
Farsighted Probabilistic Sampling:
A General Strategy for Boosting Local Search MaxSAT Solvers

Jiongzhi Zheng1,2, Kun He1,2*, Jianrong Zhou1,2

1School of Computer Science and Technology, Huazhong University of Science and Technology, China
2Hopcroft Center on Computing Science, Huazhong University of Science and Technology, China

{jzzheng, brooklet60, jrzhou}@hust.edu.cn

Abstract
Local search has been demonstrated as an efficient approach
for two practical generalizations of the MaxSAT problem,
namely Partial MaxSAT (PMS) and Weighted PMS (WPMS).
In this work, we observe that most local search (W)PMS
solvers usually flip a single variable per iteration. Such a
mechanism may lead to relatively low-quality local optimal
solutions, and may limit the diversity of search directions
to escape from local optima. To address this issue, we pro-
pose a general strategy, called farsighted probabilistic sam-
pling (FPS), to replace the single flipping mechanism so as
to boost the local search (W)PMS algorithms. FPS considers
the benefit of continuously flipping a pair of variables in or-
der to find higher-quality local optimal solutions. Moreover,
FPS proposes an effective approach to escape from local op-
tima by preferring the best to flip among the best sampled
single variable and the best sampled variable pair. Extensive
experiments demonstrate that our proposed FPS strategy sig-
nificantly improves the state-of-the-art (W)PMS solvers, and
FPS has an excellent generalization capability to various local
search MaxSAT solvers.

1 Introduction
Maximum Boolean Satisfiability (MaxSAT) is an optimiza-
tion version of the famous SAT decision problem. Given
a propositional formula in the Conjunctive Normal Form
(CNF), MaxSAT aims to maximize the number of satis-
fied clauses. Partial MaxSAT (PMS) is a generalization of
MaxSAT, whose clauses are divided into hard and soft.
PMS aims to maximize the number of satisfied soft clauses
while satisfying all the hard clauses. In a more general-
ized situation, each soft clause is associated with a posi-
tive weight. The resulting problem is called Weighted PMS
(WPMS), which aims to maximize the total weight of satis-
fied soft clauses meanwhile satisfying all the hard clauses.
Both PMS and WPMS, denoted as (W)PMS, have many
practical applications, such as planning (Bonet, Francès, and
Geffner 2019), timetabling (Demirovic and Musliu 2017),
routing (Khadilkar 2022), group testing (Ciampiconi et al.
2020), etc.

Local search (Selman, Kautz, and Cohen 1993; Morris
1993; Cha et al. 1997) is a well-studied category of incom-

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plete algorithms for MaxSAT. One of the most common
frameworks of local search MaxSAT algorithms starts from
an initial solution, and then flips a variable in each iteration
to explore the solution space. Recently, many effective local
search strategies have been proposed for (W)PMS, such as
approaches for generating high-quality initial solutions (Cai,
Luo, and Zhang 2017; Cai and Lei 2020; Zheng et al. 2022),
variable selection strategies (Luo et al. 2017; Zheng et al.
2022), and clause weighting schemes (Cai et al. 2014; Luo
et al. 2017; Lei and Cai 2018).

These state-of-the-art local search algorithms (Cai et al.
2014; Luo et al. 2017; Lei and Cai 2018; Cai and Lei 2020;
Zheng et al. 2022) have made considerable achievements in
solving the (W)PMS. However, they all follow a similar sin-
gle flipping mechanism to explore the solution space. That
is, they only flip a single variable in each iteration. Such a
mechanism may cause the algorithm easily fall into a local
optimum, i.e., flipping any variable can not improve the cur-
rent solution. Thus the quality of the local optimal solutions
might not be good enough. Moreover, most of these algo-
rithms escape from local optima by a simple random walk
strategy (Cai et al. 2014; Lei and Cai 2018; Cai and Lei
2020), i.e., satisfying a randomly selected falsified clause.
The high-degree randomness of this strategy may make it
hard for these algorithms to find a good direction for the
subsequent search.

To handle these issues, we propose a general variable
selection strategy, dubbed farsighted probabilistic sampling
(FPS), to replace the single flipping mechanism in the local
search (W)PMS solvers. FPS employs a two-level technique,
that allows the algorithm to look-ahead and considers the
benefit of continuously flipping a pair of variables, as well
as a probabilistic sampling approach. First, when there exists
no single flipping that can improve the current solution (i.e.,
a local optimum of the single flipping mechanism reaches),
FPS tries to look-ahead to find a pair of variables that flip-
ping both can improve the current solution. In this way, the
local optimal solutions can be further improved. Second, the
two-level technique and the sampling strategy can provide
more and better search directions to escape from the local
optima. If FPS fails to improve the current solution by flip-
ping a pair of variables, it will choose the best to flip among
the best sampled single variable and the best sampled pair of
variables.

ar
X

iv
:2

10
8.

09
98

8v
5

 [
cs

.A
I]

 2
5

N
ov

 2
02

2

In the literature, there exist related studies that apply the
look-ahead or similar techniques for the SAT problem. Such
as the look-ahead technique (Li and Huang 2005; Li, Wei,
and Zhang 2007; Wei, Li, and Zhang 2008) and an approach
using the second level score (Cai and Su 2013; Cai, Su, and
Luo 2013). To evaluate the benefit of flipping a variable,
these two approaches consider the immediate benefit of the
flipping, as well as the future benefit that might be obtained
after the flipping. However, they still prioritize the immedi-
ate benefit of flipping a single variable, and always perform
a single flipping per iteration. For example, the look-ahead
technique is used to select one among the two best single
flipping variables (Li, Wei, and Zhang 2007; Wei, Li, and
Zhang 2008) and the second level score is used only for
breaking ties (Cai and Su 2013; Cai, Su, and Luo 2013).
Thus the look-ahead and second level score techniques play
a minor role in selecting the flipping variable. Intuitively,
prioritizing the immediate benefit over the future benefit is
short-sighted, and may lead to a poor search direction.

There are also some studies proposing multi-flipping lo-
cal search operators for SAT (Mali and Lipen 2003) and
MaxSAT (Reisch, Großmann, and Kliewer 2020). But they
use an exhaustive method rather than probability sampling
in the local search process. Thus they are less efficient when
solving large instances. In contrast, our proposed FPS algo-
rithm combines the advantages of look-ahead and probabil-
ity sampling. Thus FPS is more effective and efficient for
solving the (W)PMS.

To evaluate the performance of FPS, we apply FPS to
some of the state-of-the-art local search (W)PMS algo-
rithms, including BandMaxSAT (Zheng et al. 2022), SAT-
Like3.0 (Cai and Lei 2020) (the newest extension of SAT-
Like (Lei and Cai 2018)), CCEHC (Luo et al. 2017), and
Dist (Cai et al. 2014). Details of how to apply FPS to
these algorithms are described in Section 3.2. The results
show that these algorithms can all be improved significantly
by FPS, demonstrating its excellent generalization capabil-
ity. Moreover, we make a further comparison with some
of the state-of-the-art SAT-based (W)PMS solvers, includ-
ing SATLike-c (Lei et al. 2021), TT-Open-WBO-Inc (Nadel
2019), and Loandra (Berg, Demirovic, and Stuckey 2019).
We apply FPS to improve the local search component in
SATLike-c, the resulting solver also outperforms these SAT-
based (W)PMS solvers.

