

= arg min

𝒙∈X
Φ𝑡,𝑖𝑘 (𝒙),

where 𝑖𝑘 = |F𝑡,𝑘 |, F𝑡,𝑘 = {𝑠 ∈ F𝑡 : 𝑠 < 𝑘}. Additionally, we make

𝒙𝑡,0 = 𝒙𝑡 , 𝒙𝑡+1 = 𝒙𝑡, | F𝑡 | , and 𝜌𝑡,0 = 𝜌𝑡 , 𝜌𝑡+1 = 𝜌𝑡, | F𝑡 | . The total

regret bound can be divided into two parts.

Reg𝑇 =

𝑇∑︁
𝑡=1

[𝑓𝑡 (𝒙𝑡 ) − 𝑓𝑡 (𝒙∗)] =
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙∗)]

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)]︸                               ︷︷                               ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡,𝑖𝑘 )]︸                               ︷︷                               ︸
delayed term

.

(3)

For the normal term of Eq. (3), we have the following lemma.

Lemma 1. Under Assumptions 1 and 3, the normal term of Eq. (3)
is bounded by

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)] ≤
𝜂

𝜎
𝑇𝐺2

★ + 1

𝜂
[𝜓 (𝒙∗) −𝜓 (𝒙1)] . (4)

Next, we discuss the delayed term of Eq. (3), we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡,𝑖𝑘 )] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★∥𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ∥

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★
©­«
𝑡−1∑︁
𝜏=𝑘

∑︁
𝑠∈F𝜏

∥𝒙𝜏,𝑖𝑠+1 − 𝒙𝜏,𝑖𝑠 ∥ +
∑︁

𝑠∈F𝑡,𝑘
∥𝒙𝑡,𝑖𝑠+1 − 𝒙𝑡,𝑖𝑠 ∥

ª®¬ .
(5)
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The crucial factor impacting the bound of the delayed term is

the gap between 𝒙𝜏,𝑖𝑠 and 𝒙𝜏,𝑖𝑠+1.

Lemma 2. Under Assumptions 1 and 3, for each 𝑡 ∈ [𝑇 ], 𝑘 ∈ F𝑡 ,
our FTDRL-GC algorithm ensures that

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤ 2𝜂𝐺★

𝜎
. (6)

Substituting Eq. (6) into Eq. (5) gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡,𝑖𝑘 )] ≤
4𝜂𝐺2

★𝐷𝑇

𝜎
. (7)

The last inequality is derived from the following lemma.

Lemma 3 ([29]). The summation terms of the delay satisfy
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

(
𝑡−1∑︁
𝜏=𝑘

|F𝜏 | + |F𝑡,𝑘 |
)
≤ 2𝐷𝑇 .

Combining with Eq. (4) and Eq. (7) gives the result of Theorem 1.

□

Intuitively, the regret bound in Theorem 1 is likely to be influ-

enced by the specific characteristics of different examples (i.e., the

choice of learning rate 𝜂 and initial decision 𝒙1 based on the nature

of specific regularization function). To illustrate this point, we give

the following corollary.

Corollary 1. Applying FTDRL-GC to Example 1 with 𝒙1 = 0 ∈ X
and 𝜂 =

𝑅2

𝐺2

√︃
1

2𝑇+8𝐷𝑇
yields Reg𝑇 ≤ 𝐺2𝑅2

√
2𝑇 + 8𝐷𝑇 .

Applying FTDRL-GC to Example 2 with 𝒙1 = [ 1

𝑛 , . . . ,
1

𝑛 ] ∈ R𝑛+
and 𝜂 = 1

𝐺∞

√︃
ln𝑛

𝑇+4𝐷𝑇
yields Reg𝑇 ≤ 2𝐺∞

√︁
(𝑇 + 4𝐷𝑇 ) ln𝑛.

Applying FTDRL-GC to Example 3 with 𝒙1 = 0 ∈ X and 𝜂 =
𝑅𝑝

𝐺𝑞

√︃
𝑝−1

2𝑇+8𝐷𝑇
yields Reg𝑇 ≤ 𝑅𝑝𝐺𝑞

√︃
2𝑇+8𝐷𝑇

𝑝−1
.

We can naturally employ the doubling trick [12] to address the

scenarios where the values of 𝐷𝑇 and 𝑇 are unknown. This tech-

nique also guarantees that the maximum permissible errors in the

approximate solution continuously decrease from their initially

larger values.

Remark. When utilizing the Euclidean normwith regularizer𝜓 (𝒙) =
1

2
∥𝒙 ∥2

2
, the results achieved are comparable to those obtained in

the DOGD algorithm [29]. However, in the case of the probabil-

ity simplex, we can achieve a regret bound of O(𝐺∞
√︁
𝐷𝑇 ln𝑛). In

contrast to the DODG algorithm applied in this scenario, which

yielded a regret of O(𝐺2

√
𝐷𝑇 ), for the worst-case scenario (i.e.,

𝐺2 =
√
𝑛𝐺∞). We transforming the dimension dependency from√

𝑛 to

√
ln𝑛. Additionally, our regrets match the regime of standard

FTRL [24] when considering 𝑑𝑡 = 1,∀𝑡 ∈ [𝑇 ].

4.2 Logarithmic Regret for Relative Strong
Convexity

[21, 34] have shown that the non-delayed FTL algorithm without

any regularization function achieves logarithmic regret in the case

of relative strong convexity. Inspired by these works, we propose a

Follow the Delayed Leader for Relative Strong Convexity (FTDL-

RSC) algorithm in the presence of delays and formally outline the

update procedures in Algorithm 2. At each iteration 𝑡 , we directly

minimize the outdated history over the iteration set {F𝜏 : 𝜏 ∈ [𝑡]}.
Compared with previous delayed algorithm [32], our FTDL-RSC

algorithm possesses several advantages in three aspects. Firstly, we

are capable of computing an approximate solution for each decision.

Secondly, we can handle universal norms. Thirdly, we do not need

prior knowledge of the modules of relative strong convexity.

We establish the following theorem and corollary regarding the

regret bound of Algorithm 2.

Theorem 2. Under Assumptions 1 and 3, let the maximum ap-

proximate error 𝜌𝑡 =
| F𝑡 |2𝐺2

★

8

∑𝑡
𝜏=1

| F𝜏 |𝛾𝜎
,∀𝑡 ∈ [𝑇 ], Algorithm 2 satisfies

Reg𝑇 ≤
3𝑑𝐺2

★

𝜎𝛾
(1 + ln𝑇 ).

Proof. In the case of relative strong convexity, the regret of

FTDL-RSC is divided by

Reg𝑇 =

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)]︸                            ︷︷                            ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )]︸                            ︷︷                            ︸
delayed term

.

(8)

For the normal term of Eq. (8), we have the following lemma.

Lemma 4. Under Assumptions 1 and 3, the normal term of Eq. (8)
is bounded by

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)] ≤
𝑑𝐺2

★(1 + ln𝑇 )
𝜎𝛾

. (9)

Next, we analyze the delayed term of Eq. (8).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡 ⟩

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★

(
𝑡−1∑︁
𝜏=𝑘

∥𝒙𝜏+1 − 𝒙𝜏 ∥
)
≤ 𝑑𝐺★

𝑇∑︁
𝑡=1

∥𝒙𝑡+1 − 𝒙𝑡 ∥.

(10)

The last inequality holds because 𝑑 is the maximum delay.

Here, we discuss the difference between 𝒙𝑡 and 𝒙𝑡+1.

Lemma 5. Under Assumptions 1 and 3, for each 𝑡 ∈ [𝑇 ], our FTDL-
RSC algorithm ensures that

∥𝒙𝑡+1 − 𝒙𝑡 ∥ ≤ 3

2

|F𝑡 |𝐺★∑𝑡
𝜏=1

|F𝜏 |𝜎𝛾
+ 1

2

|F𝑡−1 |𝐺★∑𝑡−1

𝜏=1
|F𝜏 |𝜎𝛾

. (11)

Substituting Eq. (11) into Eq. (10) gives the delayed term.

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )] ≤
2𝑑𝐺2

★(1 + ln𝑇 )
𝜎𝛾

. (12)

Combining with Eq. (9) and Eq. (12), we obtain Theorem 2. □

Corollary 2. Applying FTDL-RSC to Example 1 gives Reg𝑇 ≤
3𝑑𝐺2

2

𝛾 (1 + ln𝑇 ).

Applying FTDL-RSC to Example 2 gives Reg𝑇 ≤ 3𝑑𝐺2

∞
𝛾 (1 + ln𝑇 ).

Applying FTDL-RSC to Example 3 gives Reg𝑇 ≤ 3𝑑𝐺2

𝑞

𝛾 (𝑝−1) (1 + ln𝑇 ).
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Algorithm 3 Delayed Mirror Descent for General Convexity

1: Input: both 𝜂 and 𝒙1 depend on the choice of example

2: for 𝑡 = 1, . . . ,𝑇 do
3: Query ∇𝑓𝑡 and receive feedback {∇𝑓𝑘 : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: 𝒙𝑡,0 = 𝒙𝑡
6: for 𝑘 ∈ F𝑡 do
7: Make an approximate solution 𝒙𝑡,𝑖𝑘+1:〈

∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 )

≤
〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1

; 𝒙𝑡,𝑖𝑘 ) + 𝜌𝑡,𝑖𝑘 ,

where𝒚∗
𝑡,𝑖𝑘+1

= arg min

𝒙∈X

{〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙

〉
+ 1

𝜂 𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 )
}

8: end for
9: 𝒙𝑡+1 = 𝒙𝑡, | F𝑡 |
10: else
11: 𝒙𝑡+1 = 𝒙𝑡
12: end if
13: end for

Remark. Above reveals that when applying the Euclidean norm

with the regularization function 𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
, our FTDL-RSC

achieves regret bounds that match those of the DOGD-SC algo-

rithm [32]. However, in comparison to directly applying DOGD-SC

to the probability simplex scenario, our approach, which utilizes

an entropic regularization function, leads to an improved depen-

dency of the regret bound from 𝐺2 to 𝐺∞. Furthermore, assuming

𝑑𝑡 = 1,∀𝑡 ∈ [𝑇 ], our findings align with the regret bound of the

non-delayed FTL algorithm [34] for relative strong convexity.

5 DELAYED MIRROR DESCENT
When the feedback available is the gradient information of the

loss functions, we develop a family of delayed mirror descent for

the general convexity and relative strong convexity, respectively.

Motivated by the standard OMD formulation given in Eq. (2), we

replace the gradient {∇𝑓𝑡 } with the gradient set {∇𝑓𝑘 : 𝑘 ∈ F𝑡 } at
each iteration 𝑡 for updates.

5.1 Sublinear Regret for General Convexity
Here we propose a Delayed Mirror Descent for General Convexity

(DMD-GC) algorithm. The detailed procedure is summarized in

Algorithm 3. The update process is divided into |F𝑡 | segments and

a fixed learning rate 𝜂 is utilized. The index 𝑖𝑘 = |F𝑡,𝑘 | denotes
the position of iteration 𝑘 in set F𝑡 where F𝑡,𝑘 = {𝑠 ∈ F𝑡 : 𝑠 < 𝑘}.
Similarly, each decision is made based on an approximate solution.

We establish the following theorem regarding the regret bound.

Theorem 3. Under Assumptions 1, 2 and 3, let the maximum

approximate error 𝜌𝑡,𝑖𝑘 =
𝜂3

2𝜎 ,∀𝑘 ∈ F𝑡 , 𝑡 ∈ [𝑇 ], Algorithm 3 satisfies

Reg𝑇 ≤
𝜂 (𝐺2

★𝑇 + 8𝜉𝑅𝐺★𝑇 + 2𝜂𝐺★𝑇 + 4𝐺2

★𝐷𝑇 + 8𝜂𝐺★𝐷𝑇 )
2𝜎

+
2𝜂2𝜉𝐺2

★𝐷𝑇

𝜎2
+
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂
.

