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Abstract

The first step to apply deep learning techniques for symbolic
music understanding is to transform musical pieces (mainly
in MIDI format) into sequences of predefined tokens like note
pitch, note velocity, and chords. Subsequently, the sequences
are fed into a neural sequence model to accomplish specific
tasks. Music sequences exhibit strong correlations between
adjacent elements, making them prime candidates for N-gram
techniques from Natural Language Processing (NLP). Con-
sider classical piano music: specific melodies might recur
throughout a piece, with subtle variations each time. In this
paper, we propose a novel method, NG-Midiformer, for un-
derstanding symbolic music sequences that leverages the N-
gram approach. Our method involves first processing music
pieces into word-like sequences with our proposed unsuper-
vised compoundation, followed by using our N-gram Trans-
former encoder, which can effectively incorporate N-gram in-
formation to enhance the primary encoder part for better un-
derstanding of music sequences. The pre-training process on
large-scale music datasets enables the model to thoroughly
learn the N-gram information contained within music se-
quences, and subsequently apply this information for mak-
ing inferences during the fine-tuning stage. Experiment on
various datasets demonstrate the effectiveness of our method
and achieved state-of-the-art performance on a series of mu-
sic understanding downstream tasks. The code and model
weights will be released at https://github.com/WouuYoauin/
NG-Midiformer.
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Introduction
Symbolic Music Understanding, distinct from audio-based
understanding (Nam et al. 2018), involves the computa-
tional analysis and interpretation of symbolic music se-
quences. This understanding aids tasks like music genera-
tion (Briot, HADJERES, and Pachet 2019) and Music In-
formation Retrieval (MIR)(Casey et al. 2008). The process
starts by converting music pieces into sequences of prede-
fined tokens, representing musical events such as note pitch
and tempo. These sequences are then processed using neu-
ral networks, notably the Transformer(Vaswani et al. 2017).
Music tokenization methods fall into two categories: di-
rect conversion methods like MIDI-LIKE (Oore et al. 2020)
and REMI (Huang and Yang 2020), and methods employ-
ing expansion and compression techniques (Li et al. 2021),
such as Compound Word (CP)(Hsiao et al. 2021) and Octu-
pleMIDI(Zeng et al. 2021).

Direct conversion methods like MIDI-LIKE and REMI
maintain music event atomicity but tend to produce ex-
tended sequences, weakening token dependencies. On the
other hand, techniques like CP and OctupleMIDI, which
utilize expansion and compression, yield shorter sequences
rich in contextual information. However, they risk miss-
ing critical short-range dependencies between adjacent el-
ements and often introduce redundant “[PAD]” tokens or
replicate neighboring musical tokens, diminishing the se-
quence’s informational value. It’s pivotal to note that mu-
sic events often exhibit co-occurrence regularities, with cer-
tain events frequently appearing together, mirroring the mu-
sic’s semantic depth. This regularity necessitates a tokeniza-
tion method that resonates with the unique characteristics of
music events. Interestingly, music event atoms exhibit com-
binatory traits akin to characters in natural language. Mo-
tivated by this parallel, we propose an unsupervised com-
poundation method based on frequency. By analyzing the
co-occurrence patterns of music events, we craft sequences
using a frequency-driven vocabulary, ensuring a more con-
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Figure 1: An example illustrating the relationships and dis-
tinctions among REMI, CP, and UCW. Here, M denotes the
family “metric”, and N denotes the family “note”.

cise sequence length than REMI while preserving the inher-
ent correlations of compound words.

The success of sequence neural networks in NLP across
diverse languages has provided valuable insights for sym-
bolic music understanding (Vaswani et al. 2017; Devlin
et al. 2019). Transferring these models to symbolic music
has proven effective in music generation and understanding
(Hsiao et al. 2021; Chou et al. 2021; Zeng et al. 2021). How-
ever, existing models seldom undertake further processing to
handle the strong correlation between consecutive adjacent
musical elements, a feature that distinguishes music from
language. Some methods even inadvertently reduce this cor-
relation. Music often showcases repeating pattern both lo-
cally and across sections. The N-gram model, designed to
capture local patterns, aligns well with this correlated na-
ture of music and can be instrumental in identifying and
leveraging these repetitions for enhanced the representation
of symbolic music. Furthermore, music’s hierarchical struc-
ture, ranging from individual notes to entire compositions,
can be captured by N-grams, especially at smaller scales.
Despite this alignment, few current models utilize N-grams
in symbolic music understanding. We introduce an N-Gram
Transformer encoding that capitalizes on the strong correla-
tion of neighboring music events, improving music sequence
understanding.