The main contributions of this work are as follows:

• We propose a general farsighted probabilistic sampling
(FPS) strategy for boosting local search MaxSAT solvers.
Extensive experiments demonstrate that FPS signifi-
cantly improves the state-of-the-art local search (W)PMS
solvers as well as one of the state-of-the-art SAT-based
solvers, SATLike-c, which won three among all the four
incomplete tracks in MaxSAT Evaluation 2021.

• FPS can improve the local optimal solutions of the single
flipping mechanism by considering the benefit of con-
tinuously flipping a pair of variables. FPS escapes from
local optima by preferring the best to flip among the best
sampled single variable and the best sampled pair of vari-
ables, which can provide high-quality search directions

to escape from local optima.
• Our method suggests an efficient and effective way to

apply the look-ahead strategy and the multiple flipping
mechanism to boost local search MaxSAT solvers, show-
ing great potential for these approaches for MaxSAT.

2 Preliminary
In this section, we first present formal definitions of the
studied problems and some important concepts. Then we
summarize the general framework of the state-of-the-art lo-
cal search (W)PMS algorithms based on the single flipping
mechanism, which can help understand how FPS can be ap-
plied to boost them (described in Section 3.2).

2.1 Definitions on Problems and Concepts
Given a set of Boolean variables {x1, ..., xn}, a literal is ei-
ther a variable xi itself or its negation ¬xi, a clause c is a
disjunction of literals, and a conjunctive normal form (CNF)
formula F is a conjunction of clauses. A complete assign-
ment A is a mapping that assigns to each variable either 1
(true) or 0 (false). A literal xi (resp. ¬xj) is true if xi = 1
(resp. xj = 0). A clause is satisfied if it has at least one true
literal, and falsified otherwise.

Given a CNF formula, SAT aims to determine whether
there is an assignment that satisfies all the clauses in the for-
mula, and MaxSAT aims to find an assignment that maxi-
mizes the number of satisfied clauses. The PMS, for which
the clauses are divided into hard and soft, aims to find an
assignment that satisfies all the hard clauses and satisfies as
many soft clauses as possible. The WPMS, for which the soft
clauses are associated with positive weights, aims to find an
assignment that satisfies all hard clauses and maximizes the
total weight of the satisfied soft clauses.

For a (W)PMS instanceF , an assignment A is regarded as
feasible if it satisfies all the hard clauses inF , and the cost of
a feasible assignment A, denoted by cost(A), is defined to
be the number (or total weight) of the falsified soft clauses.
For convenience, the cost of any infeasible assignment is set
to +∞. The flipping operator in local search algorithms for
MaxSAT on a variable is to change its Boolean value. Recent
effective local search (W)PMS algorithms use the clause
weighting strategy that associates dynamic weights to both
hard and soft clauses to guide the search direction. Some of
them, such as BandMaxSAT and SATLike(3.0), use a single
scoring function score(x) to represent the increase of the
total dynamic weight of the satisfied hard and soft clauses
caused by flipping x. Others such as CCEHC and Dist use
hscore(x) (resp. sscore(x)) to represent the increase of the
total dynamic weight of the satisfied hard (resp. soft) clauses
caused by flipping x.

2.2 General Single Flipping Local Search
The general flow of local search (W)PMS algorithms based
on the single flipping mechanism is shown in Algorithm 1.
We mainly focus on the variable selection process in each
iteration (lines 5-9), which can be divided into two cases. In
the first case (lines 5-6), the current assignment A is not a lo-
cal optimum, i.e., GoodV ars 6= ∅. Different algorithms de-

Algorithm 1: General Single Flipping Local Search
Input: A (W)PMS instance F , cut-off time cutoff
Output: A feasible assignment A of F , or no

feasible assignment found
1 A := an initial assignment; A∗ := A;
2 while running time < cutoff do
3 if A is feasible & cost(A) < cost(A∗) then
4 A∗ := A;
5 if GoodV ars 6= ∅ then
6 v := a variable selected from GoodV ars;
7 else
8 c := a selected falsified clause;
9 v := a variable selected from c;

10 A := A with v flipped;
11 if A∗ is feasible then return A∗;
12 else return no feasible assignment found;

fine different GoodV ars. For example, BandMaxSAT and
SATLike(3.0) define GoodV ars as {x|score(x) > 0},
Dist and CCEHC define GoodV ars as {x|hscore(x) >
0 ∨ (hscore(x) = 0 ∧ sscore(x) > 0)}. CCEHC further
uses the configuration checking strategy (Cai, Su, and Sattar
2011) to refine GoodV ars. In general, flipping a variable in
GoodV ars results in a better solution than the current one.
The algorithms use a greedy (Luo et al. 2017) or sampling
strategy (Lei and Cai 2018; Cai and Lei 2020) to select a
variable to be flipped in this case. Anyhow, the variable se-
lection strategies of these algorithms in this case are reason-
able, since the current solution can always be improved.

In the second case (lines 7-9), the algorithms fall into
a local optimum. A common strategy is to select a falsi-
fied clause c (usually with a bias to hard clauses) first (line
8), and then select a variable v from c (line 9). The Dist,
CCEHC, and SATLike(3.0) algorithms use the simple ran-
dom walk strategy to select the clause to be satisfied (i.e., c)
randomly. The recently proposed BandMaxSAT algorithm
uses its multi-armed bandit model to select the clause c
smartly, which can help the algorithm find a good search
direction. After determining c, the algorithms usually select
v greedily according to their scoring functions. Besides, be-
fore using the random walk strategy, CCEHC tries to greed-
ily (according to its scoring functions) select the variable
to be flipped that satisfies the configuration checking condi-
tion (Luo et al. 2017) in all the falsified clauses.

3 Methodology

We propose a general farsighted probabilistic sampling
(FPS) variable selection strategy to replace or improve the
single flipping mechanism that is widely used in local search
(W)PMS solvers. This section first introduces the main pro-
cess of FPS, and then introduces how to use FPS to improve
the state-of-the-art local search (W)PMS solvers.

3.1 The Proposed FPS Strategy
As described in Section 2.2, the variable selection strategies
(lines 5-6 in Algorithm 1) based on the single flipping mech-
anism are reasonable when local optima are not reached,
since the current solution can always be improved. However,
when the algorithms fall into a local optimum, they stop im-
proving the current solution and allow the search to get a
worse solution to escape from the local optimum. We argue
that such a strategy may make the algorithms miss better so-
lutions, and we propose FPS to handle this issue by using a
two-level look-ahead technique. When a local optimum for
the single flipping mechanism is reached, FPS first samples
some first-level variables, and then tries to look-ahead from
these variables to see whether flipping a pair of variables can
improve the current solution. In this way, a local optimum
for the single flipping mechanism might not be a local opti-
mum for FPS. Moreover, FPS escapes from its local optima
by selecting the best to flip among the best sampled first-
level variable and the best sampled pair of variables, which
can provide a better search direction than the widely-used
random walk local optima escaping strategy.