Algorithm4DelayedMirror Descent for Relative Strong Convexity

1: Input: 𝜂𝑡 =
1

𝛾
∑𝑡

𝜏=1
| F𝜏 |

, make an arbitrary decision 𝒙1 ∈ X
2: for 𝑡 = 1, . . . ,𝑇 do
3: Query ∇𝑓𝑡 and receive feedback {∇𝑓𝑘 : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: Make an approximate solution 𝒙𝑡+1:∑︁

𝑘∈F𝑡
⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡+1⟩ +

1

𝜂𝑡
𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 )

≤
∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑡 ),𝒚∗𝑡+1

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒚∗𝑡+1

; 𝒙𝑡 ) + 𝜌𝑡 ,

where𝒚∗
𝑡+1

= arg min

𝒙∈X

{〈∑
𝑘∈F𝑡 ∇𝑓𝑘 (𝒙𝑡 ), 𝒙

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 )

}
6: else
7: 𝒙𝑡+1 = 𝒙𝑡
8: end if
9: end for

Proof. The total regret bound is divided by

Reg𝑇 =

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)]︸                               ︷︷                               ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡,𝑖𝑘 )]︸                               ︷︷                               ︸
delayed term

.

(13)

For the normal term of Eq. (13), we have the following lemma.

Lemma 6. The normal term of Eq. (13) is bounded by

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)] ≤
𝜂𝑇 (𝐺2

★ + 8𝜉𝑅𝐺★ + 2𝜂𝐺★)
2𝜎

+
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂
.

(14)

Next, we discuss the delayed term of Eq. (13).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡,𝑖𝑘 )] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ⟩

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★
©­«
𝑡−1∑︁
𝜏=𝑘

∑︁
𝑠∈F𝜏

∥𝒙𝜏,𝑖𝑠+1 − 𝒙𝜏,𝑖𝑠 ∥ +
∑︁

𝑠∈F𝑡,𝑘
∥𝒙𝑡,𝑖𝑠+1 − 𝒙𝑡,𝑖𝑠 ∥

ª®¬ .
(15)

According to the above result, the challenge lies in the gap between

𝒙𝜏,𝑖𝑠 and 𝒙𝜏,𝑖𝑠+1.

Lemma 7. For each 𝑡 ∈ [𝑇 ], 𝑘 ∈ F𝑡 , our DMD-GC algorithm
ensures that

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤ 𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2
. (16)

Substituting Eq. (16) into Eq. (15) gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ⟩ ≤ 2𝐷𝑇𝐺★

(
𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2

)
.

(17)

Combining Eq. (14) and Eq. (17) yields the result of Theorem 3. □
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The regret bound specified in Theorem 3 depends on the distinc-

tive properties of the regularization function𝜓 and its domain. For

instance, we provide the following examples with different norms.

Corollary 3. Applying DMD-GC to Example 1 with 𝒙1 = 0 ∈ X
and 𝜂 =

𝑅2

𝐺2

√︃
1

𝑇+4𝐷𝑇
gives Reg𝑇 ≤ 𝐺2𝑅2

√
𝑇 + 4𝐷𝑇 + 4𝜉𝑅2

2

√
𝑇 +

2𝜉𝑅2

2
+ 5𝑅2

2

𝐺2

.
Applying DMD-GC to Example 2 with 𝒙1 = [ 1

𝑛 , . . . ,
1

𝑛 ] ∈ R
𝑛
+ and

𝜂 = 1

𝐺∞

√︃
2 ln𝑛

𝑇+4𝐷𝑇
gives Reg𝑇 ≤ 𝐺∞

√︁
2(𝑇 + 4𝐷𝑇 ) ln𝑛 + 4𝜉

√
2𝑇 ln𝑛 +

4𝜉 ln𝑛 + 10 ln𝑛
𝐺∞

.
Applying DMD-GC to Example 3 with 𝒙1 = 0 ∈ X and 𝜂 =

𝑅𝑝

𝐺𝑞

√︃
𝑝−1

𝑇+4𝐷𝑇
gives Reg𝑇 ≤ 𝑅𝑝𝐺𝑞

√︃
𝑇+4𝐷𝑇

𝑝−1
+4𝜉𝑅2

𝑝

√︃
𝑇
𝑝−1

+ 2𝜉𝑅2

𝑝

𝑝−1
+ 5𝑅2

𝑝

𝐺𝑞
.

Remark. With access to gradient feedback, the regret of DMD-GC

aligns with our FTDRL-GC which utilizes the full information of

loss functions. If we assume 𝑑𝑡 = 1,∀𝑡 ∈ [𝑇 ], our results match the

ones achieved in the standard non-delayed OMD algorithm [16].

5.2 Logarithmic Regret for Relative Strong
Convexity

When dealing with functions that exhibit relative strong convexity,

we introduce a new algorithm called Delayed Mirror Descent for

Relative Strong Convexity (DMD-RSC) and outline its steps in Al-

gorithm 4. There are two key differences between this algorithm

and the one used for general convexity. Firstly, we perform a sin-

gle mirror descent operation on the sum of gradients in the set

{∇𝑓𝑘 : 𝑘 ∈ F𝑡 }. Secondly, since a constant learning rate cannot

take advantage of the relative strong convexity of loss functions, we

use a decreasing learning rate 𝜂𝑡 =
1

𝛾
∑𝑡

𝜏=1
| F𝜏 |

that is determined

by the total number of observable feedback.

We establish the following theorem regarding the regret bound.

Theorem 4. Under Assumptions 1, 2 and 3, let 𝜂𝑡 = 1

𝛾
∑𝑡

𝜏=1
| F𝜏 |

and maximum error 𝜌𝑡 =
𝜂3

𝑡

2𝜎 ,∀𝑡 ∈ [𝑇 ], Algorithm 4 satisfies

Reg𝑇 ≤
(3𝑑𝐺2

★ + 8𝜉𝑅𝐺★) (1 + ln𝑇 )
2𝜎𝛾

+ 6𝑑𝐺★

𝜎𝛾2
+

2𝑑𝜉𝐺2

★

𝜎2𝛾2
.

Proof. Here, the total regret is divided by

Reg𝑇 =

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)]︸                            ︷︷                            ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )]︸                            ︷︷                            ︸
delayed term

.

(18)

For the normal term of Eq. (18), we have the following lemma.

Lemma 8. The normal term of Rq. (18) is bounded by

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)] ≤
(𝑑𝐺2

★ + 8𝜉𝑅𝐺★) (1 + ln𝑇 )
2𝜎𝛾

+ 2𝑑𝐺★

𝜎𝛾2
.

(19)

Next, we discuss the delayed term of Eq. (18).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑡−1∑︁
𝜏=𝑘

[𝑓𝑘 (𝒙𝜏 ) − 𝑓𝑘 (𝒙𝜏+1)]

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑘+𝑑𝑘−1∑︁
𝜏=𝑘

𝐺★∥𝒙𝜏 − 𝒙𝜏+1∥ ≤ 𝑑

𝑇∑︁
𝑡=1

𝐺★∥𝒙𝑡 − 𝒙𝑡+1∥ .

(20)

The crucial step is to compute the gap between 𝒙𝑡 and 𝒙𝑡+1.

Lemma 9. For each 𝑡 ∈ [𝑇 ], our DMD-RSC algorithm ensures that

∥𝒙𝑡 − 𝒙𝑡+1∥ ≤
𝜂𝑡 |F𝑡 |𝐺★ + 𝜂2

𝑡 + 𝜂2

𝑡−1

𝜎
+
𝜂2

𝑡−1
𝜉𝐺★

𝜎2
. (21)

Substituting Eq. (21) into Eq. (20) and making 𝜂𝑡 = 1∑𝑡
𝜏=1

| F𝜏 |𝛾
gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙𝑡 )] ≤
𝑑𝐺2

★(1 + ln𝑇 )
𝜎𝛾

+ 4𝑑𝐺★

𝜎𝛾2
+

2𝑑𝜉𝐺2

★

𝜎2𝛾2
.

(22)

Considering Eq. (19) and Eq. (22) together yields Theorem 4.

□

To discuss the performance on the different norms, we give the

following examples.

Corollary 4. If we apply DMD-RSC to Example 1, we get Reg𝑇 ≤
6𝑑𝐺2

𝛾2
+ 2𝑑𝜉𝐺2

2

𝛾2
+ (3𝑑𝐺2

2
+8𝜉𝑅2𝐺2 ) (1+ln𝑇 )

2𝛾 .

If we apply DMD-RSC to Example 2, we get Reg𝑇 ≤ 6𝑑𝐺∞
𝛾2

+
2𝑑𝜉𝐺2

∞
𝛾2

+ (3𝑑𝐺2

∞+8𝜉𝐺∞ ) (1+ln𝑇 )
2𝛾 .

If we apply DMD-RSC to Example 3, we get Reg𝑇 ≤ 6𝑑𝐺𝑞

(1−𝑝 )𝛾2
+

2𝑑𝜉𝐺2

𝑞

(1−𝑝 )2𝛾2
+ (3𝑑𝐺2

𝑞+8𝜉𝑅𝑝𝐺𝑞 ) (1+ln𝑇 )
2𝛾 (1−𝑝 ) .

Remark. With the feedback of gradient information, DMD-RSC

algorithm produces matchable results to those of our FTDL-RSC.

Furthermore, assuming 𝑑𝑡 = 1,∀𝑡 ∈ [𝑇 ], our findings align with

the regret bound achieved in the non-delayed OMD algorithm [34]

for relative strong convexity.

6 SIMPLIFIED DELAYED MIRROR DESCENT
In this section, the observable feedback reduces to the value infor-

mation of the loss function’s gradient at the corresponding decision

point. In contrast to our proposed delayed mirror descent type al-

gorithms utilizing the feedback of the gradient information, here

we replace the gradient set {∇𝑓𝑘 : 𝑘 ∈ F𝑡 } with the set of gradients’

values {∇𝑓𝑘 (𝒙𝑘 ) : 𝑘 ∈ F𝑡 }. Additionally, the regret analysis follows
a similar way as the previous section, and for brevity, we include it

in the appendix.

6.1 Sublinear Regret for General Convexity
We propose a Simplified Delayed Mirror Descent for General Con-

vexity (SDMD-GC) algorithm and outline its process in Algorithm 5.

Similar to Algorithm 3, for each iteration 𝑡 , we divide the update

process into |F𝑡 | segments of approximate solution and utilize a

fixed learning rate.

We establish the following theorem to curve the regret bound.
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Algorithm 5 Simplified Delayed Mirror Descent for General Con-

vexity

1: Input: both 𝜂 and 𝒙1 depend on the choice of example

2: for 𝑡 = 1, . . . ,𝑇 do
3: Query ∇𝑓𝑡 (𝒙𝑡 ) and receive feedback {∇𝑓𝑘 (𝒙𝑘 ) : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: 𝒙𝑡,0 = 𝒙𝑡
6: for 𝑘 ∈ F𝑡 do
7: Make an approximate solution 𝒙𝑡,𝑖𝑘+1:〈

∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 )

≤
〈
∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1

; 𝒙𝑡,𝑖𝑘 ) + 𝜌𝑡,𝑖𝑘 ,

where𝒚∗
𝑡,𝑖𝑘+1

= arg min

𝒙∈X

{
⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙⟩ + 1

𝜂 𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 )
}

8: end for
9: 𝒙𝑡+1 = 𝒙𝑡, | F𝑡 |
10: else
11: 𝒙𝑡+1 = 𝒙𝑡
12: end if
13: end for

Theorem 5. Under Assumptions 1, 2 and 3, let the maximum

approximate error 𝜌𝑡,𝑖𝑘 =
𝜂3

2𝜎 ,∀𝑘 ∈ F𝑡 , 𝑡 ∈ [𝑇 ], Algorithm 5 satisfies

Reg𝑇 ≤
𝜂 (𝐺2

★𝑇 + 8𝜉𝑅𝐺★𝑇 + 2𝜂𝐺★𝑇 + 4𝐺2

★𝐷𝑇 + 8𝜂𝐺★𝐷𝑇 )
2𝜎

+
2𝜂2𝜉𝐺2

★𝐷𝑇

𝜎2
+
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂
.