Unsupervised compoundation, a novel music tokenization
technique, extracts N-gram information between neighbor-
ing music events. It synergizes ideas from previously men-
tioned tokenization methods. Initially, continuous music el-
ements from the same “family” are grouped into a “word”,
as defined in Compound Word (Hsiao et al. 2021). Here, a
“family” refers to a specific category of musical event, like
pitch, duration, and velocity of a note, all under the “note”
family. Other families include metric and track, each repre-

senting distinct musical categories. Subsequently, Byte Pair
Encoding (BPE), an unsupervised method, segments these
“words”. In the REMI sequence context, this means fre-
quently occurring neighboring music events from the same
family merge into a token, with each event akin to a “char-
acter” in a “word”. Notably, our method omits the [PAD]
token present in CP. Figure 1 delineates the relationships
among REMI, CP, and our Unsupervised Compound Word
(UCW). This technique not only shortens sequences com-
pared to REMI but also sidesteps the excessive, often mean-
ingless, [PAD] tokens seen in CP.

After UCW sequence construction, an encoder is em-
ployed to extract N-gram features, enhancing the model’s
symbolic music understanding via N-gram tokens. Our
model, NG-Midiformer, incorporates a primary encoder for
the input music sequence and an N-gram Transformer en-
coder to harness N-gram sequence information. This en-
coder, rooted in the Transformer architecture, is tailored to
exploit N-gram information. To operationalize this, we com-
mence by deriving N-grams from the given corpus and ob-
taining their frequencies, thereby constructing an N-gram
vocabulary. For every input music sequence, we extract the
relevant N-grams and pinpoint their positions within this es-
tablished vocabulary. This comprehensive approach aligns
with the intricate nature of symbolic music, and can capi-
talizes on the global structure inherent in musical composi-
tions.

Our method’s distinctiveness emerges from its integration
mechanism. At every primary encoder layer, the output from
the N-gram encoder is integrated, enriching the representa-
tion with N-gram contextual information. Specifically, for
each N-gram, its hidden layer output is multiplied by its fre-
quency, normalized, and then added to the primary encoder’s
hidden layer output, ensuring a comprehensive musical con-
text understanding.

We pre-train NG-Midiformer on a large-scale, unlabeled
symbolic music dataset, subsequently assessing its efficacy
across six downstream tasks: composer, emotion, genre,
and dance classification, as well as velocity prediction and
melody classification. Our NG-Midiformer outperformed
prior state-of-the-art models across these tasks, showcasing
its superiority on datasets like Pianist8 (joann8512 2021),
EMOPIA (Hung et al. 2021), GTZAN (Sturm 2013), Not-
tingham (Allwright 2003), and POP909 (Wang* et al. 2020).
This establishes our method as a robust new benchmark in
symbolic music understanding.

Related Work
Music Tokenization
Musical compositions, akin to natural language, have
“grammatical” and “semantic” structures, enabling their rep-
resentation as structured sequences (Patel 2003; Li and
Ogihara 2006). While the pianoroll method encodes mu-
sic into matrices differentiating pitch and time, it often re-
quires fixed-length music event processing, reducing effi-
ciency. Currently, MIDI files have emerged as a dominant
symbolic representation, being lightweight and capturing es-
sential musical elements.



Methods like MIDI-LIKE (Oore et al. 2020) and REMI
(Huang and Yang 2020) provide detailed musical informa-
tion but result in extended sequences. Compound Word (CP)
(Hsiao et al. 2021), a refinement of REMI, groups related
music elements, shortening sequences. OctupleMIDI (Zeng
et al. 2021), an evolution of REMI and CP, offers structured
encoding for diverse music types, being more concise than
CP. However, both CP and OctupleMIDI introduce substan-
tial filler information in tokens and employ multiple inde-
pendent embedding layers, potentially weakening the rela-
tionship modeling between music events.

To tackle these challenges, we present an unsupervised
compoundation method. This new tokenization strategy con-
solidates frequent adjacent music elements into one token,
streamlining embedding processes and boosting efficiency.
Using N-Gram data from music event groups, our approach
delves deeper into music’s semantic layers.

Symbolic Music Understanding
The development of symbolic music understanding is
closely related to advancements in NLP techniques (Jack-
endoff 2009). This is because both music and natural lan-
guage can be represented as sets of symbols with certain
structures and rules. Based on Word2Vec (Mikolov et al.
2013a,b) in NLP, researchers have grouped different musical
notes together and treated them as a single unit or “word”.
They then trained deep learning models on the resulting se-
quences (Hirai and Sawada 2019).

