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ABSTRACT

Merging multi-exposure images is a common approach for obtaining high dynamic
range (HDR) images, with the primary challenge being the avoidance of ghosting
artifacts in dynamic scenes. Recent methods have proposed using deep neural
networks for deghosting. However, the methods typically rely on sufficient data
with HDR ground-truths, which are difficult and costly to collect. In this work,
to eliminate the need for labeled data, we propose SelfHDR, a self-supervised
HDR reconstruction method that only requires dynamic multi-exposure images
during training. Specifically, SelfHDR learns a reconstruction network under the
supervision of two complementary components, which can be constructed from
multi-exposure images and focus on HDR color as well as structure, respectively.
The color component is estimated from aligned multi-exposure images, while the
structure one is generated through a structure-focused network that is supervised
by the color component and an input reference (e.g., medium-exposure) image.
During testing, the learned reconstruction network is directly deployed to predict
an HDR image. Experiments on real-world images demonstrate our SelfHDR
achieves superior results against the state-of-the-art self-supervised methods, and
comparable performance to supervised ones. Codes are available at https:
//github.com/cszhilu1998/SelfHDR.

1 INTRODUCTION

Scenes with wide brightness ranges are often visible to human observers, but capturing them com-
pletely with digital or smartphone cameras can be arduous due to the restricted dynamic range of
sensors. For instance, during sunset, the sun and sky are substantially brighter than the surrounding
landscape, leading the camera sensor to either over-expose the sky or under-expose the landscape.
To obtain high dynamic range (HDR) photos in these conditions, exposure bracketing technology
becomes a popular option. It captures multiple low dynamic range (LDR) images with varying
exposures, which are then merged into an HDR result (Debevec & Malik, 2008; Mertens et al., 2009).

Unfortunately, when the multi-exposure images are misaligned due to camera shake and object
movement, ghosting artifacts may exist in the result. Traditional methods to remove the ghosting
include rejecting misaligned areas (Zhang & Cham, 2011; Lee et al., 2014; Oh et al., 2014; Yan et al.,
2017), aligning input images (TOMASZEWSKA, 2007; Hu et al., 2013; Yan et al., 2019b), and using
patch-based composite (Sen et al., 2012; Hu et al., 2013; Ma et al., 2017). With the development of
deep learning (He et al., 2016; Dosovitskiy et al., 2020; Liu et al., 2021), recent advances (Kalantari
et al., 2017; Wu et al., 2018; Yan et al., 2019a; Liu et al., 2022; Yan et al., 2023a; Tel et al., 2023)
proposed training deep neural networks (DNN) for deghosting in a data-driven supervised manner,
performing more effectively than traditional ones.

However, DNN-based HDR reconstruction methods usually require sufficient labeled data, each
of which should include the input dynamic multi-exposure images and the corresponding HDR
ground-truth (GT) image. In order to ensure position alignment between the input reference (e.g.,
medium-exposure) frame and GT, previous works (Kalantari et al., 2017; Chen et al., 2021; Liu
et al., 2023) generally capture the dynamic inputs with the controllable object (generally a person)
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motion in a static background, and construct GT by merging static multiple-exposure images of the
reference scene. Such a collection process is cumbersome and involves high time as well as labor
costs, thus limiting the number and diversity of the datasets. To alleviate the need for labeled data,
FSHDR (Prabhakar et al., 2021) and SAME (Yan et al., 2023b) explore a few-shot manner, and
Nazarczuk et al. (Nazarczuk et al., 2022) introduce a fully self-supervised approach. The main idea
is to construct pseudo-pairs for HDR reconstruction. Nevertheless, the performance of these methods
is unsatisfactory, as their simulated pairs still have gaps with real-world ones.

In this work, we aim to reconstruct HDR images directly with real-world multi-exposure images
in a self-supervised manner, without synthesizing any pseudo-input data. This objective should be
feasible, as most of the information required for HDR results can derive from input data. The property
will be more intuitive when HDR color and structure are observed, respectively. Specifically, HDR
color knowledge can be inferred from aligned multi-exposure images, and HDR structure can be
extracted from some one of the inputs.

We further propose SelfHDR, a self-supervised method for HDR image reconstruction. Inspired by
the above data characteristics, SelfHDR decomposes the latent HDR GT into available color and
structure components, and then takes them to supervise the learning of the reconstruction network.
On the one hand, the color component is estimated from multi-exposure images aligned by optical
flow. On the other hand, the structure component is generated by feeding aligned inputs into a
structure-focused network, which is learned under the supervision of the color component and an
input reference (e.g., medium-exposure) image. Moreover, during the training phase of structure-
focused and reconstruction networks, elaborate masks are embedded into loss functions to circumvent
harmful information in supervision. During inference, only the reconstruction network is required to
predict the HDR result from unseen multi-exposure images.