Note that the performance delineated in Theorem 5 is affected

by the nature of the regularizer. In light of this, we provide the

following examples.

Corollary 5. Applying SDMD-GC to Example 1 with 𝒙1 = 0 ∈ X,

𝜂 =
𝑅2

𝐺2

√︃
1

𝑇+4𝐷𝑇
givesReg𝑇 ≤ 𝐺2𝑅2

√
𝑇 + 4𝐷𝑇 +4𝜉𝑅2

2

√
𝑇+2𝜉𝑅2

2
+ 5𝑅2

2

𝐺2

.

Applying SDMD-GC to Example 2 with 𝒙1 = [ 1

𝑛 , . . . ,
1

𝑛 ] ∈ R
𝑛
+ and

𝜂 = 1

𝐺∞

√︃
2 ln𝑛

𝑇+4𝐷𝑇
gives Reg𝑇 ≤ 𝐺∞

√︁
2(𝑇 + 4𝐷𝑇 ) ln𝑛 + 4𝜉

√
2𝑇 ln𝑛 +

4𝜉 ln𝑛 + 10 ln𝑛
𝐺∞

.
Apply SDMD-GC to Example 3 with 𝒙1 = 0 ∈ X and 𝜂 =

𝑅𝑝

𝐺𝑞

√︃
𝑝−1

𝑇+4𝐷𝑇
gives Reg𝑇 ≤ 𝑅𝑝𝐺𝑞

√︃
𝑇+4𝐷𝑇

𝑝−1
+4𝜉𝑅2

𝑝

√︃
𝑇
𝑝−1

+ 2𝜉𝑅2

𝑝

𝑝−1
+ 5𝑅2

𝑝

𝐺𝑞
.

Remark. Despite having access to only the value information of

gradient feedback at corresponding decision points instead of the

full or gradient information of loss functions, we can still attain

results consistent with those of FTDRL-GC and DMD-GC.

6.2 Logarithmic Regret for Relative Strong
Convexity

In the case of relative strong convexity, we introduce an algo-

rithm called Simplified Delayed Mirror Descent for Relative Strong

Convexity (SDMD-RSC) and present its steps in Algorithm 6. Similar

to Algorithm 4, we conduct a single approximate mirror descent op-

eration on the joint sum of gradients in the set {∇𝑓𝑘 (𝒙𝑘 ) : 𝑘 ∈ F𝑡 }.

Algorithm 6 Simplified Delayed Mirror Descent for Relative

Strongly Convexity

1: Input: 𝜂𝑡 =
1

𝛾𝑡 , make an arbitrary decision 𝒙1 ∈ X
2: for 𝑡 = 1, . . . ,𝑇 do
3: Query ∇𝑓𝑡 (𝒙𝑡 ) and receive feedback {∇𝑓𝑘 (𝒙𝑘 ) : 𝑘 ∈ F𝑡 }
4: if |F𝑡 | > 0 then
5: Make an approximate solution 𝒙𝑡+1:〈 ∑︁

𝑘∈F𝑡
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡+1

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 )

≤
〈 ∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑡+1

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒚∗𝑡+1

; 𝒙𝑡 ) + 𝜌𝑡 ,

where𝒚∗
𝑡+1

= arg min

𝒙∈X

{〈∑
𝑘∈F𝑡 ∇𝑓𝑘 (𝒙𝑘 ), 𝒙

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 )

}
6: else
7: 𝒙𝑡+1 = 𝒙𝑡
8: end if
9: end for

However, there is a difference with Algorithm 4 in that the de-

creasing learning rate is not related to the amount of information

observed but to the total number of decisions completed. We then

establish following theorem and corollary regarding the regret.

Theorem 6. Under Assumptions 1, 2 and 3, let 𝜂𝑡 = 1

𝛾𝑡 and the

maximum error 𝜌𝑡 =
𝜂3

𝑡

2𝜎 ,∀𝑡 ∈ [𝑇 ], Algorithm 6 satisfies

Reg𝑇 ≤
(3𝑑𝐺2

★ + 8𝜉𝑅𝐺★) (1 + ln𝑇 )
2𝜎𝛾

+ 6𝑑𝐺★

𝜎𝛾2
+ 2𝑑𝜉𝐺★

𝜎2𝛾2
.

Corollary 6. If we apply SDMD-RSC to Example 1, we getReg𝑇 ≤
6𝑑𝐺2

𝛾2
+ 2𝑑𝜉𝐺2

𝛾2
+ (3𝑑𝐺2

2
+8𝜉𝑅2𝐺2 ) (1+ln𝑇 )

2𝛾 .

If we apply SDMD-RSC to Example 2, we get Reg𝑇 ≤ 6𝑑𝐺∞
𝛾2

+
2𝑑𝜉𝐺∞
𝛾2

+ (3𝑑𝐺2

∞+8𝜉𝐺∞ ) (1+ln𝑇 )
2𝛾 .

If we apply SDMD-RSC to Example 3, we get Reg𝑇 ≤ 6𝑑𝐺𝑞

𝛾2 (1−𝑝 ) +
2𝑑𝜉𝐺𝑞

𝛾2 (1−𝑝 )2
+ (3𝑑𝐺2

𝑞+8𝜉𝑅𝑝𝐺𝑞 ) (1+ln𝑇 )
2𝛾 (1−𝑝 ) .

Remark. Considering relative strong convexity, even when only

the values of the loss function’s gradient at certain decision points

are available, SDMD-RSC can achieve comparable results to our

FTDL-RSC and DMD-RSC.

7 CONCLUSION
In the field of online sequential decision-making with unknown

delays, we propose a range of learning algorithms, namely FTDRL,

DMD and SDMD, to handle delayed full function information, full

gradient information and value information of gradient at the deci-

sion point, respectively. Notably, our algorithms only necessitate

an approximate solution for the optimization step and are applied

to several cases, including general convexity and relative strong

convexity, as well as specific examples utilizing different norms.

Our next step is to explore more adaptable algorithms capable of

simultaneously handling multiple types of loss functions.
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Comparison in performance

A NUMERICAL SIMULATIONS
A.1 Complexity
The decision update of DOGD [29] and DOGD-SC [32] is based on the projection to the 𝑛-dimensional Euclidean norm. The complexity

incurred by the gradient summation and Euclidean projection is O(𝑛𝑇 ). The computational complexity of MD-based and FTRL-based

algorithms varies with the problem and regularization term. The role of the approximate solution is to enable our updates to fall within an

acceptable margin of error, thereby reducing overall complexity. The update rules of FTRL-based algorithm seem more computationally

intensive than that MD-based algorithm, requiring optimization at each step. However, applying FTRL-based algorithm to linearized losses

achieves similar bounds with comparable complexity to MD-based algorithms. In Example 1 of MD-based algorithms (i.e., when𝜓 (x) = 1

2
∥x∥2

2

), our algorithm is equivalent to the classical Euclidean algorithm. In Example 2 of MD-based algorithms (i.e., when𝜓 (x) = ∑𝑛
𝑖=1

𝑥𝑖 ln𝑥𝑖 + ln𝑛

), the computational complexity is O(𝑛𝑇 ) and the decision update is as the Exponentiated Gradient approach as

𝑥𝑖𝑡+1
=

𝑥𝑖𝑡 exp(−𝜂𝑡
∑
𝑘∈F𝑡 𝑔

𝑖
𝑘
)∑𝑛

𝑗=1
𝑥
𝑗
𝑡 exp(−𝜂𝑡

∑
𝑘∈F𝑡 𝑔

𝑗

𝑘
)
.

In Example 3 of MD-based algorithms (i.e., when 𝜓 (x) = 1

2
∥x∥2

𝑝 ), the computational complexity is O(𝑛𝑇 ) due to the following decision

update (here
1

𝑝 + 1

𝑞 = 1):

𝑦𝑖
𝑡+1

= sign

(
𝑥𝑖𝑡

) ��𝑥𝑖𝑡 ��𝑝−1 ∥𝑥𝑡 ∥2/𝑝−1

𝑝 − 𝜂𝑡
∑
𝑘∈F𝑡 𝑔

𝑖
𝑘
,

𝑥𝑖
𝑡+1

= sign

(
𝑦𝑖
𝑡+1

) ��𝑦𝑖
𝑡+1

��𝑞−1 ∥𝑦𝑡+1∥2/𝑞−1

𝑞 .

A.2 Experimental Settings
We first consider a classification problem defined as follows:

min

𝒙∈X

𝑇∑︁
𝑡=1

[log(1 + exp(−𝑦𝑡 ⟨𝒙, 𝒃𝑡 ⟩))] ,

where each entry of the input vector 𝒃𝑡 is uniformly generated from the interval (−1, 1), and the response is determined by

𝑦𝑡 =


1,

1

1 + exp (−⟨𝒙∗, 𝒃𝑡 ⟩ + 𝜔) ≥ 0.5;

−1,
1

1 + exp (−⟨𝒙∗, 𝒃𝑡 ⟩ + 𝜔) < 0.5.

We set [𝒙∗]𝑖 = 1 for 1 ≤ 𝑖 ≤ ⌊𝑛
2
⌋ and 0 otherwise. The random perturbation 𝜔 is drawn from a normal distribution 𝑁 (0, 1). The sequential

decision 𝒙𝑡 is obtained by adding noise to the optimization solution 𝒙∗𝑡 , specifically 𝒙𝑡 = 𝒙∗𝑡 + 𝜌𝑡1, where 𝜌𝑡 = 𝐶

𝑡3/2
with 𝐶 ≥ 0.

Next, we consider a linear regression problem:

min

𝒙∈X

𝑇∑︁
𝑡=1

[
1

2

(𝑦𝑡 − ⟨𝒃𝑡 , 𝒙⟩)2

]
,

where each component of the input vector 𝒃𝑡 is uniformly sampled from the interval (−1, 1). And the corresponding response is defined as

𝑦𝑡 = ⟨𝒃𝑡 , 𝒙∗⟩ + 𝜔,

where [𝒙∗]𝑖 = 1 for 1 ≤ 𝑖 ≤ ⌊𝑛
2
⌋ and 0 otherwise. The random perturbation 𝜔 is drawn from a normal distribution 𝑁 (0, 1). Similarly, we set

the decision 𝒙𝑡 by adding noise to the optimization solution 𝒙∗𝑡 , that is, 𝒙𝑡 = 𝒙∗𝑡 + 𝜌𝑡1. Specifically we make 𝜌𝑡 =
𝐶
𝑡3

with 𝐶 ≥ 0.

We utilize random delays between 1 and 𝑑 . We conducted regression and classification tasks on synthetic and real-world datasets, applying

results to Example 2 and Example 3. Synthetic datasets have a dimensionality of 𝑛 = 100, while real-world datasets include “german” and

“triazines” [5].