The procedure of a general local search algorithm based
on FPS is shown in Algorithm 2. Note that we use the sin-
gle scoring function score(·) to depict the procedure, which
is easier to understand. For the algorithms that the scoring
functions regarding hard and soft clauses are calculated in-
dependently, we just need to replace score(·) with hscore(·)
and sscore(·) accordingly.

When GoodV ars 6= ∅, FPS also selects the variable to
be flipped from GoodV ars (lines 5-7) as Algorithm 1 does.
When GoodV ars = ∅, FPS first samples a set of first-level
variables (lines 9-13), denoted as FV , and then look-ahead
from each first-level variable (lines 16-27). To determine
FV , the algorithm first samples sc num (10 by default) fal-
sified hard clauses, if any; otherwise, samples sc num fal-
sified soft clauses, and then randomly samples a first-level
variable in each sampled clause. Such a sampling strategy
for selecting FV is effective in FPS. On the one hand, look-
ahead from all the variables in all the falsified clauses is
time-consuming. Thus the sampling strategy can improve
the efficiency. On the other hand, sampling first-level vari-
ables from multiple clauses can provide diverse search di-
rections, i.e., satisfying different clauses.

After sampling FV , the first-level variable with the high-
est score is recorded as v1, whose score is recorded as
s1 (lines 14-15). Then, FPS tries to perform a pseudo flip-
ping for each first-level variable FVi (line 18). Note that the
pseudo flipping operator will not change the current solution
and maintained information, just to look-ahead to determine
GoodV ars′ (line 19), which records the second-level vari-
ables with a positive score after flipping FVi (i.e., the score
of each second-level variable is the one computed after per-
forming the pseudo flipping of FVi). Such a pseudo flipping
operator can avoid the redundant flipping operator for restor-
ing the current solution A after each look-ahead process.

If GoodV ars′ = ∅, which means flipping both FVi and
any second-level variable in GoodV ars′ will not be bet-
ter than only flipping FVi. In this case, look-ahead from
FVi can not gain further benefits, and the algorithm will

Algorithm 2: General Local Search based on FPS
Input: A (W)PMS instance F , cut-off time cutoff,

number of sampled clauses sc num, BMS
parameter sv num

Output: A feasible assignment A of F , or no
feasible assignment found

1 A := an initial assignment; A∗ := A;
2 while running time < cutoff do
3 if A is feasible & cost(A) < cost(A∗) then
4 A∗ := A;
5 if GoodV ars := {x|score(x) > 0} 6= ∅ then
6 v := a variable selected from GoodV ars;
7 V ars := {v};
8 else
9 SC := the set of sc num randomly selected

falsified clauses (with a bias to hard ones);
10 The set of first-level variables FV := ∅;
11 for i := 1 to sc num do
12 v := a random variable in SCi;
13 if v /∈ FV then FV := FV ∪ {v};
14 v1 := argmax

v∈FV
score(v);

15 s1 := score(v1); s2 := −∞;
16 for i := 1 to |FV | do
17 score′ := score(FVi);
18 Performing a pseudo flipping for FVi;
19 if GoodV ars′ := {x|score(x) > 0} 6= ∅

then
20 SVi := a second-level variable in

GoodV ars′ picked by BMS with
parameter sv num;

21 if score′ + score(SVi) > 0 then
22 V ars := {FVi, SVi};
23 s2 := score′ + score(SVi);
24 break;
25 if score′ + score(SVi) > s2 then
26 v12 := FVi; v22 := SVi;
27 s2 := score′ + score(SVi);

28 if s1 > s2 then V ars := {v1};
29 else V ars := {v12 , v22};
30 A := A with the variables in V ars flipped;
31 if A∗ is feasible then return A∗;
32 else return no feasible assignment found;

continue to look-ahead from the next first-level variable.
If GoodV ars′ 6= ∅, flipping both FVi and some second-
level variable SVi in GoodV ars′ might improve the cur-
rent local optimal solution. FPS selects SVi by a probabilis-
tic sampling strategy called Best from Multiple Selections
(BMS) (Cai 2015), which chooses sv num random vari-
ables from GoodV ars′ and returns the one with the highest
score (line 20). Once a pair of variables (FVi, SVi) that flip-
ping both can improve the current local optimum is found,
FPS uses an early-stop strategy (lines 21-24) to terminate

the traversing of FV . The best sampled pair of variables are
recorded as (v12 , v

2
2), and the total score of flipping them is

recorded as s2 (lines 26-27). Finally, if FPS fails to improve
the current solution, it selects the best to flip among v1 and
(v12 , v

2
2) according to the benefits of flipping them, i.e., s1

and s2 (lines 28-29).

3.2 Applying FPS to Various Local Searches
As shown in Algorithm 2, FPS actually provides a two-level
look-ahead strategy for selecting the variables to be flipped
when the local optima for the single flipping mechanism are
reached. Therefore, a simple application of FPS to a local
search (W)PMS algorithm is to replace its local optima es-
caping strategy (e.g., lines 7-9 in Algorithm 1) with that
in FPS (i.e., lines 8-29 in Algorithm 2). In this work, we
use this method to apply FPS to SATLike3.0 (Cai and Lei
2020), CCEHC (Luo et al. 2017), and Dist (Cai et al. 2014).
Among them, SATLike3.0, the newest extension of the fa-
mous SATLike (Lei and Cai 2018) algorithm, is the best-
performing one and also a typical algorithm based on the
single flipping mechanism and the simple random walk local
optima escaping strategy. Therefore, we choose SATLike3.0
as the core baseline algorithm. The resulting algorithm of
applying FPS to SATLike3.0 is called MaxFPS (available at
https://github.com/JHL-HUST/FPS). CCEHC and Dist are
two representative algorithms for WPMS and PMS, respec-
tively. We use CCEHC-FPS (resp. Dist-FPS) to represent the
algorithm of applying FPS to CCEHC (resp. Dist).

We further apply FPS to improve the recently proposed lo-
cal search (W)PMS algorithm, BandMaxSAT (Zheng et al.
2022). Since BandMaxSAT mainly uses its bandit model to
select the search direction to escape from the local optima,
we can not keep the core features of BandMaxSAT by sim-
ply replacing its local optima escaping strategy with that in
FPS. Therefore, we propose another way to apply FPS to
BandMaxSAT. That is, the first-level variables FV in FPS
are sampled from the clause selected by the bandit model in
BandMaxSAT. The resulting solver is called BandMaxSAT-
FPS. The application of FPS in BandMaxSAT-FPS indicates
that one can design appropriate methods to determine FV
to use FPS flexibly.