We evaluate the proposed self-supervised methods using four existing HDR reconstruction networks,
respectively. The models are trained on Kalantari et al. dataset (Kalantari et al., 2017), and tested
on multiple datasets (Kalantari et al., 2017; Sen et al., 2012; Tursun et al., 2016). The results show
our SelfHDR obtains 1.58 dB PSNR gain compared to the state-of-the-art self-supervised method
that uses the same reconstruction network, and achieves comparable performance to supervised ones,
especially in terms of visual effects. Besides, we conduct extensive and comprehensive ablation
studies, analyzing the effectiveness of different components and variants.

To sum up, the main contributions of this work include:

• We propose a self-supervised HDR reconstruction method named SelfHDR, which learns an
HDR reconstruction network by decomposing latent ground-truth into constructible color
and structure component supervisions.

• The color component is estimated from aligned multi-exposure images, while the structure
one is generated using a structure-focused network supervised by the color component and
an input reference image.

• Experiments show that our SelfHDR outperforms the state-of-the-art self-supervised meth-
ods, and achieves comparable performance to supervised ones.

2 RELATED WORK

2.1 SUPERVISED HDR IMAGING WITH MULTI-EXPOSURE IMAGES

The main challenge of HDR imaging with multi-exposure images is to avoid ghosting artifacts.
DNN-based HDR deghosting methods have exhibited a more satisfactory ability than traditional ones.
For the first time, Kalanrati et al. (Kalantari et al., 2017) collect a real-world dataset and propose a
data-driven convolutional neural network (CNN) approach to merge LDR images aligned by optical
flow. Wu et al. (Wu et al., 2018) utilize the multiple encoders and one decoder architecture to handle
image misalignment, discarding the optical flow. Yan et al. (Yan et al., 2019a) present a spatial
attention mechanism for deghosting. In addition, we recommend Wang et al.’s survey (Wang & Yoon,
2021) for more CNN-based HDR reconstruction methods (Prabhakar et al., 2019; Niu et al., 2021).

Recently, with the development of Transformer (Dosovitskiy et al., 2020; Liu et al., 2021), some
works (Liu et al., 2022; Song et al., 2022; Yan et al., 2023a; Tel et al., 2023) bring in self- and
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cross- attention to alleviate the ghosting artifacts. For example, Liu et al. (Liu et al., 2022) propose
HDR-Transformer, which embeds a local context extractor into SwinIR (Liang et al., 2021) basic
block for jointly capturing global and local dependencies. Song et al. (Song et al., 2022) suggest
selectively applying the transformer and CNN model to misaligned and aligned areas, respectively.
However, both CNN- and Transformer-based methods require sufficient labeled data for training
networks, while the data collection is time-consuming and laborious.

2.2 FEW-SHOT AND SELF-SUPERVISED HDR IMAGING WITH MULTI-EXPOSURE IMAGES

To alleviate the reliance on HDR ground-truths, few-shot and self-supervised HDR reconstruction
methods have been explored. FSHDR (Prabhakar et al., 2021) combines unlabeled dynamic samples
with few labeled samples to train a neural network, then leverages the model output of unlabeled
samples as a pseudo-HDR to generate pseudo-LDR images. Ultimately the HDR reconstruction
network is learned with synthetic pseudo-pairs. Nazarczuk et al. (Nazarczuk et al., 2022) select
well-exposure LDR patches as pseudo-HDR to generate pseudo-LDR, while the static LDR patches
are directly merged for HDR ground-truths. However, due to unrealistic motion and illumination
in synthetic LDR images, such methods exhibit performance gaps compared to supervised ones.
Recently, SAME (Yan et al., 2023b) generates saturated regions in a self-supervised manner first,
and then performs deghosting via a semi-supervised framework. But it still has limited performance
improvement. In this work, we take full advantage of the internal characteristics of multi-exposure
images to present a self-supervised approach SelfHDR, which achieves comparable performance to
supervised ones.

Furthermore, some works incorporate emerging techniques to investigate self-supervised HDR
reconstruction. For instance, GDP (Fei et al., 2023) exploits multi-exposure images to guide the
denoising process of pre-trained diffusion generative models (Ho et al., 2020; Song et al., 2021),
reconstructing HDR image. Mildenhall et al. (Mildenhall et al., 2022), Jun et al. (Jun-Seong et al.,
2022), and Huang et al. (Huang et al., 2022) employ NeRF (Mildenhall et al., 2020) to synthesize
HDR images and the novel HDR views. However, these methods are less practical, since the specific
models need to be re-optimized when facing new scenarios.