A.3 Performance comparison with baselines
We first investigate the performance comparison between our proposed approach and relevant methodologies within Example 2 and

Example 3. Setting𝐶 = 1 and 𝑑 = 10, we present the time-averaged regret of our algorithm against the number of iterations. As a baseline, we

include the regret plots of DOGD algorithm [29] and DOGD-SC algorithm [32]. The time average regret (i.e., regret(𝑡)/𝑡 ) over the iterations
are depicted in Fig 1 and Fig 2, illustrate that the regret comparison in classification task and regression task, respectively. These results

show that our proposed algorithms outperform the baseline methods in both Example 2 and Example 3.
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Figure 1: Comparison with Baselines in Classification Task
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Figure 2: Comparison with Baselines in Regression Task

A.4 Impact on different delayed periods
Next, we examine the impact of the delayed periods 𝑑 in the classification task and regression task. We consider four distinct choices for

the delayed period, namely, 𝑑 = 10, 𝑑 = 20, 𝑑 = 50, and 𝑑 = 100. Fig 3(a) illustrates the final time-averaged regret (i.e., regret(𝑇 )/𝑇 ) across
different settings of the delayed period 𝑑 for Example 3 in the classification task. Additionally, Fig 3(b) showcases the final time-averaged

regret with different delayed settings for Example 2 in the regression task. Both Fig 3(a) and Fig 3(b) demonstrate that our proposed algorithms

attain superior optimality with smaller delayed period 𝑑 in both classification task and regression task.

A.5 Impact on different approximate errors
Finally, we examine the impact of the approximate error 𝜌𝑡 in the classification task and regression task. We vary 𝜌𝑡 across our simulations

with four different values of 𝐶: 𝐶 = 0, 𝐶 = 0.1, 𝐶 = 0.5, and 𝐶 = 1. Fig 4(a) illustrates the final time-averaged regret (i.e., regret(𝑇 )/𝑇 )
across different 𝐶 for Example 3 in the classification task. Additionally, Fig 4(b) showcases the final time-averaged regret with different 𝐶

for Example 2 in the regression task. Both Fig 4(a) and Fig 4(b) demonstrate that our proposed algorithms consistently showcase superior

optimality with smaller values of 𝐶 for both classification task and regression task.
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Figure 3: Impact on Different Delayed Periods
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Figure 4: Impact on Different Approximate Errors

B THEORETICAL PREPARATION
B.1 Proof of Lemma 3
Consider a specific term

∑𝑡−1

𝜏=𝑘
|F𝜏 | + |F𝑡,𝑘 | within the sum. This term calculates the count of feedback instances, denoted by Ξ𝑘 , that are

withheld while other feedback is applied during iterations 𝑘 to 𝑡 ≥ 𝑘 . Let’s fix two iterations, 𝑘 and 𝑡 , and consider an intermediate iteration

𝜏 ∈ {𝑘, . . . , 𝑡}. If 𝜏 < 𝑡 , we fix 𝑠 ∈ F𝜏 , and if 𝜏 = 𝑡 , we fix 𝑠 ∈ F𝑡,𝑘 . The feedback from iteration 𝑠 is applied during an iteration 𝜏 between 𝑘

and 𝑡 . We divide our analysis into two scenarios: when 𝑠 ≤ 𝑘 and when 𝑠 > 𝑘 . In the second scenario, 𝑠 > 𝑘 , there are at most 𝑑𝑘 instances

since 𝑠 must lie between 𝑘 + 1 and 𝑡 . We can assign the first case to 𝑑𝑠 . In the first scenario, the feedback from iteration 𝑠 appears only after 𝑘 .

We observe that for a fixed 𝑠 , the number of indices 𝑘 such that 𝑠 < 𝑘 ≤ 𝑑𝑠 + 𝑠 ≤ 𝑑𝑘 + 𝑘 is at most 𝑑𝑠 . In other words, all instances of the

second case for a fixed 𝑠 can be attributed to 𝑑𝑠 . Between the two cases, we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

(
𝑡−1∑︁
𝜏=𝑘

|F𝜏 | + |F𝑡,𝑘 |
)
≤

𝑇∑︁
𝑡=1

2𝑑𝑡 ≤ 2𝐷𝑇 .



Online Sequential Decision-Making with Unknown Delays International World Wide Web Conference, MAY 13 - 17, 2024, SINGAPORE

C PROOF OF THEOREM 1
C.1 Proof of Lemma 1
Call back the definition Φ𝑡,𝑖𝑘 (𝒙) =

∑𝑡−1

𝜏=1

∑
𝑠∈F𝜏 𝑓𝑠 (𝒙) +

∑
𝑠∈F𝑡,𝑘 𝑓𝑠 (𝒙) + 𝑓𝑘 (𝒙) + 1

𝜂𝜓 (𝒙) and Φ0 (𝒙) = 1

𝜂𝜓 (𝒙).
For the normal term of Eq. (3), we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)] =
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒙𝑡,𝑖𝑘 )] −
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙∗). (23)

Due to the fact that 𝒚∗
𝑇+1

(i.e., 𝒚∗
𝑇, | F𝑇 | ) is the minimizer of Φ𝑇, | F𝑇 |−1

(𝒙) over 𝒙 ∈ X, thus

Φ𝑇, | F𝑇 |−1
(𝒚∗𝑇+1

) ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙∗) +
1

𝜂
𝜓 (𝒙∗) . (24)

Combining with Eq. (23) and Eq. (24) gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒙𝑡,𝑖𝑘 )] − Φ𝑇, | F𝑇 |−1
(𝒚∗𝑇+1

) + 1

𝜂
𝜓 (𝒙∗)

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 )] − Φ𝑇, | F𝑇 |−1
(𝒚∗𝑇+1

) + 1

𝜂
𝜓 (𝒙∗)

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒙𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) + Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 )]

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 )] − Φ𝑇, | F𝑇 |−1
(𝒚∗𝑇+1

) + 1

𝜂
𝜓 (𝒙∗)

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒚∗𝑡,𝑖𝑘 )]

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
)] + 1

𝜂
[𝜓 (𝒙∗) −𝜓 (𝒙1)]

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥.

(25)

For the first term on the R.H.S of the above formula, we have

Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) =Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘+1

) + 𝑓𝑘 (𝒚∗𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒚∗𝑡,𝑖𝑘+1
)

≤⟨∇Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 ),𝒚
∗
𝑡,𝑖𝑘

−𝒚∗𝑡,𝑖𝑘+1
⟩ − 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2

+ ⟨∇𝑓𝑘 (𝒚∗𝑡,𝑖𝑘 ),𝒚
∗
𝑡,𝑖𝑘

−𝒚∗𝑡,𝑖𝑘+1
⟩

≤ 𝜂

2𝜎
∥∇𝑓𝑘 (𝒚∗𝑡,𝑖𝑘 )∥

2

★ + 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2 − 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2

≤ 𝜂

2𝜎
𝐺2

★.

(26)

The first inequality is due to the fact that𝜓 is 𝜎-strongly convex with respect to a norm ∥ · ∥. The second inequality is due to the optimality

condition of the update rule (i.e., 𝒙∗ = arg min𝒙∈X 𝑓 (𝒙) iff ⟨∇𝑓 (𝒙∗),𝒚 − 𝒙∗⟩ ≥ 0,∀𝒚 ∈ X) and ⟨𝒖, 𝒗⟩ ≤ 𝒖2

2𝛼 + 𝛼𝒗2

2
for any 𝒖, 𝒗 ∈ X, 𝛼 > 0.

Considering the last term of Eq. (25) which means the error incurred by the approximate solution, we have

Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘+1) ≤ Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) + 𝜌𝑡,𝑖𝑘 . (27)

Meanwhile, we utilize the fact that Φ𝑡,𝑖𝑘 is
𝜎
𝜂 -strongly convex with respect to norm ∥ · ∥ to obtain

Φ𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘+1) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) ≥⟨∇Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1

), 𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
⟩ + 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥2

≥ 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥2 .
(28)

The last inequality is due to the optimality condition.



International World Wide Web Conference, MAY 13 - 17, 2024, SINGAPORE Ping Wu, Heyan Huang, & Zhengyang Liu

Consider 𝜌𝑡,𝑖𝑘 =
𝜂𝐺2

★

8𝜎 , combining with Eq. (27) and Eq. (28) yields

∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥ ≤

√︂
2𝜂𝜌𝑡,𝑖𝑘

𝜎
=
𝜂𝐺★

2𝜎
. (29)

Substituting Eq. (26) and Eq. (29) into Eq. (25) yields the result of Lemma 1.

C.2 Proof of Lemma 2
Due to the fact that 𝑓𝑡 is convex and𝜓 is 𝜎-strongly convex with respect to norm ∥ · ∥, we have

Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) ≥⟨∇Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1

),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
⟩ + 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2

≥ 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2 .
(30)

The last inequality is due to the fact that 𝒚∗
𝑡,𝑖𝑘+1

is the minimizer of Φ𝑡,𝑖𝑘 (𝒙) over 𝒙 ∈ X.

Meanwhile, the L.H.S of the above formula is upper bounded by

Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) =Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 ) − Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘+1

) + 𝑓𝑘 (𝒚∗𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒚∗𝑡,𝑖𝑘+1
)

≤⟨∇Φ𝑡,𝑖𝑘−1 (𝒚∗𝑡,𝑖𝑘 ),𝒚
∗
𝑡,𝑖𝑘

−𝒚∗𝑡,𝑖𝑘+1
⟩ − 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2

+𝐺★∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥

≤𝐺★∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥ − 𝜎

2𝜂
∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥2 .

(31)

The last inequality is due to the fact that 𝒚∗
𝑡,𝑖𝑘

is the minimizer of Φ𝑡,𝑖𝑘−1 (𝒙) over 𝒙 ∈ X.

Combining Eq. (30) and Eq. (31) gives

∥𝒚∗𝑡,𝑖𝑘+1
−𝒚∗𝑡,𝑖𝑘 ∥ ≤ 𝜂𝐺★

𝜎
.

Then, utilizing the result of Eq. (29), we have

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤∥𝒚∗𝑡,𝑖𝑘+1
−𝒚∗𝑡,𝑖𝑘 ∥ + ∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥ + ∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥

≤ 2𝜂𝐺★

𝜎
.

C.3 Proof of Corollary 1
Example 1 of FTDRL-GC. In the Euclidean space, we first preset 𝒙1 = 0𝑛 and make𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
. Note that the dual norm of ∥ · ∥2 is itself

and 𝐵𝜓 (𝒙 ;𝒚) = 1

2
∥𝒙 −𝒚∥2

2
. Additionally, we assume that ∥∇𝑓𝑡 (𝒙)∥2 ≤ 𝐺2 and ∥𝒙 ∥ ≤ 𝑅2 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].

Based on the result of Theorem 1, we can get the following regret

Reg𝑇 ≤ 𝜂

𝜎
𝑇𝐺2

2
+ 4𝜂

𝜎
𝐷𝑇𝐺

2

2
+
𝑅2

2

2𝜂

=𝜂𝑇𝐺2

2
+ 4𝜂𝐷𝑇𝐺

2

2
+
𝑅2

2

2𝜂
.

The last equality is because𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
is 1-strongly convex with respect to norm ∥ · ∥2.

To minimize above, we make 𝜂 =
𝑅2

𝐺2

√︃
1

2𝑇+8𝐷𝑇
, thus

Reg𝑇 ≤ 𝐺2𝑅2

√︁
2𝑇 + 8𝐷𝑇 .

Example 2 of FTDRL-GC. In the probabilistic simplex, the convex set X = {𝒙 ∈ R𝑛+ : ∥𝒙 ∥1 = 1}. We set 𝜓 (𝒙) = ∑𝑛
𝜇=1

𝑥 (𝜇 ) ln𝑥 (𝜇 ) + ln𝑛

and the initial decision 𝒙1 = [ 1

𝑛 , . . . ,
1

𝑛 ] ∈ R
𝑛
+. The dual norm of ∥ · ∥1 is ∥ · ∥∞. Note that𝜓 (𝒙) is 1-strongly convex with respect to norm

∥ · ∥1. Additionally, we assume that ∥∇𝑓𝑡 (𝒙)∥∞ ≤ 𝐺∞ for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].
Considering𝜓 (𝒙∗) ≤ ln𝑛 and𝜓 (𝒙1) = 0, we have

Reg𝑇 ≤ 𝜂

𝜎
𝑇𝐺2

∞ + 4𝜂

𝜎
𝐷𝑇𝐺

2

∞ + ln𝑛

𝜂

=𝜂𝑇𝐺2

∞ + 4𝜂𝐷𝑇𝐺
2

∞ + ln𝑛

𝜂
.