4 Experiments
For experiments, we first analyze the influence of param-
eters sc num and sv num on the performance of FPS.
Then we compare the algorithms improved by FPS with
the baselines, i.e., MaxFPS vs. SATLike3.0, CCEHC-FPS
vs. CCEHC, Dist-FPS vs. Dist, and BandMaxSAT-FPS vs.
BandMaxSAT, to evaluate the performance of FPS. We fur-
ther replace the local search component in SATLike-c (Lei
et al. 2021), i.e., SATLike3.0, with MaxFPS, and com-
pare the resulting solver MaxFPS-c with some of the state-
of-the-art SAT-based (W)PMS solvers, including SATLike-
c, TT-Open-WBO-Inc (Nadel 2019), and Loandra (Berg,
Demirovic, and Stuckey 2019). Finally, we do ablation stud-
ies for clarity and in-depth analysis.

Note that since the typical SATLike3.0 algorithm based
on the single flipping mechanism is our core baseline algo-

rithm, we use its improved algorithm MaxFPS to analyze the
parameters and do ablation studies.

4.1 Experimental Setup
For the (W)PMS experiments, we select all the instances
from the incomplete track of the last four MaxSAT Evalu-
ations (MSEs), i.e., MSE2018 to MSE2021, for comparison
and analysis. We use (W)PMS y to represent the (W)PMS
benchmarks in MSE of year y. All the algorithms in the ex-
periments were implemented in C++ and run on a server us-
ing an Intel® Xeon® E5-2650 v3 2.30 GHz CPU and 256
GB RAM, running Ubuntu 16.04 Linux operation system.
Each (W)PMS instance is solved once (as the baselines and
MSE do) by each algorithm with two time limits, 60 and 300
seconds, which are consistent with the settings in MSEs. The
random seed for each algorithm is set to 1 as the baseline
algorithms do. Due to the limited space, this section only
presents the results within 300 seconds of time limit. See
results within 60 seconds of time limit in Appendix.

4.2 Parameter Study
The parameters in FPS include sc num, the number of sam-
pled clauses, and sv num, the BMS parameter for sampling
the second-level variables. We compare 12 different settings
of sc num ∈ {5, 10, 20, 50} and sv num ∈ {20, 50, 100}
(selected according to our experience) based on MaxFPS
on all the (W)PMS instances from the incomplete track of
MSE2017. We use the scoring function in MSEs to calcu-
late a score for each algorithm per instance, which equals to
zero if the output solution is infeasible, otherwise to the cost
(see Section 2.1) of the best-known solution plus 1 divided
by the cost of the output solution plus 1.

Figure 1 shows the comparison results of MaxFPS with
different parameters. The results are expressed by the av-
erage score of all the tested instances in MSE2017. From
the results, we can see that assigning moderate values to
both sc num and sv num results in a good performance.
Actually, the larger the value of sc num or sv num, the
higher the quality of the local optima for MaxFPS, and the
lower the algorithm efficiency. Therefore, moderate values
of the parameters can well balance the search ability and
algorithm efficiency. The results also demonstrate that the
sampling strategies used in FPS are effective. We select the
best among the 12 tested settings, i.e., sc num = 10 and
sv num = 50, as the default parameters in all the algo-
rithms improved by FPS in our experiments.

4.3 Evaluation on FPS
This subsection first presents a comprehensive comparison
between MaxFPS and SATLike3.0 to evaluate the perfor-
mance of FPS, and then compares the other algorithms im-
proved by FPS and the corresponding baselines to evaluate
the generalization capability of FPS.

The comparison results of MaxFPS and SATLike3.0 are
shown in Table 1. Column #inst. indicates the number of
instances of each benchmark, column #win. indicates the
number of instances in which the solver finds the best so-
lution among all solvers in the table, and column time indi-
cates the average time (in seconds) for obtaining the results

0.71

0.72

0.73

0.74

0.75

20 50 100

Av
er

ag
e

sc
or

e

sv_num

sc_num = 5 sc_num = 10 sc_num = 20 sc_num = 50

Figure 1: Comparison on MaxFPS with different settings of
sc num and sv num.

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

PMS 2018 153 111 60.68 61 83.43
PMS 2019 299 212 49.05 142 56.64
PMS 2020 262 189 41.09 112 62.14
PMS 2021 155 108 47.12 64 51.00
WPMS 2018 172 115 78.90 64 84.37
WPMS 2019 297 222 94.71 100 80.38
WPMS 2020 253 183 92.49 86 72.82
WPMS 2021 151 84 104.92 64 98.31

Table 1: Comparison of MaxFPS and SATLike3.0.

of the winning instances. We could observe that the winning
PMS (resp. WPMS) instances of MaxFPS are about 49-82%
(resp. 31-122%) greater than those of SATLike3.0, indicat-
ing a significant improvement.

To obtain a more detailed comparison between MaxFPS
and SATLike3.0 and evaluate the performance of FPS on
different instance classes, we collect all the tested instances
(duplicated ones are removed) and compare MaxFPS with
SATLike3.0 on each instance class. Ties of these two al-
gorithms with the same number of winning instances are
broken by selecting the one with less running time (as the
rules in MSEs). The results on the PMS and WPMS instance
classes are shown in Tables 2 and 3, respectively. Note that
we remove the instance classes that both MaxFPS and SAT-
Like3.0 can not yield feasible solutions. The results show
that MaxFPS outperforms SATLike3.0 on most classes of
both PMS and WPMS instances. Specifically, for all the 34
(resp. 27) classes of PMS (resp. WPMS) instances, MaxFPS
outperforms SATLike3.0 on 29 (resp. 20) classes, indicating
the excellent robustness of FPS that can boost SATLike3.0
in solving various classes of (W)PMS instances.

The comparison results of CCEHC-FPS and CCEHC,
Dist-FPS and Dist, BandMaxSAT-FPS (BandMS-FPS) and
BandMaxSAT, are summarized in Tables 4, 5, and 6, re-
spectively. The results show that these baselines can all be
significantly improved by our FPS strategy, indicating its
excellent generalization performance and robustness. More-
over, FPS can also significantly improve the SATLike3.0,
CCEHC, Dist, and BandMaxSAT algorithms within 60 sec-
onds of time limit (see details in Appendix).

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

aes 6 5 37.65 2 136.81
atcoss 14 1 272.39 0 0.00
decision-tree 23 21 17.76 6 115.36
extension-enforcement 19 14 96.19 17 100.30
gen-hyper-tw 37 26 103.40 26 110.05
hs-timetabling 1 1 1.59 0 0.00
large-graph-commmunity 3 3 6.76 2 10.51
logic-synthesis 1 1 2.57 0 0.00
bcp 24 22 65.85 6 129.55
pseudoBoolean 11 1 296.65 0 0.00
maxclique & maxcut 58 58 12.87 54 1.42
MCS-GE 25 25 9.24 14 32.56
MaxSATQIC 35 25 40.29 19 55.75
min-fill 16 11 28.78 6 84.63
optic 17 17 39.89 0 0.00
phylogenetic-trees 11 2 131.40 0 0.00
railroad reisch 9 9 39.14 5 6.57
railway-transport 4 2 34.92 1 298.83
ramsey 14 14 0.04 14 0.11
reversi 11 2 104.29 0 0.00
des 13 1 225.94 2 89.65
scheduling 5 2 84.98 3 154.90
scheduling xiaojuan 8 5 127.53 4 85.77
set-covering 9 9 68.72 1 122.93
setcover-rail zhendong 4 4 210.15 2 1.72
treewidth-computation 9 9 134.01 5 65.29
uaq 20 20 11.10 18 46.98
uaq gazzarata 1 1 188.66 0 0.00
xai-mindset2 19 16 44.07 1 227.51
mbd 6 3 141.53 5 194.20
SeanSafarpour 13 9 141.25 8 142.53
fault-diagnosis 8 7 31.42 0 0.00
close solutions 14 5 43.89 9 35.75
causal-discovery 3 3 3.27 3 5.40
Total 471 354 48.93 233 59.02

Table 2: Comparison of MaxFPS and SATLike3.0 on
each PMS instance class. MCS-GE (resp. MaxSATQIC)
is a short name of MaximumCommonSub-GraphExtraction
(resp. MaxSATQueriesinInterpretableClassifiers).