3 METHOD

3.1 MOTIVATION AND OVERVIEW

Revisit Supervised HDR Reconstruction. The combination of multi-exposure images enables
HDR imaging in scenes with a wide range of brightness levels. In static scenes, the HDR image can
be easily generated through a weighted sum of multi-exposure images (Debevec & Malik, 2008).
However, when applying this approach in dynamic scenes, it will lead to ghosting artifacts. As a
result, several recent works (Kalantari et al., 2017; Yan et al., 2019a; Liu et al., 2022; Tel et al., 2023)
have suggested learning a deep neural network in a supervised manner for deghosting. Concretely,
denote the LDR image taken with exposure time ti by Ii, where i = 1, 2, 3 and t1 < t2 < t3. They
first map the LDR images to the linear domain, which can be written as,

Hi = Iγ
i /ti, (1)

where γ denotes the gamma correction parameter and is generally set to 2.2. Then they concatenate
Ii and Hi, feeding them to the reconstruction network R with parameters ΘR, i.e.,

Ŷ = R(X1,X2,X3; ΘR), (2)

where Xi = {Ii,Hi}, Ŷ denotes the reconstructed HDR image. The optimized network parameters
can be obtained by the following formula,

Θ∗
R = argmin

ΘR
L(T (Ŷ ), T (Y )), (3)

where L represents the loss function, Y denotes the HDR GT image. T is the tone-mapping process,
represented as,

T (Y ) =
log(1 + µY )

log(1 + µ)
, where µ = 5, 000. (4)
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Motivation of SelfHDR. The acquisition of labeled data for HDR reconstruction is usually time-
consuming and laborious. To alleviate the requirement of HDR GT, some works (Prabhakar et al.,
2021; Yan et al., 2023b; Nazarczuk et al., 2022) have explored few-shot and zero-shot HDR recon-
struction by constructing pseudo-pairs. However, their performance is unsatisfactory due to the gaps
between the simulated pairs and real-world ones, especially in a fully self-supervised manner.

In this work, we expect to get rid of the demand for synthetic data, achieving self-supervised HDR
reconstruction directly with real-world dynamic multi-exposure images. The goal should be feasible,
as the multi-exposure images have provided probably sufficient information for HDR reconstruction.
The property will be more intuitive when the color and structure are observed, respectively. On the
one hand, the color of HDR images can be estimated from aligned inputs. On the other hand, the
structure information of the HDR images can be generally discovered in some one of multi-exposure
images, i.e., most textures exist in the medium-exposure image, dark details are obvious in the
high-exposure one, and bright scenes are clearly visible in the low-exposure one.

What we need to do is to dig for the right information from the multi-exposure images for constructing
the HDR image. However, it is actually difficult to explore a straightforward self-supervised method
that generates HDR images directly. Considering the above properties of HDR color and structure,
we treat the two components respectively for ease of self-supervised implementation. Note that it can
be a focus or emphasis on color and structure relatively, not necessarily an absolute separation.

Specifically, when training a self-supervised HDR reconstruction network with given multi-exposure
images as input, suitable supervision signals have to be prepared. Instead of looking for a complete
HDR image, we construct the color and structure components of the supervision respectively (see
Sec. 3.2). Then we learn the network under the guidance of both components (see Sec. 3.3).

3.2 CONSTRUCTING COLOR AND STRUCTURE COMPONENTS

3.2.1 CONSTRUCTING COLOR COMPONENT
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Figure 1: The triangle function that we use as the blending
weights to generate color components.

The color component should represent
the HDR color as faithfully as possi-
ble, and it can be estimated by fus-
ing the aligned multi-exposure images.
Multiple frames in dynamic scenes are
generally not aligned caused by cam-
era shake or object motion. Although
sometimes a few regions are aligned
well, they are not enough to generate
acceptable color components. In view
of the effective capabilities of the optical flow estimation method (Liu et al., 2009), it is a natural idea
to perform pre-alignment first. Concretely, taking the medium-exposure image I2 as the reference,
we calculate the optical flow from I2 to I1 and I3, respectively. Thus, we can back warp H1 and
H3 according to the calculated optical flow, obtaining H̃1 and H̃3 that are roughly aligned with H2.
Then we can predict the color component Ycolor with the following formula,

Ycolor =
A1H̃1 +A2H2 +A3H̃3

A1 +A2 +A3
, (5)

where Ai represents pixel-level fusion weight. We follow Kalantari et al. (Kalantari et al., 2017) and
express Ai as,

A1 = 1− Λ1(I2), A2 = Λ2(I2), A3 = 1− Λ3(I2), (6)

where Λi(I2) is shown in Fig. 1.