The last equality is due to the fact that𝜓 (𝒙) is 1-strongly convex with respect to norm ∥ · ∥1, i.e., 𝜎 = 1.
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To minimize above, we set 𝜂 = 1

𝐺∞

√︃
ln𝑛

𝑇+4𝐷𝑇
, then

Reg𝑇 ≤ 2𝐺∞
√︁
(𝑇 + 4𝐷𝑇 ) ln𝑛.

Example 3 of FTDRL-GC. Consider the regularization function𝜓 (𝒙) = 1

2
∥𝒙 ∥2

𝑝 , where ∥𝒙 ∥𝑝 =

(∑𝑛
𝜇=1

|𝑥 (𝜇 ) |𝑝
) 1

𝑝
and 1 < 𝑝 ≤ 2 overX ∈ R𝑛 .

We preset 𝒙1 = 0𝑛 . The dual norm of ∥ · ∥𝑝 is ∥ · ∥𝑞 , where 1

𝑝 + 1

𝑞 = 1. We assume that ∥∇𝑓𝑡 (𝒙)∥𝑞 ≤ 𝐺𝑞 and ∥𝒙 ∥𝑝 ≤ 𝑅𝑝 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].
Here the regret bound is

Reg𝑇 ≤ 𝜂

𝜎
𝑇𝐺2

𝑞 + 4𝜂

𝜎
𝐷𝑇𝐺

2

𝑞 +
𝑅2

𝑝

2𝜂

=
𝜂

𝑝 − 1

𝑇𝐺2

𝑞 + 4𝜂

𝑝 − 1

𝐷𝑇𝐺
2

𝑞 +
𝑅2

𝑝

2𝜂
.

The last equality is due to the fact that𝜓 (𝒙) is (𝑝 − 1)-strongly convex with respect to norm ∥ · ∥𝑝 , i.e., 𝜎 = 𝑝 − 1.

To minimize the regret, we make 𝜂 =
𝑅𝑝

𝐺𝑞

√︃
𝑝−1

2𝑇+8𝐷𝑇
, thus

Reg𝑇 ≤ 𝑅𝑝𝐺𝑞

√︄
2𝑇 + 8𝐷𝑇

𝑝 − 1

.

D PROOF OF THEOREM 2
D.1 Proof of Lemma 4
In the FTDL-RSC algorithm, the decision is updated by

𝒚∗𝑡+1
= arg min

𝒙∈X


𝑡∑︁

𝜏=1

∑︁
𝑘∈F𝜏

𝑓𝑘 (𝒙)


and the approximate solution 𝒙𝑡+1 satisfies

𝑡∑︁
𝜏=1

∑︁
𝑘∈F𝜏

𝑓𝑘 (𝒙𝑡+1) ≤
𝑡∑︁

𝜏=1

∑︁
𝑘∈F𝜏

𝑓𝑘 (𝒚∗𝑡+1
) + 𝜌𝑡 .

For convenience, we make 𝐹𝑡 (𝒙) =
∑𝑡
𝜏=1

∑
𝑘∈F𝜏 𝑓𝑘 (𝒙) and 𝐹0 (𝒙) = 0, due to the strong convexity assumption of the loss function, 𝐹𝑡 (𝒙) is∑𝑡

𝜏=1
|F𝜏 |𝛾-strongly convex relative to function𝜓 .

For the normal term of Eq. (8), we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙𝑡 ) −
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙∗) =
𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒙𝑡 ) − 𝐹𝑡−1 (𝒙𝑡 )] − 𝐹𝑇 (𝒙∗).

Due to the fact that 𝒚∗
𝑇+1

is the minimizer of 𝐹𝑇 (𝒙), then 𝐹𝑇 (𝒚∗𝑇+1
) ≤ 𝐹𝑇 (𝒙∗), substituting it into the above formula, we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙𝑡 ) −
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙∗) ≤
𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒙𝑡 ) − 𝐹𝑡−1 (𝒙𝑡 )] − 𝐹𝑇 (𝒚∗𝑇+1
)

=

𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡−1 (𝒚∗𝑡 )] − 𝐹𝑇 (𝒚∗𝑇+1
)

+
𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒙𝑡 ) − 𝐹𝑡−1 (𝒙𝑡 ) − 𝐹𝑡 (𝒚∗𝑡 ) + 𝐹𝑡−1 (𝒚∗𝑡 )]

=

𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡 (𝒚∗𝑡+1
)] − 𝐹0 (𝒚∗1) +

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒚∗𝑡 )]

≤
𝑇∑︁
𝑡=1

[𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡 (𝒚∗𝑡+1
)] +

𝑇∑︁
𝑡=1

|F𝑡 |𝐺★∥𝒙𝑡 −𝒚∗𝑡 ∥ .

(32)
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Considering the optimality condition of the update rule and the relative strong convexity of loss functions, we have

𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡 (𝒚∗𝑡+1
) =𝐹𝑡−1 (𝒚∗𝑡 ) − 𝐹𝑡−1 (𝒚∗𝑡+1

) +
∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒚∗𝑡 ) − 𝑓𝑘 (𝒚∗𝑡+1
)]

≤⟨∇𝐹𝑡−1 (𝒚∗𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩ −

𝑡−1∑︁
𝜏=1

𝛾 |F𝜏 |𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 )

+ |F𝑡 |𝐺★ · ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ − 𝛾 |F𝑡 |𝐵𝜓 (𝒚∗𝑡+1

;𝒚∗𝑡 )

≤|F𝑡 |𝐺★ · ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ −

𝑡∑︁
𝜏=1

𝛾 |F𝜏 |𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 )

≤|F𝑡 |𝐺★ · ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ −

𝑡∑︁
𝜏=1

𝜎𝛾 |F𝜏 |
2

∥𝒚∗𝑡 −𝒚∗𝑡+1
∥2

≤
|F𝑡 |2𝐺2

★∑𝑡
𝜏=1

2𝜎𝛾 |F𝜏 |
.

(33)

The third inequality is due to the fact that 𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 ) ≥ 𝜎

2
∥𝒚∗𝑡 − 𝒚∗

𝑡+1
∥ if 𝜓 is 𝜎-strongly convex with respect to norm ∥ · ∥. The last

inequality is because ⟨𝒖, 𝒗⟩ ≤ ∥𝒖 ∥2

2𝛼 + 𝛼 ∥𝒗 ∥2

★

2
for any 𝒖, 𝒗 ∈ X, 𝛼 > 0.

Considering the approximate solution gives

𝐹𝑡 (𝒙𝑡+1) ≤ 𝐹𝑡 (𝒚∗𝑡+1
) + 𝜌𝑡 (34)

Due to 𝐹𝑡 is
∑𝑡
𝜏=1

|F𝜏 |𝛾-strongly convex relative to𝜓 , we obtain

𝐹𝑡 (𝒙𝑡+1) − 𝐹𝑡 (𝒚∗𝑡+1
) ≥⟨∇𝐹𝑡 (𝒚∗𝑡+1

), 𝒙𝑡+1 −𝒚∗𝑡+1
⟩ +

𝑡∑︁
𝜏=1

|F𝜏 |𝛾𝐵𝜓 (𝒙𝑡+1;𝒚∗𝑡+1
)

≥
𝑡∑︁

𝜏=1

|F𝜏 |𝛾𝜎
2

∥𝒙𝑡+1 −𝒚∗𝑡+1
∥2

(35)

The above inequality is due to the optimality condition and𝜓 is 𝜎-strongly convex with respect to norm ∥ · ∥.
Combining with Eq. (34) and Eq. (35) gives

∥𝒙𝑡+1 −𝒚∗𝑡+1
∥ ≤

√︄
2𝜌𝑡∑𝑡

𝜏=1
|F𝜏 |𝛾𝜎

. (36)

Considering |F𝑡 | ≤ 𝑑,∀𝑡 ∈ [𝑇 ] and substituting Eq. (33) and Eq. (36) into Eq. (32) yields

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙𝑡 ) −
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝑓𝑘 (𝒙∗) ≤
𝑑 |F𝑡 |𝐺2

★∑𝑡
𝜏=1

2𝜎𝛾 |F𝜏 |
+ 𝑑𝐺★

√︄
2𝜌𝑡∑𝑡

𝜏=1
|F𝜏 |𝛾𝜎

.

Note that

∑𝑇
𝑡=1

| F𝑡 |∑𝑡
𝜏=1

| F𝜏 |
≤ 1 + ln𝑇 and make 𝜌𝑡 =

| F𝑡 |2𝐺2

★

8

∑𝑡
𝜏=1

| F𝜏 |𝛾𝜎
. Then we get the result of Lemma 4 by combining Eq. (32) and Eq. (33).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)] ≤
𝑇∑︁
𝑡=1

𝑑 |F𝑡 |𝐺2

★∑𝑡
𝜏=1

2𝜎𝛾 |F𝜏 |
+

𝑇∑︁
𝑡=1

𝑑 |F𝑡 |𝐺2

★∑𝑡
𝜏=1

2𝜎𝛾 |F𝜏 |

≤
𝑑𝐺2

★

𝜎𝛾
(1 + ln𝑇 ) .

(37)

D.2 Proof of Lemma 5
Combining with the relative strong convexity and the optimality condition of the update rule, we obtain

𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡 (𝒚∗𝑡+1
) ≥⟨∇𝐹𝑡 (𝒚∗𝑡+1

),𝒚∗𝑡 −𝒚∗𝑡+1
⟩ +

𝑡∑︁
𝜏=1

|F𝜏 |𝛾𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1
)

≥
𝑡∑︁

𝜏=1

|F𝜏 |𝛾𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1
)

≥
𝑡∑︁

𝜏=1

|F𝜏 |𝛾𝜎
2

∥𝒚∗𝑡 −𝒚∗𝑡+1
∥2 .

(38)
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Meanwhile, we have

𝐹𝑡 (𝒚∗𝑡 ) − 𝐹𝑡 (𝒚∗𝑡+1
) =𝐹𝑡−1 (𝒚∗𝑡 ) − 𝐹𝑡−1 (𝒚∗𝑡+1

) +
∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒚∗𝑡 ) − 𝑓𝑘 (𝒚∗𝑡+1
)]

≤⟨∇𝐹𝑡−1 (𝒚∗𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩ +

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒚∗𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩

−
𝑡∑︁

𝜏=1

𝛾 |F𝜏 |𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 )

≤|F𝑡 |𝐺★∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ −

𝑡∑︁
𝜏=1

𝛾𝜎 |F𝜏 |
2

∥𝒚∗𝑡 −𝒚∗𝑡+1
∥2 .

(39)

The first inequality is due to the relative strong convexity of loss functions. The last inequality is derived from the strong convexity of𝜓 and

Lipschitz continuity of loss functions.

Combining with Eq. (38) and Eq. (39) gives

∥𝒚∗𝑡+1
−𝒚∗𝑡 ∥ ≤ |F𝑡 |𝐺★∑𝑡

𝜏=1
|F𝜏 |𝛾𝜎

.

Utilizing the result of Eq. (36), we obtain

∥𝒙𝑡+1 − 𝒙𝑡 ∥ ≤∥𝒚∗𝑡+1
−𝒚∗𝑡 ∥ + ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥ + ∥𝒙𝑡 −𝒚∗𝑡 ∥

=
3

2

|F𝑡 |𝐺★∑𝑡
𝜏=1

|F𝜏 |𝛾𝜎
+ 1

2

|F𝑡−1 |𝐺★∑𝑡−1

𝜏=1
|F𝜏 |𝛾𝜎

.