4.4 Comparison with SAT-based (W)PMS Solvers
We then replace the local search component in SATLike-c
(i.e., SATLike3.0) with MaxFPS, and compare the result-
ing solver MaxFPS-c with some of the state-of-the-art SAT-
based (W)PMS solvers, including SATLike-c, TT-Open-
WBO-Inc (TT-OWI), and Loandra. Note that the results of
these SAT-based solvers are obtained by running their codes
downloaded from MSE2021. We use the scoring function
in MSEs (introduced in Section 4.2) to calculate a score
for each solver per instance, and present the average score
of each solver on each benchmark in Table 7. We also de-
pict the distribution of scores per instance of these SAT-
based solvers as in MSEs in Appendix. The results show
that MaxFPS-c yields the highest average score on all the
benchmarks. Moreover, FPS not only can improve SATLike-
c, but also help it outperform the other SAT-based (W)PMS
solvers. These results further indicate the excellent perfor-
mance of FPS.

4.5 Ablation Study
Finally, we do ablation studies to evaluate the effectiveness
and rationality of components in FPS, including the local op-
tima escaping method and the two-level look-ahead search

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

abstraction-refinement 10 9 175.95 2 170.69
af-synthesis 32 28 21.97 5 196.89
correlation-clustering 44 16 145.31 31 131.22
decision-tree 24 11 160.08 17 127.94
hs-timetabling 13 8 146.10 0 0.00
lisbon-wedding 21 15 132.27 0 0.00
maxcut 28 28 6.20 26 1.68
MaxSATQIC 32 26 81.67 9 48.93
metro 2 2 234.82 0 0.00
MWDSP 7 6 90.34 6 105.84
min-width 40 39 146.55 1 153.18
mpe 19 19 74.17 5 91.75
RBAC 54 23 140.27 33 134.35
railroad reisch 6 6 103.38 1 17.14
railway-transport 4 1 46.68 2 107.02
ramsey 12 9 31.09 11 31.70
relational-inference 2 1 73.91 1 212.09
scSequencing Mehrabadi 10 2 85.73 8 57.30
set-covering 13 13 68.63 1 42.34
staff-scheduling 11 11 154.20 0 0.00
spot5 5 5 82.66 0 0.00
causal-discovery 24 23 19.15 15 17.64
timetabling 19 15 187.30 0 0.00
max-realizability 13 10 18.43 8 65.04
BTBNSL-Rounded 26 14 22.85 12 64.80
tcp 13 12 128.59 2 241.91
cluster-expansion 20 7 0.04 17 81.70
Total 504 359 90.77 213 86.67

Table 3: Comparison of MaxFPS and SATLike3.0 on each
WPMS instance class. MWDSP (resp. MaxSATQIC) is
a short name of MinimumWeightDominatingSetProblem
(resp. MaxSATQueriesinInterpretableClassifiers).

Benchmark #inst. CCEHC-FPS CCEHC
#win. time #win. time

WPMS 2018 172 78 101.40 58 85.49
WPMS 2019 297 143 114.06 94 98.32
WPMS 2020 253 112 129.33 89 129.43
WPMS 2021 151 46 157.44 59 136.29

Table 4: Comparison of CCEHC-FPS and CCEHC.

Benchmark #inst. Dist-FPS Dist
#win. time #win. time

PMS 2018 153 87 92.43 73 93.47
PMS 2019 299 170 62.73 152 77.47
PMS 2020 262 145 62.16 119 84.77
PMS 2021 155 77 87.17 74 71.68

Table 5: Comparison of Dist-FPS and Dist.

process, by comparing MaxFPS with its several variants.
To evaluate the effectiveness of the components, we first

perform two groups of comparison. The first one compares
MaxFPS with its variant, MaxFPS1, which replaces the lo-
cal optima escaping strategy in MaxFPS (lines 28-29 in Al-
gorithm 2) with the simple random walk strategy (lines 8-9
in Algorithm 1). The second one compares MaxFPS1 with
SATLike3.0. The results of these two groups of comparison
are shown in Tables 8 and 9, respectively. We can observe
that MaxFPS significantly outperforms MaxFPS1, indicat-
ing that the local optima escaping strategy in FPS is signif-

Benchmark #inst. BandMS-FPS BandMaxSAT
#win. time #win. time

PMS 2018 153 105 70.91 79 102.39
PMS 2019 299 203 68.81 158 67.44
PMS 2020 262 172 65.39 135 80.15
PMS 2021 155 91 74.66 89 67.78
WPMS 2018 172 102 105.83 73 104.27
WPMS 2019 297 179 98.49 149 89.74
WPMS 2020 253 153 111.28 121 122.00
WPMS 2021 151 83 132.67 62 133.11

Table 6: Comparison of BandMS-FPS and BandMaxSAT.

Benchmark MaxFPS-c SATLike-c TT-OWI Loandra
PMS 2018 0.8682 0.8399 0.8371 0.7912
PMS 2019 0.8796 0.8734 0.8698 0.7919
PMS 2020 0.8696 0.8457 0.8534 0.8156
PMS 2021 0.8802 0.8508 0.8407 0.8127
WPMS 2018 0.9084 0.8931 0.8994 0.8752
WPMS 2019 0.9091 0.8810 0.9010 0.8321
WPMS 2020 0.8868 0.8609 0.8650 0.8312
WPMS 2021 0.8101 0.7843 0.7758 0.7945

Table 7: Comparison of MaxFPS-c and complete solvers.

icantly better than the random walk strategy that is widely
used in recent local search (W)PMS algorithms. This is be-
cause our method can provide more and better directions to
escape from local optima. Moreover, MaxFPS1 significantly
outperforms SATLike3.0, indicating that only using the two-
level look-ahead method can also significantly improve the
local search algorithms, by improving the local optimal so-
lutions of the single flipping mechanism.