When the images are perfectly aligned, the color components Ycolor can be regarded as an HDR
image directly. However, such an ideal state is hard to reach due to object occlusion and sometimes
non-robust optical flow model. Small errors during pre-alignment may cause blurring, while large
ones cause ghosting in color components. Nevertheless, regardless of the ghosting areas, the rest can
record the rough color value, and in which well-aligned ones can offer both good color and structure
cues of HDR images. Moreover, for the areas with alignment errors, we further construct structure
components to guide the reconstruction network in the next subsection.
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Figure 2: Overview of SelfHDR. During training, we first construct color and structure components
(i.e., Ycolor and Ystru), then take Ycolor and Ystru for supervising the HDR reconstruction network.
During testing, the HDR reconstruction network can be used to predict HDR images from unseen
multi-exposure images. Dotted lines with different colors represent different loss terms.

3.2.2 CONSTRUCTING STRUCTURE COMPONENT

Although the medium-exposure image can provide most of the texture information, it is not optimal
to take it as the only structure guidance for the HDR reconstruction, as the dark areas may be
unclear and over-exposed ones may exist in it. Besides, it is not easy to put into practice when using
the low-exposure and high-exposure images as guidance, due to the position and color differences
between the HDR image and them. Fortunately, the previously constructed color component Ycolor

can preserve the structure of dark and over-exposed areas to some extent. Therefore, we can combine
the medium-exposure image and color component Ycolor to help construct the structure component.

Concretely, we first learn a structure-focused network with the guidance of medium-exposure image
and color component Ycolor. During training, the network takes the multi-exposure images as input,
as shown in Fig. 2. On the one hand, the medium-exposure image guides the network to preserve
well-exposed textures from the input reference image. It is accomplished by a structure-preserving
loss Lsp, which can be written as,

Lsp(Ŷstru,H2) = ∥(T (Ŷstru)− T (H2)) ∗Msp∥1, (7)

where Ŷstru denotes the network output. Msp emphasizes the well-exposed areas, and mitigates
the adverse effects of dark and over-exposed ones in the reference image H2. The function Λ2(I2)
(see Fig. 1) can do just that, so we set Msp to Λ2(I2). On the other hand, the color component
Ycolor guides the network to learn the structure from non-reference images by calculating structure-
expansion loss Lse, which can be written as,

Lse(Ŷstru,Ycolor) = ∥(T (Ŷstru)− T (Ycolor)) ∗Mse∥1. (8)

Mse is a binary mask, distinguishing whether the pixel of Ycolor is composited from well-aligned
multi-exposure ones. We design each pixel Mp

se of Mse as,

Mp
se =

{
1 |((T (Ycolor)− T (H2)) ∗ Λ2(I2))

p| < σse

0 |((T (Ycolor)− T (H2)) ∗ Λ2(I2))
p| ≥ σse

, (9)

where σse is a threshold and set to 5/255. In short, the parameter ΘS of structure-focused network S
is jointly optimized by structure-preserving and structure-expansion loss terms, i.e.,

Θ∗
S = argmin

ΘS
[Lse(Ŷstru,Ycolor) + λspLsp(Ŷstru,H2)], (10)

where λsp denotes the weight coefficient of structure-preserving loss and is set to 4.

5



Then, we feed aligned multi-exposure images rather than original ones into the pre-trained structure-
focused network S. The final structure component Ystru can be expressed as,

Ystru = S(X̃1,X2, X̃3; Θ
∗
S), (11)

where X̃1 and X̃3 denote aligned X1 and X3 with the reference of X2. Such an operation can
help structure-focused networks reduce the alignment burden, thus further enhancing the structure
component. In addition, benefiting from the supervision of the color component, the structural
component Ystru also has some color cues, although it mainly focuses on the HDR textures.

3.3 LEARNING HDR WITH COLOR AND STRUCTURE COMPONENTS

With the color and structure components as guidance, we can train an HDR reconstruction network R
without other ground-truths. The optimized network parameters Θ∗

R can be modified from Eqn. (3)
to the following formula,

Θ∗
R = argmin

ΘR
[Lcolor(Ŷ ,Ycolor) + λstruLstru(Ŷ ,Ystru)], (12)

where Ŷ represents the network output. Lcolor and Lstru denote color mapping and structure
mapping loss terms, respectively. λstru is the weight coefficient of Lstru and is set to 1.

For color mapping term, we adopt ℓ1 loss, which can be written as,

Lcolor(Ŷ ,Ycolor) = ∥(T (Ŷ )− T (Ycolor)) ∗Mcolor∥1, (13)

where Mcolor is similar as Mse, and is also a binary mask. It excludes areas where optical flow is
estimated incorrectly when generating Ycolor. Instead of using Eqn. (9), here we can utilize Ystru to
design a more accurate mask, which can be expressed as,

Mp
color =

{
1 |(T (Ycolor)− T (Ystru))

p| < σcolor

0 |(T (Ycolor)− T (Ystru))
p| ≥ σcolor

, (14)

where p denotes a pixel, σcolor is a threshold and set to 10/255. For structure mapping term, we
adopt VGG-based (Simonyan & Zisserman, 2015) perceptual loss, which can be written as,