D.3 Proof of Corollary 2
Example 1 of FTDL-RSC. In the Euclidean space, we first preset 𝒙1 = 0𝑛 and make 𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
. Note that the dual norm of ∥ · ∥2 is

itself and 𝐵𝜓 (𝒙 ;𝒚) = 1

2
∥𝒙 −𝒚∥2

2
. Additionally, we assume that ∥∇𝑓𝑡 (𝒙)∥2 ≤ 𝐺2 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ]. Specially,𝜓 (𝒙) = 1

2
∥𝒙 ∥2

2
is 1-strongly

convex with respect to norm ∥ · ∥2, i.e., 𝜎 = 1.

Thus, we have

Reg𝑇 ≤
3𝑑𝐺2

2

𝛾
(1 + ln𝑇 ) .

Example 2 of FTDL-RSC. In the probabilistic simplex, the convex set X = {𝒙 ∈ R𝑛+ : ∥𝒙 ∥1 = 1}. We set𝜓 (𝒙) = ∑𝑛
𝜇=1

𝑥 (𝜇 ) ln𝑥 (𝜇 ) + ln𝑛 and

the initial decision 𝒙1 = [ 1

𝑛 , . . . ,
1

𝑛 ] ∈ R
𝑛
+. The dual norm of ∥ · ∥1 is ∥ · ∥∞. Note that𝜓 (𝒙) is 1-strongly convex with respect to norm ∥ · ∥1,

i.e, 𝜎 = 1. Additionally, we assume that ∥∇𝑓𝑡 (𝒙)∥∞ ≤ 𝐺∞ for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].
The regret is bounded by

Reg𝑇 ≤ 3𝑑𝐺2

∞
𝛾

(1 + ln𝑇 ) .

The last inequality is due to the fact that𝜓 (𝒙) is 1-strongly convex with respect to norm ∥ · ∥1, i.e., 𝜎 = 1.

Example 3 of FTDL-RSC. Consider the regularization function𝜓 (𝒙) = 1

2
∥𝒙 ∥2

𝑝 , where ∥𝒙 ∥𝑝 =

(∑𝑛
𝜇=1

|𝑥 (𝜇 ) |𝑝
) 1

𝑝
and 1 < 𝑝 ≤ 2 over X ∈ R𝑛 .

We preset 𝒙1 = 0𝑛 . The dual norm of ∥ · ∥𝑝 is ∥ · ∥𝑞 , where 1

𝑝 + 1

𝑞 = 1. We assume that ∥∇𝑓𝑡 (𝒙)∥𝑞 ≤ 𝐺𝑞 and ∥𝒙 ∥𝑝 ≤ 𝑅𝑝 for any 𝒙 ∈ X, 𝑡 ∈ [𝑇 ].
The crucial ingredient [30] is the fact that𝜓 (𝒙) is (𝑝 − 1) strongly convex with respect to norm ∥ · ∥𝑝 , i.e., 𝜎 = 𝑝 − 1. Then, we have the

result as follows:

Reg𝑇 ≤
3𝑑𝐺2

𝑞

𝛾 (𝑝 − 1) (1 + ln𝑇 ) .

The proof of the corollary in the subsequent section is analogous to the process outlined in this section, therefore, we omit the proof of

the subsequent corollary.

E PROOF OF THEOREM 3
E.1 Proof of Lemma 6
The decision 𝒚∗

𝑡,𝑖𝑘+1
in DMD-GC algorithm is updated by

𝒚∗𝑡,𝑖𝑘+1
= arg min

𝒙∈X

{〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙

〉
+ 1

𝜂
𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 )

}
.
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According to the optimality condition of the update rule, for any 𝒙∗ ∈ X, we have〈
𝜂∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) + ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗𝑡,𝑖𝑘+1

〉
≥ 0.

Under Assumptions 1 and 2, rearranging the terms above yields

⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩

≤⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
⟩ +

⟨∇𝜓 (𝒚∗
𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗
𝑡,𝑖𝑘+1

⟩
𝜂

≤⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ + ⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
⟩

+
⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1⟩

𝜂
+
⟨∇𝜓 (𝒚∗

𝑡,𝑖𝑘+1
) − ∇𝜓 (𝒙𝑡,𝑖𝑘+1), 𝒙∗ −𝒚∗

𝑡,𝑖𝑘+1
⟩

𝜂

+
⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘+1 −𝒚∗

𝑡,𝑖𝑘+1
⟩

𝜂

≤⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ +𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥

+
⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1⟩

𝜂
+

4𝜉𝑅𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗
𝑡,𝑖𝑘+1

∥
𝜂

.

(40)

An interesting and useful identity regarding Bregman divergence, sometimes called three-point identity [10], is〈
∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1

〉
= 𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘+1) − 𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 ).

For the first term on the R.H.S of Eq.(40), we have

⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ ≤𝐺★∥𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1∥

≤ 𝜂

2𝜎
𝐺2

★ + 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1∥2

≤ 𝜂

2𝜎
𝐺2

★ +
𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 )

𝜂
.

(41)

The last inequality is due to the regularization function𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥.
Substituting Eq.(41) into Eq. (40) and summing it over all iterations yields

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) − 𝑓𝑘 (𝒙∗)] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩

≤ 𝜂

2𝜎
𝑇𝐺2

★ +
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

(
4𝜉𝑅𝐺★

𝜂
+𝐺★

)
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥.

(42)

The approximate solution 𝒙𝑡,𝑖𝑘+1 is given by〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 ) ≤

〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1

; 𝒙𝑡,𝑖𝑘 ) + 𝜌𝑡,𝑖𝑘 .

Meanwhile, we define 𝐴𝑡,𝑖𝑘 (𝒙) =
〈
∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ), 𝒙

〉
+ 1

𝜂 𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 ) and 𝐴𝑡,𝑖𝑘 (𝒙) is 𝜎
𝜂 -strongly convex with respect to norm ∥ · ∥, that is

𝐴𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘+1) −𝐴𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) ≥ ⟨∇𝐴𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1

), 𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
⟩ + 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥2 .

Combining with the above, we obtain

∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥ ≤

√︂
2𝜂𝜌𝑡,𝑖𝑘

𝜎
. (43)

By making 𝜌𝑡,𝑖𝑘 =
𝜂3

2𝜎 and considering Eq. (42) together gives the result of Lemma 6
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E.2 Proof of Lemma 7
Due to the fact that𝜓 (𝒙) is 𝜎-strongly convex with respect to norm ∥ · ∥. Thus

𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1
;𝒚∗𝑡,𝑖𝑘 ) + 𝐵𝜓 (𝒚∗𝑡,𝑖𝑘 ;𝒚∗𝑡,𝑖𝑘+1

) ≥ 𝜎 ∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥2 . (44)

Meanwhile, based on the definition of Bregman divergence, the L.H.S of Eq. (44) can be rewritten as

𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1
;𝒚∗𝑡,𝑖𝑘 ) + 𝐵𝜓 (𝒚∗𝑡,𝑖𝑘 ;𝒚∗𝑡,𝑖𝑘+1

) =
〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
.

Recall back the optimality condition for the update rule, for any 𝒚∗
𝑡,𝑖𝑘

∈ X, we have〈
𝜂∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ) + ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≥ 0.

Rearranging the terms of the above equality yields〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≤⟨𝜂∇𝑓𝑘 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

⟩ +
〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≤(𝜂𝐺★ + 𝜉𝐺★∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥) · ∥𝒚

∗
𝑡,𝑖𝑘

−𝒚∗𝑡,𝑖𝑘+1
∥ .

(45)

Considering Eq. (44) and Eq. (45), we obtain

∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥ ≤

𝜂𝐺★ + 𝜉𝐺★∥𝒙𝑡,𝑖𝑘 −𝒚∗
𝑡,𝑖𝑘

∥
𝜎

.

Combining with Eq. (43) gives the the result of Lemma 7.

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤∥𝒚∗𝑡,𝑖𝑘+1
−𝒚∗𝑡,𝑖𝑘 ∥ + ∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥ + ∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥

≤𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2
.

F PROOF OF THEOREM 4
F.1 Proof of Lemma 8
Due to the relative strong convexity, for the normal term of Eq. (18), we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)] ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙∗⟩ − 𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 )]

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙∗⟩ −
𝑇∑︁
𝑡=1

|F𝑡 |𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 ).

(46)

At each iteration 𝑡 , the decision 𝒚∗
𝑡+1

is updated by

𝒚∗𝑡+1
= arg min

𝒙∈X


∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙⟩ +
1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 )

 .

Due to the optimality condition of the update rule, for any 𝒙∗ ∈ X, we have〈
𝜂𝑡

∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑡 ) + ∇𝜓 (𝒚∗𝑡+1
) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗𝑡+1

〉
≥ 0. (47)

Rearranging the terms of Eq. (47) gives∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙∗⟩ ≤
∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 −𝒚∗𝑡+1
⟩ +

⟨∇𝜓 (𝒚∗
𝑡+1

) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗
𝑡+1

⟩
𝜂𝑡

≤
∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙𝑡+1⟩ +
∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡+1 −𝒚∗𝑡+1
⟩

+
⟨∇𝜓 (𝒚∗

𝑡+1
) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗

𝑡+1
⟩

𝜂𝑡
.
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For the last term above, we have 〈
∇𝜓 (𝒚∗𝑡+1

) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗𝑡+1

〉
=

〈
∇𝜓 (𝒚∗𝑡+1

) − ∇𝜓 (𝒙𝑡+1), 𝒙∗ −𝒚∗𝑡+1

〉
+

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ − 𝒙𝑡+1

〉
+

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙𝑡+1 −𝒚∗𝑡+1

〉
≤

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ − 𝒙𝑡+1

〉
+ 4𝜉𝑅𝐺★∥𝒙𝑡+1 −𝒚∗𝑡+1

∥.

The last inequality is due to𝜓 has 𝜉𝐺★-Lipschitz gradients.

Applying the three-point identity of Bregman divergence to the above formula gives∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙∗

〉
≤

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙𝑡+1⟩ +
𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡+1) − 𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 )

𝜂𝑡

+
(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
· ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥

≤
𝜂𝑡 |F𝑡 |2𝐺2

★

2𝜎
+ 𝜎

2𝜂𝑡
∥𝒙𝑡 − 𝒙𝑡+1∥2 +

𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡+1) − 𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 )
𝜂𝑡

+
(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
· ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥

≤
𝜂𝑡 |F𝑡 |2𝐺2

★

2𝜎
+
𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡+1)

𝜂𝑡
+

(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
· ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥.

(48)

The second inequality is due to

∑
𝑘∈F𝑡 ⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡 − 𝒙𝑡+1⟩ ≤ |F𝑡 |𝐺★∥𝒙𝑡 − 𝒙𝑡+1∥ ≤ 𝜂𝑡 | F𝑡 |2𝐺2

★

2𝜎 + 𝜎
2𝜂𝑡

∥𝒙𝑡 − 𝒙𝑡+1∥2
. The last inequality is due

to 𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 ) ≥ 𝜎
2
∥𝒙𝑡 − 𝒙𝑡+1∥2

.

Now we discuss the error incurred by the approximate solution, given by∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙𝑡+1⟩ +
1

𝜂𝑡
𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 ) ≤

∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑡 ),𝒚∗𝑡+1

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒚∗𝑡+1

; 𝒙𝑡 ) + 𝜌𝑡 .

Meanwhile, we make 𝐵𝑡 (𝒙) =
∑
𝑘∈F𝑡 ⟨∇𝑓𝑘 (𝒙𝑡 ), 𝒙⟩ +

1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 ) and note that 𝐵𝑡 is

𝜎
𝜂𝑡
-strongly with respect to norm ∥ · ∥, that is

𝐵𝑡 (𝒙𝑡+1) − 𝐵𝑡 (𝒚∗𝑡+1
) ≥⟨∇𝐵𝑡 (𝒚∗𝑡+1

), 𝒙𝑡+1 −𝒚∗𝑡+1
⟩ + 𝜎

2𝜂𝑡
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥2

≥ 𝜎

2𝜂𝑡
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥2 .