Then, we compare MaxFPS with its other two variants,
MaxFPS2 and MaxFPS3, to analyze the rationality of the
two-level search process in MaxFPS. MaxFPS2 extends
the two-level search approach in MaxFPS to three levels.
In MaxFPS2, the third-level variables are selected by the
same approach for selecting the second-level variables as
in MaxFPS, and the second-level variables in MaxFPS2

are sampled from the neighbors (variables that appeared in
the same clause) of the corresponding first-level variable.
MaxFPS3 is a variant of MaxFPS that also look-ahead when
the current solution is not a local optimum for the single
flipping mechanism, i.e., GoodV ars 6= ∅. The results of
MaxFPS and these two variants are summarised in Table 10.

From the results in Table 10, we can see that MaxFPS sig-
nificantly outperforms MaxFPS2. This is because the three-
level look-ahead process is too time-consuming and ineffi-
cient. Thus the proposed two-level look-ahead technique in
FPS is reasonable. We can also observe that MaxFPS outper-
forms MaxFPS3, demonstrating that look-ahead only when
GoodV ars = ∅ is reasonable and effective.

5 Conclusion
In this work, we propose an effective and general strategy
to replace the mechanism of flipping a single variable per it-
eration that is widely used in local search MaxSAT solvers.

Benchmark #inst. MaxFPS MaxFPS1

#win. time #win. time
PMS 2018 153 104 71.21 75 82.91
PMS 2019 299 202 55.93 172 55.63
PMS 2020 262 163 48.37 140 67.44
PMS 2021 155 98 53.10 89 46.67
WPMS 2018 172 119 69.45 69 49.45
WPMS 2019 297 212 92.88 123 77.06
WPMS 2020 253 177 90.82 104 83.44
WPMS 2021 151 89 107.00 61 83.44

Table 8: Comparison of MaxFPS and MaxFPS1.

Benchmark #inst. MaxFPS1 SATLike3.0
#win. time #win. time

PMS 2018 153 106 72.42 63 83.74
PMS 2019 299 206 51.51 142 53.88
PMS 2020 262 161 53.66 112 75.61
PMS 2021 155 105 46.68 68 62.79
WPMS 2018 172 90 74.04 92 90.23
WPMS 2019 297 188 88.56 131 96.44
WPMS 2020 253 156 90.30 116 98.30
WPMS 2021 151 71 86.66 75 109.47

Table 9: Comparison of MaxFPS1 and SATLike3.0.

Benchmark #inst. MaxFPS MaxFPS2 MaxFPS3

#win. time #win. time #win. time
PMS 2018 153 96 78.45 44 20.69 80 59.52
PMS 2019 299 194 62.70 103 13.05 166 46.30
PMS 2020 262 148 50.68 86 16.96 136 63.19
PMS 2021 155 89 59.75 58 13.01 85 39.88
WPMS 2018 172 85 66.54 57 13.23 70 74.63
WPMS 2019 297 181 91.87 92 13.28 144 78.45
WPMS 2020 253 164 94.40 61 12.52 112 75.66
WPMS 2021 151 83 118.80 32 21.86 51 103.99

Table 10: Comparison of MaxFPS, MaxFPS2, MaxFPS3.

The proposed FPS strategy combines the look-ahead tech-
nique and probabilistic sampling method. As a result, FPS
can improve the local optimum of the single flipping mecha-
nism and provide more and better search directions to escape
from local optima.

Look-ahead is not a new technique, but how to look-ahead
is the magic recipe. This work proposes an effective way to
apply this technique to boost local search MaxSAT solvers.
We also demonstrate that there is great potential for the look-
ahead technique to be used for MaxSAT. Extensive experi-
ments demonstrate that our proposed FPS strategy signif-
icantly improves the state-of-the-art (W)PMS solvers, and
FPS has an excellent generalization performance to vari-
ous local search MaxSAT solvers, including SATLike3.0,
CCEHC, Dist, and BandMaxSAT as well as one of the state-
of-the-art SAT-based solvers, SATLike-c.

Moreover, we have also tried to apply FPS to local search
SAT solvers such as CCAnr (Cai, Luo, and Su 2015) and ob-
tained promising performance. In the future, we will further
explore the potential of FPS in MaxSAT and SAT solving.

Acknowledgments
This work is supported by National Natural Science Founda-
tion (U22B2017) and MSRA Collaborative Research 2022
(100338928).

References
Berg, J.; Demirovic, E.; and Stuckey, P. J. 2019. Core-
Boosted Linear Search for Incomplete MaxSAT. In Inte-
gration of Constraint Programming, Artificial Intelligence,
and Operations Research, volume 11494, 39–56.
Bonet, B.; Francès, G.; and Geffner, H. 2019. Learning
Features and Abstract Actions for Computing Generalized
Plans. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, 2703–2710.
Cai, S. 2015. Balance between Complexity and Quality: Lo-
cal Search for Minimum Vertex Cover in Massive Graphs. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, 747–753.
Cai, S.; and Lei, Z. 2020. Old techniques in new ways:
Clause weighting, unit propagation and hybridization for
maximum satisfiability. Artificial Intelligence, 287: 103354.
Cai, S.; Luo, C.; and Su, K. 2015. CCAnr: A Configura-
tion Checking Based Local Search Solver for Non-random
Satisfiability. In Proceedings of the Eighteenth International
Conference of Theory and Applications of Satisfiability Test-
ing, volume 9340, 1–8.
Cai, S.; Luo, C.; Thornton, J.; and Su, K. 2014. Tailoring
Local Search for Partial MaxSAT. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
2623–2629.
Cai, S.; Luo, C.; and Zhang, H. 2017. From Decimation to
Local Search and Back: A New Approach to MaxSAT. In
Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, 571–577.
Cai, S.; and Su, K. 2013. Local search for Boolean Satisfi-
ability with configuration checking and subscore. Artificial
Intelligence, 204: 75–98.
Cai, S.; Su, K.; and Luo, C. 2013. Improving WalkSAT for
Random k-Satisfiability Problem with k > 3. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 145–151.
Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for mini-
mum vertex cover. Artificial Intelligence, 175(9-10): 1672–
1696.
Cha, B.; Iwama, K.; Kambayashi, Y.; and Miyazaki, S. 1997.
Local Search Algorithms for Partial MAXSAT. In Proceed-
ings of the Fourteenth National Conference on Artificial In-
telligence, 263–268.
Ciampiconi, L.; Ghosh, B.; Scarlett, J.; and Meel, K. S.
2020. A MaxSAT-Based Framework for Group Testing. In
Proceedings of the Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, 10144–10152.
Demirovic, E.; and Musliu, N. 2017. MaxSAT-based large
neighborhood search for high school timetabling. Comput-
ers & Operations Research, 78: 172–180.