Lstru(Ŷ ,Ystru) =
∑
k

∥ϕk(T (Ŷ ))− ϕk(T (Ystru))∥1, (15)

where ϕk(·) denotes the output of k-th layer in VGG (Simonyan & Zisserman, 2015) network.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Framework Details. Note that this work does not focus on the design of network architectures, and
we employ existing ones directly. The structure-focused and reconstruction networks use the same
architecture. And we adopt CNN-based (i.e., AHDRNet (Yan et al., 2019a) and FSHDR (Prabhakar
et al., 2021)) and Transformer-based (i.e., HDR-Transformer (Liu et al., 2022), and SCTNet (Tel
et al., 2023)) networks for experiments, respectively. Besides, the optical flow is calculated by Liu et
al. (Liu et al., 2009)’s approach, as recommended in (Kalantari et al., 2017; Prabhakar et al., 2021).

Datasets. Experiments are mainly conducted on Kalantari et al. dataset (Kalantari et al., 2017),
which are extensively utilized in previous works. The dataset consists of 74 samples for training and
15 for testing. Each sample comprises three LDR images, captured at exposure values of {−2, 0, 2}
or {−3, 0, 3}, alongside a corresponding HDR GT image. We use these testing images for both
quantitative and qualitative evaluations. Additionally, following (Kalantari et al., 2017; Yan et al.,
2019a; Liu et al., 2022), we take the Sen et al. (Sen et al., 2012) and Tursun et al. (Tursun et al.,
2016) datasets (without GT) for further qualitative comparisons.

Training Details. The structure-focused and reconstruction networks are trained successively, and
share the same settings. The training patches of size 128×128 are randomly cropped from the original
images. The batch size is set to 16. Adam (Kingma & Ba, 2015) with β1 = 0.9 and β2 = 0.999 is
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Table 1: Quantitative results on Kalantari et al. dataset (Kalantari et al., 2017). ‘SelfHDRnetwork’
denotes the reconstruction network we use, i.e., AHDRNet (Yan et al., 2019a), FSHDR (Prabhakar
et al., 2021), HDR-Transformer (Liu et al., 2022), and SCTNet (Tel et al., 2023). The best results in
each category are bolded.

Method PSNR-u / SSIM-u PSNR-l / SSIM-l HDR-VDP-2

Fully-
Supervised

AHDRNet (CVPR 2019) 43.63 / 0.9900 41.14 / 0.9702 64.61
FSHDR (CVPR 2021) 43.03 / 0.9902 42.27 / 0.9889 64.79
HDR-Transformer (ECCV 2022) 44.21 / 0.9918 42.17 / 0.9889 64.63
SCTNet (ICCV 2023) 44.48 / 0.9916 42.00 / 0.9897 64.47

Few (K)-
Shot

FSHDRK=5 (CVPR 2021) 43.02 / 0.9874 41.98 / 0.9885 64.54
FSHDRK=1 (CVPR 2021) 42.52 / 0.9846 41.92 / 0.9887 64.41

Self-
Supervised

FSHDRK=0 (CVPR 2021) 42.17 / 0.9828 41.47 / 0.9884 64.21
Nazarczuk et al. (ArXiv 2022) 42.15 / - 40.54 / - 63.99
Our SelfHDRAHDRNet 43.68 / 0.9901 41.09 / 0.9873 64.57
Our SelfHDRFSHDR 43.75 / 0.9903 42.00 / 0.9881 64.69
Our SelfHDRHDR−Transformer 43.94 / 0.9907 41.79 / 0.9883 64.98
Our SelfHDRSCTNet 43.95 / 0.9907 41.77 / 0.9889 64.77

taken to optimize models for 150 epochs. The learning rate is initially set to 1× 10−4 for CNN-based
networks and 2× 10−4 for Transformer-based ones, and reduces by half every 50 epochs.

Evaluation Configurations. We use peak signal-to-Noise ratio (PSNR), SSIM (Wang et al., 2004),
and HDR-VDP-2 (Mantiuk et al., 2011) as evaluation metrics. PSNR and SSIM are both calculated
on the linear and tone-mapped domains, denoted as ‘-l’ and ‘-u’, respectively.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

As described in Sec. 4.1, we adopt four existing HDR reconstruction networks (i.e., AHDRNet,
FSHDR, HDR-Transformer, and SCTNet) for experiments, respectively. We compare them with the
corresponding supervised manners and two self-supervised methods (i.e., FSHDRK=0 and Nazarczuk
et al. (Nazarczuk et al., 2022)). And the results of few-shot FSHDR are also provided.