The last inequality is due to the optimality condition.

By combining above results with 𝜌𝑡 =
𝜂3

𝑡

2𝜎 , we obtain

∥𝒙𝑡+1 −𝒚∗𝑡+1
∥ ≤

√︂
2𝜂𝑡 𝜌𝑡

𝜎
=
𝜂2

𝑡

𝜎
.

Note that 𝜂𝑡 =
1∑𝑡

𝜏=1
| F𝜏 |𝛾

, summing Eq. (48) over all iterations and substituting it into Eq. (46), we have

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑡 ) − 𝑓𝑘 (𝒙∗)]

≤
𝑇∑︁
𝑡=1

𝜂𝑡 |F𝑡 |2𝐺2

★

2𝜎
+

𝑇∑︁
𝑡=1

[(
1

𝜂𝑡
− |F𝑡 |𝛾

)
𝐵𝜓 (𝒙∗; 𝒙𝑡 ) −

1

𝜂𝑡
𝐵𝜓 (𝒙∗; 𝒙𝑡+1)

]
+ 4𝜉𝑅𝐺★(1 + ln𝑇 )

𝜎𝛾
+ 2𝑑𝐺★

𝜎𝛾2

≤
𝑇∑︁
𝑡=1

𝑑 |F𝑡 |𝐺2

★

2𝜎𝛾
∑𝑡
𝜏=1

|F𝜏 |
+

𝑇∑︁
𝑡=1

[
𝑡−1∑︁
𝜏=1

|F𝜏 |𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 ) −
𝑡∑︁

𝜏=1

|F𝜏 |𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡+1)
]
+ 4𝜉𝑅𝐺★(1 + ln𝑇 )

𝜎𝛾
+ 2𝑑𝐺★

𝜎𝛾2

≤
(𝑑𝐺2

★ + 8𝜉𝑅𝐺★) (1 + ln𝑇 )
2𝜎𝛾

+ 2𝑑𝐺★

𝜎𝛾2
.

(49)
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F.2 Proof of Lemma 9
Due to the fact that𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥, we have

𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 ) + 𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1

) ≥ 𝜎 ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥2 . (50)

Meanwhile, the upper bound of the L.H.S of Eq. (50) can be rewritten as

𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 ) + 𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1

) = ⟨∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒚∗𝑡+1
),𝒚∗𝑡 −𝒚∗𝑡+1

⟩.

Due to the optimality condition of the update rule, for any 𝒚∗𝑡 ∈ X, we have〈
𝜂𝑡

∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑡 ) + ∇𝜓 (𝒚∗𝑡+1
) − ∇𝜓 (𝒙𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1

〉
≥ 0.

Rearranging the terms gives

⟨∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒚∗𝑡+1
),𝒚∗𝑡 −𝒚∗𝑡+1

⟩

≤𝜂𝑡
∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩ + ⟨∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒙𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1

⟩

≤(𝜂𝑡 |F𝑡 |𝐺★ + 𝜉𝐺★∥𝒙𝑡 −𝒚∗𝑡 ∥) · ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ .

(51)

Combining with Eq. (50) and Eq. (51) gives

∥𝒚∗𝑡+1
−𝒚∗𝑡 ∥ ≤

𝜂𝑡 |F𝑡 |𝐺★ + 𝜉𝐺★∥𝒙𝑡 −𝒚∗𝑡 ∥
𝜎

.

Then we get the result of Lemma 9 as follows.

∥𝒙𝑡+1 − 𝒙𝑡 ∥ ≤∥𝒚∗𝑡+1
−𝒚∗𝑡 ∥ + ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥ + ∥𝒙𝑡 −𝒚∗𝑡 ∥

≤
𝜂𝑡 |F𝑡 |𝐺★ + 𝜂2

𝑡 + 𝜂2

𝑡−1

𝜎
+
𝜂2

𝑡−1
𝜉𝐺★

𝜎2
.

G PROOF OF THEOREM 5
When the received feedback is the value of the loss function’s gradient in the corresponding decision point. In the case of general convexity,

the regret format is

Reg𝑇 =

𝑇∑︁
𝑡=1

[𝑓𝑡 (𝒙𝑡 ) − 𝑓𝑡 (𝒙∗)]

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

[𝑓𝑘 (𝒙𝑘 ) − 𝑓𝑘 (𝒙∗)]

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙∗⟩

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩︸                                 ︷︷                                 ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ⟩︸                                 ︷︷                                 ︸
delayed term

.

(52)

We first analyze the normal term of Eq. (52).

Lemma 10. The normal term of Eq. (52) is bounded by

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩ ≤
𝜂𝑇 (𝐺2

★ + 8𝜉𝑅𝐺★ + 2𝜂𝐺★)
2𝜎

+
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂
. (53)
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Next, we discuss the delayed term of Eq. (52).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ⟩

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★∥𝒙𝑡,𝑖𝑘 − 𝒙𝑘 ∥

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★
©­«
𝑡−1∑︁
𝜏=𝑘

∑︁
𝑠∈F𝜏

∥𝒙𝜏,𝑖𝑠+1 − 𝒙𝜏,𝑖𝑠 ∥ +
∑︁

𝑠∈F𝑡,𝑘
∥𝒙𝑡,𝑖𝑠+1 − 𝒙𝑡,𝑖𝑠 ∥

ª®¬ .
(54)

From the above formula, the crucial key impacting the bound of the delayed term is the gap between 𝒙𝑡,𝑖𝑠 and 𝒙𝑡,𝑖𝑠+1.

Lemma 11. For each 𝑡 ∈ [𝑇 ], 𝑘 ∈ F𝑡 , our SDMD-GC algorithm ensures that

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤ 𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2
. (55)

Substituting Eq. (55) into Eq. (54) gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡,𝑖𝑘 ⟩ ≤ 2𝐷𝑇𝐺★

(
𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2

)
. (56)

Combining with Eq. (53) and Eq. (56), we get the result of Theorem 5.

G.1 Proof of Lemma 10
Note that at each iteration 𝑡 , the decision 𝒚∗

𝑡,𝑖𝑘+1
is updated by

𝒚∗𝑡,𝑖𝑘+1
= arg min

𝒙∈X

{
⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙⟩ +

1

𝜂
𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 )

}
.

From the optimality condition for the update of SDMD-GC, for any 𝒙∗ ∈ X, we have〈
𝜂∇𝑓𝑘 (𝒙𝑘 ) + ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗𝑡,𝑖𝑘+1

〉
≥ 0.

Rearranging the terms above yields

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩

≤⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
⟩ +

⟨∇𝜓 (𝒚∗
𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗
𝑡,𝑖𝑘+1

⟩
𝜂

≤⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ +𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥

+
⟨∇𝜓 (𝒚∗

𝑡,𝑖𝑘+1
) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗

𝑡,𝑖𝑘+1
⟩

𝜂
.

(57)

For the last term above, we have

⟨∇𝜓 (𝒚∗𝑡,𝑖𝑘+1
) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ −𝒚∗𝑡,𝑖𝑘+1

⟩ =⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1⟩
+ ⟨∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘+1), 𝒙∗ −𝒚∗𝑡,𝑖𝑘+1
⟩

+ ⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
⟩

≤⟨∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1⟩
+ 4𝜉𝑅𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥ .
The three-point identity regarding Bregman divergence is〈

∇𝜓 (𝒙𝑡,𝑖𝑘+1) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ), 𝒙∗ − 𝒙𝑡,𝑖𝑘+1

〉
= 𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘+1) − 𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 ).

Applying the three-point identity to Eq.(57) gives

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩ ≤⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ +𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥

+
𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡,𝑖𝑘+1) − 𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 )

𝜂

+
4𝜉𝑅𝐺★∥𝒙𝑡,𝑖𝑘+1 −𝒚∗

𝑡,𝑖𝑘+1
∥

𝜂
.

(58)
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For the first term on the R.H.S of Eq.(58), we have

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1⟩ ≤𝐺★∥𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1∥

≤ 𝜂

2𝜎
𝐺2

★ + 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1∥2 .

(59)

Additionally, we assume the regularization function𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥. Then we get

𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 ) ≥
𝜎

2

∥𝒙𝑡,𝑖𝑘 − 𝒙𝑡,𝑖𝑘+1∥2 . (60)

Substituting Eq.(59) and Eq.(60) into Eq. (58) and summing it over all iterations yields

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘 − 𝒙∗⟩ ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝜂

2𝜎
𝐺2

★ +
𝐵𝜓 (𝒙∗; 𝒙1) − 𝐵𝜓 (𝒙∗; 𝒙𝑇+1)

𝜂

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

(
4𝜉𝑅𝐺★

𝜂
+𝐺★

)
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥

≤ 𝜂

2𝜎
𝑇𝐺2

★ +
𝐵𝜓 (𝒙∗; 𝒙1)

𝜂

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

(
4𝜉𝑅𝐺★

𝜂
+𝐺★

)
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥.

(61)

The last inequality above is due to 𝐵𝜓 (𝒙∗; 𝒙𝑇+1) ≥ 0 for any convex regularization function𝜓 .

Call back the approximate solution of 𝒙𝑡,𝑖𝑘+1, that is〈
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒙𝑡,𝑖𝑘+1; 𝒙𝑡,𝑖𝑘 ) ≤

〈
∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑦,𝑖𝑘+1

〉
+ 1

𝜂
𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1

; 𝒙𝑡,𝑖𝑘 ) + 𝜌𝑡,𝑖𝑘 .

We make 𝐶𝑡,𝑖𝑘 (𝒙) = ⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙⟩ + 1

𝜂 𝐵𝜓 (𝒙 ; 𝒙𝑡,𝑖𝑘 ). Utilizing its strong convexity, we have

𝐶𝑡,𝑖𝑘 (𝒙𝑡,𝑖𝑘+1) −𝐶𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1
) ≥⟨∇𝐶𝑡,𝑖𝑘 (𝒚∗𝑡,𝑖𝑘+1

), 𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
⟩ + 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥2

≥ 𝜎

2𝜂
∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥2 .

Considering the above together, we obtain

∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1
∥ ≤

√︂
2𝜂𝜌𝑡,𝑖𝑘

𝜎
. (62)

Substituting Eq. (62) into Eq. (61) and making 𝜌𝑡,𝑖𝑘 =
𝜂3

2𝜎 gives the result of Lemma 10.

G.2 Proof of Lemma 11
Due to the fact that𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥. Thus

𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1
;𝒚∗𝑡,𝑖𝑘 ) + 𝐵𝜓 (𝒚∗𝑡,𝑖𝑘 ;𝒚∗𝑡,𝑖𝑘+1

) ≥ 𝜎 ∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥2 . (63)

Meanwhile, based on the definition of Bregman divergence, the L.H.S of Eq. (63) can be rewritten as

𝐵𝜓 (𝒚∗𝑡,𝑖𝑘+1
;𝒚∗𝑡,𝑖𝑘 ) + 𝐵𝜓 (𝒚∗𝑡,𝑖𝑘 ;𝒚∗𝑡,𝑖𝑘+1

) =
〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
.

Recall back the optimality condition for the update rule, for any 𝒚∗
𝑡,𝑖𝑘

∈ X we have〈
𝜂∇𝑓𝑘 (𝒙𝑘 ) + ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≥ 0.

Rearranging the terms of the above equality yields〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒚∗𝑡,𝑖𝑘+1

),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≤⟨𝜂∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

⟩

+
〈
∇𝜓 (𝒚∗𝑡,𝑖𝑘 ) − ∇𝜓 (𝒙𝑡,𝑖𝑘 ),𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

〉
≤𝜂𝐺★∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1

∥
+ 𝜉𝐺★∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥ · ∥𝒚

∗
𝑡,𝑖𝑘

−𝒚∗𝑡,𝑖𝑘+1
∥.