Khadilkar, H. 2022. Solving the capacitated vehicle rout-
ing problem with timing windows using rollouts and MAX-
SAT. arXiv:2206.06618.
Lei, Z.; and Cai, S. 2018. Solving (Weighted) Partial
MaxSAT by Dynamic Local Search for SAT. In Proceed-
ings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, 1346–1352.
Lei, Z.; Cai, S.; Geng, F.; Wang, D.; Peng, Y.; Wan, D.;
Deng, Y.; and Lu, P. 2021. SATLike-c: Solver Description.
MaxSAT Evaluation 2021, 19–20.
Li, C. M.; and Huang, W. 2005. Diversification and Deter-
minism in Local Search for Satisfiability. In Proceedings of
the Eighth International Conference of Theory and Applica-
tions of Satisfiability Testing, volume 3569, 158–172.
Li, C. M.; Wei, W.; and Zhang, H. 2007. Combining Adap-
tive Noise and Look-Ahead in Local Search for SAT. In
Proceedings of the Tenth International Conference of The-
ory and Applications of Satisfiability Testing, volume 4501,
121–133.
Luo, C.; Cai, S.; Su, K.; and Huang, W. 2017. CCEHC: An
efficient local search algorithm for weighted partial maxi-
mum satisfiability. Artificial Intelligence, 243: 26–44.
Mali, A. D.; and Lipen, Y. 2003. MFSAT: A SAT Solver Us-
ing Multi-Flip Local Search. In Proceedings of the Fifteenth
IEEE International Conference on Tools with Artificial In-
telligence, 84–93.
Morris, P. 1993. The Breakout Method for Escaping from
Local Minima. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, 40–45.
Nadel, A. 2019. Anytime weighted MaxSAT with improved
polarity selection and bit-vector optimization. In 2019 For-
mal Methods in Computer Aided Design, 193–202.
Reisch, J.; Großmann, P.; and Kliewer, N. 2020. Sta-
ble Resolving - A Randomized Local Search Heuristic for
MaxSAT. In Proceedings of the Forty-Third German Con-
ference on Artificial Intelligence, volume 12325, 163–175.
Selman, B.; Kautz, H. A.; and Cohen, B. 1993. Local search
strategies for satisfiability testing. In Cliques, Coloring,
and Satisfiability, Proceedings of a DIMACS Workshop, vol-
ume 26, 521–531.
Wei, W.; Li, C. M.; and Zhang, H. 2008. A Switching Cri-
terion for Intensification and Diversification in Local Search
for SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4): 219–237.
Zheng, J.; He, K.; Zhou, J.; Jin, Y.; Li, C. M.; and Manyà,
F. 2022. BandMaxSAT: A Local Search MaxSAT Solver
with Multi-armed Bandit. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelli-
gence, 1901–1907.

Appendix

In the Appendix, we mainly present some supplementary
experiments. We first present the comprehensive compari-
son results between the algorithms improved by FPS and
the local search (W)PMS baselines within two time limits,
60 and 300 seconds, as in MSEs. Then, we present the de-
tailed comparison of MaxFPS-c and the SAT-based solvers.
Finally, we present some additional ablation studies.

Benchmarks used in Appendix are the same as those de-
scribed in Section 4.1, i.e., all the (W)PMS instances from
the incomplete track of the last four MSEs.

A Comprehensive Evaluation on FPS
The comparison results, within 60 or 300 seconds of time
limit, of MaxFPS and SATLike3.0 (Cai and Lei 2020),
CCEHC-FPS and CCEHC (Luo et al. 2017), Dist-FPS and
Dist (Cai et al. 2014), BandMaxSAT-FPS (BandMS-FPS)
and BandMaxSAT (Zheng et al. 2022), are summarized in

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

60 seconds of time limit
PMS 2018 153 104 13.69 49 15.50
PMS 2019 299 199 11.52 132 11.87
PMS 2020 262 180 12.03 100 10.88
PMS 2021 155 103 9.56 57 8.63
WPMS 2018 172 118 16.90 62 11.97
WPMS 2019 297 209 20.15 94 17.19
WPMS 2020 253 167 19.57 84 20.85
WPMS 2021 151 73 25.75 58 27.66
300 seconds of time limit
PMS 2018 153 111 60.68 61 83.43
PMS 2019 299 212 49.05 142 56.64
PMS 2020 262 189 41.09 112 62.14
PMS 2021 155 108 47.12 64 51.00
WPMS 2018 172 115 78.90 64 84.37
WPMS 2019 297 222 94.71 100 80.38
WPMS 2020 253 183 92.49 86 72.82
WPMS 2021 151 84 104.92 64 98.31

Table 11: Comparison of MaxFPS and SATLike3.0.

Benchmark #inst. CCEHC-FPS CCEHC
#win. time #win. time

60 seconds of time limit
WPMS 2018 172 77 25.99 57 21.11
WPMS 2019 297 138 27.34 82 21.94
WPMS 2020 253 96 25.77 79 26.82
WPMS 2021 151 40 32.42 48 34.30
300 seconds of time limit
WPMS 2018 172 78 101.40 58 85.49
WPMS 2019 297 143 114.06 94 98.32
WPMS 2020 253 112 129.33 89 129.43
WPMS 2021 151 46 157.44 59 136.29

Table 12: Comparison of CCEHC-FPS and CCEHC.

Tables 11, 12, 13, and 14, respectively. The results show that,
within either 60 or 300 seconds of time limit, FPS can signif-
icantly improve these state-of-the-art local search (W)PMS
algorithms, indicating its excellent performance and robust-
ness.

We also compare MaxFPS and SATLike3.0 within 60 sec-
onds of time limit on each instance class. The results on the
PMS and WPMS instance classes are shown in Tables 15
and 16, respectively. Note that duplicated instances and the
instance classes that both MaxFPS and SATLike3.0 can not
yield feasible solutions within 60 seconds are removed. The
results show that, within 60 seconds of time limit, MaxFPS
also outperforms SATLike3.0 on most classes of both PMS
and WPMS instances. Specifically, for all the 32 (resp. 27)
classes of PMS (resp. WPMS) instances, MaxFPS outper-
forms SATLike3.0 on 25 (resp. 20) classes, indicating again
the excellent robustness of FPS that can boost SATLike3.0
in solving various classes of (W)PMS instances.

Benchmark #inst. Dist-FPS Dist
#win. time #win. time

60 seconds of time limit
PMS 2018 153 87 20.70 67 19.25
PMS 2019 299 168 14.16 146 17.23
PMS 2020 262 144 14.50 110 17.52
PMS 2021 155 76 18.19 69 11.44
300 seconds of time limit
PMS 2018 153 87 92.43 73 93.47
PMS 2019 299 170 62.73 152 77.47
PMS 2020 262 145 62.16 119 84.77
PMS 2021 155 77 87.17 74 71.68

Table 13: Comparison of Dist-FPS and Dist.