Quantitative Results. Table 1 shows the quantitative comparison results. As loss functions are
always calculated on tone-mapped images, and HDR images are typically viewed on LDR displays,
we suggest taking evaluation metrics in the tone-mapped domain (i.e., PSNR-u and SSIM-u) as the
primary reference. From the table, four SelfHDR versions all outperform the previous self-supervised
methods. Especially, with the same reconstruction network, our SelfHDRFSHDR achieves 1.58 dB
PSNR gain than FSHDRK=0. The results of SelfHDR can be further improved with the use of more
advanced reconstruction networks (i.e., HDR-Transformer and SCTNet). Moreover, in comparison
with the corresponding supervised methods, SelfHDR has comparable performance overall.

Qualitative Results. The visual comparisons on Kalantari et al. dataset (Kalantari et al., 2017) as
well as Sen et al. (Sen et al., 2012) and Tursun et al. (Tursun et al., 2016) datasets are shown in
Fig. 3 and Fig. 4, respectively. Our results have fewer artifacts than FSHDRK=0, and sometimes even
outperform the corresponding supervised methods. They show the same trend as the quantitative
ones. Please see the appendix for more results.

5 ABLATION STUDY

The ablation studies are all conducted using AHDRNet (Yan et al., 2019a) as the structure-focused
and reconstruction network.

5.1 EFFECT OF COLOR AND STRUCTURE SUPERVISION

The quantitative results of color and structure components (Ycolor and Ystru) are given in Table 2.
From the table, the final HDR results achieve better performance than both Ycolor and Ystru on
PSNR-u, SSIM-u, and HDR-VDP-2. It indicates that the two components are complementary and
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Figure 3: Visual comparison on Kalantari et al. dataset (Kalantari et al., 2017). Red and blue arrows
indicate areas with ghosting artifacts from other methods. ‘HDR-Tra.’ denotes HDR-Transformer.

Figure 4: Visual comparison on (a) Sen et al. (Sen et al., 2012) and (b) Tursun et al. (Tursun et al.,
2016) datasets. Red arrows indicate areas with poor quality from other methods.

Table 2: Quantitative results of supervision components and final HDR images.

PSNR-u / SSIM-u PSNR-l / SSIM-l HDR-VDP-2

Color Components Ycolor 34.45 / 0.9652 39.01 / 0.9783 58.28
Structure Components Ystru 43.38 / 0.9891 41.74 / 0.9874 64.48
Final HDR Images 43.68 / 0.9901 41.09 / 0.9873 64.57

taking them as supervision is appropriate and effective. Furthermore, we conduct the following two
experiments to further illustrate the effectiveness.

Comparision with Component Fusion. It may be a more natural idea to obtain HDR results by
fusing the color and structure components. Here we implement that by calculating McolorYcolor +
(1−Mcolor)Ystru. We empirically re-adjust the hyperparameter σcolor in Eqn. (14), but find it gets
the best results when Mcolor = 0. In other words, it is difficult to achieve better results by fusing
two components simply. Instead, our SelfHDR provides a more flexible and efficient way.

Refining Structure Component. Denote Ŷ ∗ by the reconstruction network output when inputting
multi-exposure images aligned by optical flow (Liu et al., 2009). From another point of view, Ŷ ∗ can
be regarded as a refined structure component with higher quality. Thus, we further take Ycolor and
Ŷ ∗ as new supervisions to re-train a reconstruction model, while the performance does not improve.
It demonstrates that Ystru generated by structure-focused network is already sufficient.
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Table 3: Effect of loss terms (Lse and Lsp) when
training structure-focused network.

Lse / Lsp
Ystru

PSNR-u / PSNR-l
Ŷ

PSNR-u / PSNR-l

× / ✓ 38.24 / 33.61 38.79 / 33.72
✓ / × 42.69 / 41.89 43.09 / 41.13
✓ / ✓ 43.38 / 41.74 43.68 / 41.09

Table 4: Effect of different Mcolor when
training reconstruction network.

Mcolor
Ŷ

PSNR-u / PSNR-l

× 43.55 / 41.12
Eqn. (9) 43.59 / 41.02
Eqn. (14) 43.68 / 41.09

Table 5: Effect of the designed masks (Mse and
Msp) when training structure-focused network.

Mse / Msp
Ystru

PSNR-u / PSNR-l
Ŷ

PSNR-u / PSNR-l

× / × 38.26 / 33.68 38.82 / 33.71
✓ / × 38.29 / 33.65 38.86 / 33.82
× / ✓ 43.26 / 41.73 43.60 / 41.07
✓ / ✓ 43.38 / 41.74 43.68 / 41.09

Table 6: Effect of pre-alignment process-
ing when constructing Ycolor and Ystru.