(64)
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Considering Eq. (63) and Eq. (64), we obtain

∥𝒚∗𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘+1
∥ ≤

𝜂𝐺★ + 𝜉𝐺★∥𝒙𝑡,𝑖𝑘 −𝒚∗
𝑡,𝑖𝑘

∥
𝜎

.

Combining with Eq. (62) gives

∥𝒙𝑡,𝑖𝑘+1 − 𝒙𝑡,𝑖𝑘 ∥ ≤∥𝒚∗𝑡,𝑖𝑘+1
−𝒚∗𝑡,𝑖𝑘 ∥ + ∥𝒙𝑡,𝑖𝑘+1 −𝒚∗𝑡,𝑖𝑘+1

∥ + ∥𝒙𝑡,𝑖𝑘 −𝒚∗𝑡,𝑖𝑘 ∥

≤𝜂𝐺★ + 2𝜂2

𝜎
+ 𝜂2𝜉𝐺★

𝜎2
.

H PROOF OF THEOREM 6
In the case of relative strong convexity, the regret format is

Reg𝑇 =

𝑇∑︁
𝑡=1

[𝑓𝑡 (𝒙𝑡 ) − 𝑓𝑡 (𝒙∗)]

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙∗⟩ −
𝑇∑︁
𝑡=1

𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 )

=

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙∗⟩ −
𝑇∑︁
𝑡=1

𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 )︸                                                       ︷︷                                                       ︸
normal term

+
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡 ⟩︸                              ︷︷                              ︸
delayed term

.

(65)

The bound of the normal term in Eq. (65) is as follows.

Lemma 12. The normal term of Eq. (65) is bounded by
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙∗⟩ −
𝑇∑︁
𝑡=1

𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 ) ≤
2𝑑𝐺★

𝜎𝛾2
+
(𝑑𝐺2

★ + 8𝜉𝑅𝐺★) (1 + ln𝑇 )
2𝜎𝛾

. (66)

Next, we discuss the delayed term of Eq. (65).

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡 ⟩ ≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

∥∇𝑓𝑘 (𝒙𝑘 )∥★ · ∥𝒙𝑘 − 𝒙𝑡 ∥

≤
𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

𝐺★

𝑘+𝑑𝑘−1∑︁
𝜏=𝑘

∥𝒙𝜏+1 − 𝒙𝜏 ∥

≤𝑑𝐺★

𝑇∑︁
𝑡=1

∥𝒙𝑡+1 − 𝒙𝑡 ∥.

(67)

The key is the difference between 𝒙𝑡 and 𝒙𝑡+1.

Lemma 13. For each 𝑡 ∈ [𝑇 ], our SDMD-RSC algorithm ensures that

∥𝒙𝑡+1 − 𝒙𝑡 ∥ ≤
𝜂𝑡 |F𝑡 |𝐺★ + 𝜂2

𝑡 + 𝜂2

𝑡−1

𝜎
+
𝜂2

𝑡−1
𝜉𝐺★

𝜎2
. (68)

Note that we make 𝜂0 = 𝜂1. Considering 𝜂𝑡 =
1

𝛾𝑡 and substituting Eq. (68) into Eq. (67) gives

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑘 − 𝒙𝑡 ⟩ ≤
𝑑𝐺2

★(1 + ln𝑇 )
𝜎𝛾

+ 4𝑑𝐺★

𝜎𝛾2
+ 2𝑑𝜉𝐺★

𝜎2𝛾2
. (69)

Combining with Eq. (66) and Eq. (69), we get the result of Theorem 6.

H.1 Proof of Lemma 12
At each iteration 𝑡 , the decision 𝒚∗

𝑡+1
is updated by

𝒚∗𝑡+1
= arg min

𝒙∈X


∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙⟩ +
1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 )

 .
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From the optimality condition for the update rule, for any 𝒙∗ ∈ X, we have〈
𝜂𝑡

∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑘 ) + ∇𝜓 (𝒚∗𝑡+1
) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗𝑡+1

〉
≥ 0.

Rearranging the terms above yields∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙∗

〉
≤

∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 −𝒚∗𝑡+1

〉
+

〈
∇𝜓 (𝒚∗

𝑡+1
) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗

𝑡+1

〉
𝜂𝑡

≤
∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙𝑡+1⟩ + |F𝑡 |𝐺★ · ∥𝒙𝑡+1 −𝒚∗𝑡+1
∥

+
〈
∇𝜓 (𝒚∗

𝑡+1
) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗

𝑡+1

〉
𝜂𝑡

.

For the last term above, we have 〈
∇𝜓 (𝒚∗𝑡+1

) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ −𝒚∗𝑡+1

〉
≤

〈
∇𝜓 (𝒚∗𝑡+1

) − ∇𝜓 (𝒙𝑡+1), 𝒙∗ −𝒚∗𝑡+1

〉
+

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ − 𝒙𝑡+1

〉
+

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙𝑡+1 −𝒚∗𝑡+1

〉
≤

〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙∗ − 𝒙𝑡+1

〉
+ 4𝜉𝑅𝐺★∥𝒙𝑡+1 −𝒚∗𝑡+1

∥.

Applying the three-point identity of Bregman divergence gives〈
∇𝜓 (𝒙𝑡+1) − ∇𝜓 (𝒙𝑡 ), 𝒙𝑡+1 −𝒚∗𝑡+1

〉
≤ 𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡+1) − 𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 ). (70)

For the first term on the R.H.S of Eq. (70), we have∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙𝑡+1⟩ ≤ |F𝑡 |𝐺★∥𝒙𝑡 − 𝒙𝑡+1∥ ≤ 𝜂𝑡

2𝜎
|F𝑡 |2𝐺2

★ + 𝜎

2𝜂𝑡
∥𝒙𝑡 − 𝒙𝑡+1∥2 .

(71)

Additionally, we assume the regularization function𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥. Then we have

𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 ) ≥
𝜎

2

∥𝒙𝑡 − 𝒙𝑡+1∥2 . (72)

Combining with Eq. (70), Eq. (71) and Eq. (72) yields

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙∗

〉
≤

𝑇∑︁
𝑡=1

𝜂𝑡

2𝜎
|F𝑡 |2𝐺2

★ +
𝑇∑︁
𝑡=1

𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝐵𝜓 (𝒙∗; 𝒙𝑡+1)
𝜂𝑡

+
𝑇∑︁
𝑡=1

(
|F𝑡 |𝐺★ +

4𝜉𝑅𝐺𝜓

𝜂𝑡

)
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥.

(73)

Subtracting

∑𝑇
𝑡=1

𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 ) from Eq. (73) and substituting 𝜂𝑡 =
1

𝛾𝑡 , we obtain

𝑇∑︁
𝑡=1

∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡 − 𝒙∗

〉
−

𝑇∑︁
𝑡=1

𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 )

≤
𝑇∑︁
𝑡=1

|F𝑡 |2𝐺2

★

2𝜎𝛾𝑡
+

𝑇∑︁
𝑡=1

[
(𝑡 − 1)𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡 ) − 𝑡𝛾𝐵𝜓 (𝒙∗; 𝒙𝑡+1)

]
+

𝑇∑︁
𝑡=1

(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥

≤
𝑇∑︁
𝑡=1

𝑑 |F𝑡 |𝐺2

★

2𝜎𝛾
∑𝑡
𝜏=1

|F𝜏 |
+

𝑇∑︁
𝑡=1

(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥

≤
𝑑𝐺2

★(1 + ln𝑇 )
2𝜎𝛾

+
𝑇∑︁
𝑡=1

(
|F𝑡 |𝐺★ + 4𝜉𝑅𝐺★

𝜂𝑡

)
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥.

(74)
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Consider the approximate solution of 𝒙𝑡+1, we have∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙𝑡+1⟩ +
1

𝜂𝑡
𝐵𝜓 (𝒙𝑡+1; 𝒙𝑡 ) ≤

∑︁
𝑘∈F𝑡

〈
∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑡+1

〉
+ 1

𝜂𝑡
𝐵𝜓 (𝒚∗𝑡+1

; 𝒙𝑡 ) + 𝜌𝑡 .

We make 𝐷𝑡 (𝒙) =
∑
𝑘∈F𝑡 ⟨∇𝑓𝑘 (𝒙𝑘 ), 𝒙⟩ +

1

𝜂𝑡
𝐵𝜓 (𝒙 ; 𝒙𝑡 ). It is fact that 𝐷𝑡 is

𝜎
𝜂𝑡
-strongly convex with respect to norm ∥ · ∥, then

𝐷𝑡 (𝒙𝑡+1) − 𝐷𝑡 (𝒚∗𝑡+1
) ≥⟨∇𝐷𝑡 (𝒚∗𝑡+1

), 𝒙𝑡+1 −𝒚∗𝑡+1
⟩ + 𝜎

2𝜂𝑡
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥2

≥ 𝜎

2𝜂𝑡
∥𝒙𝑡+1 −𝒚∗𝑡+1

∥2 .

Combining above and 𝜌𝑡 =
𝜂3

𝑡

2𝜎 gives

∥𝒙𝑡+1 −𝒚∗𝑡+1
∥ ≤

√︂
2𝜂𝑡 𝜌𝑡

𝜎
=
𝜂2

𝑡

𝜎
. (75)

Substituting Eq. (75) into Eq. (74), we obtain the result of Lemma 12.

H.2 Proof of Lemma 13
Due to the fact that𝜓 (·) is 𝜎-strongly convex with respect to norm ∥ · ∥. Thus

𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 ) + 𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1

) ≥ 𝜎 ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥2 . (76)

Meanwhile, based on the definition of Bregman divergence, the L.H.S of Eq. (76) can be rewritten as

𝐵𝜓 (𝒚∗𝑡+1
;𝒚∗𝑡 ) + 𝐵𝜓 (𝒚∗𝑡 ;𝒚∗𝑡+1

) =
〈
∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒚∗𝑡+1

),𝒚∗𝑡 −𝒚∗𝑡+1

〉
.

Recall back the optimality condition for the update rule, for any 𝒚∗𝑡 we have〈
𝜂𝑡

∑︁
𝑘∈F𝑡

∇𝑓𝑘 (𝒙𝑘 ) + ∇𝜓 (𝒚∗𝑡+1
) − ∇𝜓 (𝒙𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1

〉
≥ 0.

Rearranging the terms of the above equality yields〈
∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒚∗𝑡+1

),𝒚∗𝑡 −𝒚∗𝑡+1

〉
≤𝜂𝑡

∑︁
𝑘∈F𝑡

⟨∇𝑓𝑘 (𝒙𝑘 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩

+ ⟨∇𝜓 (𝒚∗𝑡 ) − ∇𝜓 (𝒙𝑡 ),𝒚∗𝑡 −𝒚∗𝑡+1
⟩

≤𝜂𝑡 |F𝑡 |𝐺★∥𝒚∗𝑡 −𝒚∗𝑡+1
∥

+ 𝜉𝐺★∥𝒙𝑡 −𝒚∗𝑡 ∥ · ∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ .

(77)

Considering Eq. (76) and Eq. (77) gives

∥𝒚∗𝑡 −𝒚∗𝑡+1
∥ ≤

𝜂𝑡 |F𝑡 |𝐺★ + 𝜉𝐺★∥𝒙𝑡 −𝒚∗𝑡 ∥
𝜎

.

Then combining with Eq. (75), we have the result of Lemma 13

∥𝒙𝑡+1 − 𝒙𝑡 ∥ ≤∥𝒚∗𝑡+1
−𝒚∗𝑡 ∥ + ∥𝒙𝑡+1 −𝒚∗𝑡+1

∥ + ∥𝒙𝑡 −𝒚∗𝑡 ∥

≤
𝜂𝑡 |F𝑡 |𝐺★ + 𝜂2

𝑡 + 𝜂2

𝑡−1

𝜎
+
𝜂2

𝑡−1
𝜉𝐺★

𝜎2
.
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