Benchmark #inst. BandMS-FPS BandMaxSAT
#win. time #win. time

60 seconds of time limit
PMS 2018 153 91 15.70 76 19.62
PMS 2019 299 182 14.36 157 15.43
PMS 2020 262 160 13.47 134 17.76
PMS 2021 155 79 12.69 91 17.61
WPMS 2018 172 102 20.43 82 20.44
WPMS 2019 297 165 20.15 151 23.16
WPMS 2020 253 137 21.96 122 23.66
WPMS 2021 151 72 29.78 63 30.57
300 seconds of time limit
PMS 2018 153 105 70.91 79 102.39
PMS 2019 299 203 68.81 158 67.44
PMS 2020 262 172 65.39 135 80.15
PMS 2021 155 91 74.66 89 67.78
WPMS 2018 172 102 105.83 73 104.27
WPMS 2019 297 179 98.49 149 89.74
WPMS 2020 253 153 111.28 121 122.00
WPMS 2021 151 83 132.67 62 133.11

Table 14: Comparison of BandMS-FPS and BandMaxSAT.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100 120 140 160

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(a) Comparison on PMS 2018

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 40 80 120 160 200 240 280

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(b) Comparison on PMS 2019

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 40 80 120 160 200 240 280

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(c) Comparison on PMS 2020

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100 120 140 160
Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(d) Comparison on PMS 2021

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100 120 140 160 180

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(e) Comparison on WPMS 2018

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 40 80 120 160 200 240 280

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(f) Comparison on WPMS 2019

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 40 80 120 160 200 240

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(g) Comparison on WPMS 2020

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100 120 140

Sc
or
e

Instances

MaxFPS-c SATLike-c TT-OWI Loandra

(h) Comparison on WPMS 2021

Figure 2: Distribution of scores per instance of MaxFPS-c, SATLike-c, TT-OWI, and Loandra on (W)PMS benchmarks.

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

aes 6 4 8.40 1 18.91
decision-tree 23 20 7.54 3 10.27
extension-enforcement 19 14 14.86 14 19.44
gen-hyper-tw 37 29 19.28 20 15.90
hs-timetabling 1 1 1.59 0 0.00
large-graph-commmunity 3 3 6.76 2 10.51
logic-synthesis 1 1 2.57 0 0.00
bcp 24 19 21.06 5 35.71
pseudoBoolean 11 1 2.87 0 0.00
maxclique & maxcut 58 55 3.44 55 1.40
MCS-GE 25 25 7.97 11 3.53
MaxSATQIC 35 27 12.55 18 8.98
min-fill 16 10 15.82 6 32.44
optic 17 15 11.18 2 12.73
phylogenetic-trees 11 1 36.80 0 0.00
railroad reisch 9 9 9.73 6 5.67
railway-transport 4 2 34.92 1 37.35
ramsey 14 14 0.04 14 0.11
des 13 1 59.40 1 36.59
scheduling 5 3 38.29 2 29.83
scheduling xiaojuan 8 6 22.53 4 34.80
set-covering 9 9 19.75 0 0.00
setcover-rail zhendong 4 2 1.53 2 1.72
treewidth-computation 9 5 7.94 7 20.15
uaq 20 20 8.04 11 12.86
uaq gazzarata 1 1 24.91 0 0.00
xai-mindset2 19 14 6.63 1 30.61
mbd 6 2 23.39 4 15.88
SeanSafarpour 13 8 15.28 10 17.51
fault-diagnosis 8 7 31.42 0 0.00
close solutions 14 5 5.61 9 18.08
causal-discovery 3 3 3.27 3 5.40
Total 446 336 11.49 212 11.22

Table 15: Comparison of MaxFPS and SATLike3.0
within 60 seconds of time limit on each PMS instance
class. MCS-GE (resp. MaxSATQIC) is a short name of
MaximumCommonSub-GraphExtraction (resp. MaxSAT-
QueriesinInterpretableClassifiers).

B Comparison with SAT-based Solvers
We then present detailed comparison results of MaxFPS-
c and the state-of-the-art SAT-based (W)PMS solvers,
SATLike-c (Lei et al. 2021), TT-Open-WBO-Inc (TT-
OWI) (Nadel 2019), and Loandra (Berg, Demirovic, and
Stuckey 2019), within 300 seconds of time limit, in Figure 2.
The results are expressed by the distributions of scores per
instance of these SAT-based solvers as in MSEs1. To draw
the results for each solver per benchmark, we first sort the
scores obtained by the solver in solving the instances in the
benchmark in ascending order, and then use a point to record
each score and connect the points by a smooth curve.

The results in Figure 2 show that the curves of MaxFPS-c
are usually above the curves of the other three SAT-based
solvers, indicating that in solving most of the instances,
MaxFPS-c can yield better results.

C Additional Ablation Study
Finally, we compare MaxFPS with its variant MaxFPS4 to
analyze the effectiveness of the early-stop strategy used in
FPS (see Section 3.1). MaxFPS4 is a variant of MaxFPS

1https://maxsat-evaluations.github.io/2019/results/incomplete/
weighted-300s/summary.html

Benchmark #inst. MaxFPS SATLike3.0
#win. time #win. time

abstraction-refinement 10 5 44.81 2 58.29
af-synthesis 32 32 3.70 1 0.21
correlation-clustering 44 21 20.18 33 22.05
decision-tree 24 4 30.97 20 38.12
hs-timetabling 13 7 44.19 0 0.00
lisbon-wedding 21 15 34.76 0 0.00
maxcut 28 27 0.86 26 1.68
MaxSATQIC 32 23 18.88 10 18.06
metro 2 1 55.85 1 48.51
MWDSP 7 2 31.05 2 38.79
min-width 40 39 36.33 1 47.49
mpe 19 18 1.86 3 27.52
RBAC 54 24 22.74 34 27.64
railroad reisch 6 6 39.91 1 17.14
railway-transport 4 2 52.84 1 59.01
ramsey 12 9 5.29 11 7.79
relational-inference 2 1 58.97 0 0.00
scSequencing Mehrabadi 10 2 33.86 6 14.39
set-covering 13 13 12.44 1 42.34
staff-scheduling 11 10 29.94 1 39.73
spot5 5 5 43.68 0 0.00
causal-discovery 24 23 4.44 15 4.56
timetabling 19 13 40.21 1 43.44
max-realizability 13 10 10.26 4 11.64
BTBNSL-Rounded 26 14 0.40 12 17.06
tcp 13 10 22.53 4 15.52
cluster-expansion 20 12 0.04 14 0.08
Total 504 348 18.53 204 18.55

Table 16: Comparison of MaxFPS and SATLike3.0 within
60 seconds of time limit on each WPMS instance
class. MWDSP (resp. MaxSATQIC) is a short name
of MinimumWeightDominatingSetProblem (resp. MaxSAT-
QueriesinInterpretableClassifiers).

Benchmark #inst. MaxFPS MaxFPS4

#win. time #win. time
PMS 2018 153 106 71.87 85 57.14
PMS 2019 299 198 59.43 186 47.53
PMS 2020 262 177 46.64 161 41.79
PMS 2021 155 96 45.84 90 46.69
WPMS 2018 172 109 60.61 92 59.30
WPMS 2019 297 188 86.85 164 89.23
WPMS 2020 253 160 85.17 133 91.40
WPMS 2021 151 78 105.94 76 97.43

Table 17: Comparison of MaxFPS and MaxFPS4.

without early-stop strategy, i.e., MaxFPS4 does not stop
traversing the first-level variables when it finds a pair of
variables that flipping both can improve the current so-
lution. The comparison results of MaxFPS and MaxFPS4

within 300 seconds of time limit are shown in Table 17.
From the results, we could observe that MaxFPS outper-
forms MaxFPS4, indicating that the early-stop strategy in
FPS is reasonable and effective, because it can improve the
efficiency.