Ycolor / Ystru
Ŷ

PSNR-u / PSNR-l

× / × 35.50 / 34.95
× / ✓ 41.66 / 40.90
✓ / × 43.41 / 40.76
✓ / ✓ 43.68 / 41.09

5.2 EFFECT OF LOSS TERMS AND MASKS

Structure-Focused Network. The structure-focused network is trained with the supervision of
color component and input reference, implementing by calculating structure-expansion loss Lse

and structure-preserving loss Lsp, respectively. Here we explore the effect of different supervisions
by using Lsp or Lse only. From Table 3, it can be seen that Lsp may play a weaker role, as it
mainly constrains the well-exposed areas whose structure may be also fine in Ycolor. Nevertheless,
combining two supervisions is more favorable than using one, thus both are indispensable.

Moreover, we conduct ablation experiments on the designed masks (Msp and Mse) in loss terms.
The results in Table 5 show that the masks are competent in avoiding harmful information from
supervision. The visualizations of the masks are given in the appendix.

Reconstruction Network. For training the reconstruction network, the adverse effect of ghosting
regions from color supervision Ycolor needs to be avoided as well. We utilize structure component to
design a more accurate mask in Eqn. (14), and it does show better results than Eqn. (9) from Table 4.

5.3 EFFECT OF OPTICAL FLOW PRE-ALIGNMENT

When constructing color and structure supervisions, the inputs need to be pre-aligned by the optical
flow approach. Here we remove the pre-alignment processing separately to investigate its impact on
the final HDR results, which are shown in Table 6. From the table, pre-alignment during obtaining
Ycolor is crucial, and pre-alignment during obtaining Ystru can further improve performance. The
corresponding quantitative results of Ycolor and Ystru can be seen in the appendix.

6 CONCLUSION

By exploiting the internal properties of multi-exposure images, we propose a self-supervised high
dynamic range (HDR) reconstruction method named SelfHDR for dynamic scenes. In SelfHDR,
the reconstruction network is learned under the supervision of two complementary components,
which focus on the color and structure of HDR images, respectively. The color components are
synthesized by merging aligned multi-exposure images. The structure components are constructed
by feeding aligned inputs into the structure-focused network, which is trained with the supervision
of color components and input reference images. Experiments show that SelfHDR outperforms the
state-of-the-art self-supervised methods, and achieves comparable results to supervised ones.
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APPENDIX

The content of the appendix material involves:

• Analysis and visualization of masks in Sec. A.

• Additional results on effect of optical flow alignment in Sec. B.

• Ablation study on adjusting σse and σcolor in Sec. C.

• Additional qualitative comparisons in Sec. D.

A ANALYSIS AND VISUALIZATION OF MASKS

In order to avoid harmful information in supervision during training structure-focused network, we
carefully design the mask Msp and Mse for calculating structure-preserving loss Lsp and structure-
expansion loss Lse, respectively. The quantitative results of related ablation experiments are shown
in Table 5. Here we give more analysis about the elaborate masks and visualize an example in Fig. A.
Therein, the corresponding color component is shown in Fig. A (g).

Mask Msp in Structure-Preserving Loss. The structure-preserving loss aims at guiding the network
to preserve textures of the input reference image, and it is calculated between model output and
linear medium-exposure image H2. From Table 5, it leads to poor performance when measuring the
distance between the two directly, as the structural information of dark and over-exposed regions is
incomplete in medium-exposure image H2.

Thus, we suggest embedding a mask Msp into the loss, and it should emphasize the well-exposed
areas and mitigate the adverse effects of dark as well as over-exposed areas. Λ2(I2) in Fig. 1 can do
just that, and we adopt it as Msp. The visualization of a Λ2(I2) example is shown in Fig. A (i). It
can be seen that the overexposed area surrounded by the blue box is successfully suppressed.

Mask Mse in Structure-Expansion Loss. The structure-expansion loss aims at guiding the network
to learn textures from non-reference inputs, and it is calculated between model output and color
component Ycolor. As Ycolor is obtained by fusing aligned multi-exposure images (see Fig. A (b),
(e), and (f)), it is inevitable that ghosting artifacts exist in Ycolor (see the area surrounded by the red
box in Fig. A (g)) when the alignment fails.

Thus, a mask Mse should be designed to circumvent the adverse effects of these ghosting areas for
better guiding the network. It is not appropriate to calculate the mask based on the simple difference
between Ycolor and reference image H2. Because even if the dark and over-exposed areas are aligned
well, the difference between Ycolor and H2 is still large (see the area surrounded by the blue box
in Fig. A (j)). As a result, we utilize Λ2(I2) again to mitigate the adverse effects of these areas.
Specifically, we multiply Λ2(I2) to Ycolor and H2 for calculating the difference, as shown in Eqn. (9).
A mask example is shown in Fig. A (k). It can be seen that the well-aligned over-exposed areas
surrounded by the blue box are successfully retained, and only the misaligned area is masked.

With the designed masks, the generated structure component Ystru in Fig. A (l) combines the
strengths of the supervisions Ycolor and H2, while discarding their weaknesses.

B ADDITIONAL RESULTS ON EFFECT OF OPTICAL FLOW ALIGNMENT

When constructing color and structure supervisions, the inputs need to be pre-aligned by the optical
flow approach (Liu et al., 2009). We remove the pre-alignment processing separately to investigate
its impact on the final HDR results, which are shown in Table A. From the table, the pre-alignment
during obtaining Ycolor is crucial, as Ycolor affects the quality of Ystru, while Ycolor and Ystru

decide the final HDR result. On this basis, pre-alignment during generating Ystru can further improve
performance, achieving 0.27 dB PSNR gain on the HDR result Ŷ .
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a Low−Exposure Image 𝑰1 b Medium−Exposure Image 𝑰2 c High−Exposure Image 𝑰3 d Ground-Truth

e Aligned Low−Exposure Image ෨𝑰1 f Aligned High−Exposure Image ෨𝑰3 g Color Component 𝒀𝑐𝑜𝑙𝑜𝑟 h Linear Medium−Exposure Image 𝑯2

i Λ2 𝑰2 in Fig. 1 j 1 −𝑴𝑠𝑒 (w/o Λ2 𝑰2 ) k 1 −𝑴𝑠𝑒 (w/ Λ2 𝑰2 )                    l Structure Component 𝒀𝑠𝑡𝑟𝑢

Figure A: Visualization of masks and related images. (a)∼(c) show the multi-exposure images, while
(d) is the corresponding ground-truth from Kalantari et al. (Kalantari et al., 2017) dataset. (e) and (f)
show the aligned low-exposure and aligned high-exposure images, respectively, which are obtained
by optical flow (Liu et al., 2009) alignment with the reference of medium-exposure image. (g) is the
constructed color component by fusing aligned multi-exposure images. (h) is the medium-exposure
image in the linear domain. (i) is the mask as a blending weight in Fig. 1. (j) and (k) denote the
masks 1−Mse (see Eqn. (9)) constructed without and with Λ2(I2), respectively. (l) is the generated
structure component. The red box indicates the area where optical flow alignment fails, and the blue
box indicates the area with high brightness.

Table A: Effect of pre-alignment processing when constructing supervision information (Ycolor and
Ystru). The final HDR results (Ŷ ) are obtained by learning the model with corresponding (Ycolor

and Ystru) supervisions.

Ycolor Ystru
Ycolor

PSNR-u / PSNR-l
Ystru

PSNR-u / PSNR-l
Ŷ

PSNR-u / PSNR-l

Pre-Alignment
Processing

× × 25.69 / 31.31 34.58 / 34.35 35.50 / 34.95
× ✓ 25.69 / 31.31 39.04 / 40.38 41.66 / 40.90
✓ × 34.45 / 39.01 43.07 / 40.45 43.41 / 40.76
✓ ✓ 34.45 / 39.01 43.38 / 41.74 43.68 / 41.09

Table B: Effect of σse in Eqn. (9).

σse
Ystru

PSNR-u / PSNR-l
Ŷ

PSNR-u / PSNR-l

2.5/255 43.27 / 41.49 43.64 / 40.88
5/255 43.38 / 41.74 43.68 / 41.09
7.5/255 43.18 / 41.67 43.57 / 41.04

Table C: Effect of σcolor in Eqn. (14).

σcolor
Ŷ

PSNR-u / PSNR-l

5/255 43.60 / 41.08
10/255 43.68 / 41.09
15/255 43.61 / 41.10

C ABLATION STUDY ON ADJUSTING σse AND σcolor

The hyperparameters σse (see Eqn. (9)) and σcolor (see Eqn. (14)) are set to 5/255 and 10/255 by
default for experiments, respectively. Here, we vary σse or σcolor to conduct experiments. Table
B and C show the experimental results, respectively. The results show that the sensitivity σse and
σcolor of our SelfHDR is acceptable.
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Figure B: Visual comparison on Kalantari et al. dataset (Kalantari et al., 2017). Red arrows indicate
areas with ghosting artifacts from other methods. ‘HDR-Tra.’ denotes HDR-Transformer.

D ADDITIONAL QUALITATIVE COMPARISONS

Additional visual comparisons on Kalantari et al. (Kalantari et al., 2017) dataset are shown in Fig. B
and Fig. C, respectively. Our SelfHDR has fewer ghosting artifacts than zero-shot FSHDR (i.e.,
FSHDRK=0) (Prabhakar et al., 2021). Sometimes, SelfHDR even outperforms the corresponding
supervised methods. Red arrows in the results indicate areas with ghosting artifacts in other methods.
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Figure C: Visual comparison on Kalantari et al. dataset (Kalantari et al., 2017). Red arrows indicate
areas with ghosting artifacts from other methods. ‘HDR-Tra.’ denotes HDR-Transformer.
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