The emergence of models like Transformers (Vaswani
et al. 2017), BERT (Devlin et al. 2019), GPT-3 (Floridi and
Chiriatti 2020) and so on (Zhang et al. 2020) have not only
revolutionized NLP but also enriched symbolic music under-
standing. This is evident in the enhancements seen in models
like Transformers-XL (Dai et al. 2019) and CP Transform-
ers (Hsiao et al. 2021). MIDI-Bert (Chou et al. 2021) and
MusicBert (Zeng et al. 2021), both large-scale music pre-
training models, exemplify the successful adaptation of NLP
techniques, particularly BERT’s architecture and Roberta’s
structure (Liu et al. 2019), to symbolic music. These mod-
els simply transfer the methods of NLP to symbolic music
sequences and make some modifications.

However, music’s inherent co-occurrence patterns, such
as consistent events from certain chords, necessitate a tai-
lored approach. Meanwhile, N-grams possess the capacity
to capture such co-occurrence patterns (Brown et al. 1992;
Sari, Vlachos, and Stevenson 2017; Shafiq, Khayam, and Fa-
rooq 2008). To this end, we champion an encoding structure
accentuating N-Gram features to enhance the representation
of symbolic music. While NLP’s progress is commendable,
direct N-Gram technique adoption remains sparse. Inspired
by ZEN (Diao et al. 2020), our proposed N-Gram Trans-
former structure discerns N-Gram relationships in symbolic
music sequences, bridging this gap.

NG-Midiformer
Symbolic music events have highly pronounced local depen-
dencies, and N-grams are particularly suitable for sequences
with strong local dependencies. In this section, we propose a

NG-Midiformer model, a powerful architecture for process-
ing symbolic music sequences. The core concept underlying
our model is N-gram, which consists of two key aspects:
transforming music into appropriate tokens according to N-
gram within the events family, and using N-gram between
tokens within the sequence to enhance the understanding
ability of the model.

Music Tokenization
To achieve symbolic music understanding using deep learn-
ing models like the Transformer, musical pieces must first be
converted into symbolic element sequences. Given a musical
piece X in MIDI format, a mapping function f transforms
it into a sequence S using predefined music tokens e from
vocabulary V raw:

S = f(X) = {e1, e2, ..., eN} (1)

where N represents the sequence length, and ei is the i-th
predefined musical token.

However, the self-attention mechanism in the Trans-
former struggles with longer sequences, such as those pro-
duced by the REMI method. To mitigate this, the CP method
aggregates music events from the same family into com-
pound words.

Given a REMI sequenceR, the CP representation is con-
structed as follows. Each CPj is represented as:

CPj = [ecpj,1, e
cp
j,2, . . . , e

cp
j,K ] (2)

where K represents a fixed number of music element types
in a compound word.

As for the definition of “family”, We partition these K
types into several non intersecting families with each repre-
senting a specific music family, such as note and metric. For
instance, ifK represents the type set corresponding to K and
is partitioned into c families, then the relationship among
these families adheres to the following:

∀i ̸= j,Ki ∩ Kj = ∅
c⋃

i=1

Ki = K
(3)

where Ki is the i-th family.
For each CPj , identify a continuous segment in R where

all elements belong to the same family. Let’s denote this seg-
ment as Sj . Then the elements ecpj,t in CPj are then defined
by:

ecpj,t =

RF(j,t), if
t matches the family of Sj
andRF(j,t) is in Sj

[PAD], otherwise
(4)

where F(j, t) is a mapping function that converts the token
index j and inner token index t in a CP into the index in the
original REMI sequence.

This method may lose crucial short-range dependency in-
formation between neighbouring elements as it might not
capture the full relationships within a CP token.



To enhance existing music tokenization methods, we
introduce an unsupervised compoundation approach tai-
lored for music event representation. This method em-
ploys variable-length token design, grouping frequent mu-
sic events within families by co-occurrence frequency. Un-
like CP, we utilize a unified embedding based on segmented
compound subwords, offering a closer semantic representa-
tion of music. To construct the sequence, we adopt the con-
cept of creating sub-word units from the domain of NLP.
Several methods are available for creating sub-word units in
NLP, such as SentencePiece (Kudo and Richardson 2018),
WordPiece (Wu et al. 2016), Byte Pair Encoding (BPE)
(Sennrich, Haddow, and Birch 2016) and so on (Zhang et al.
2019). The first two methods are similar to BPE with mi-
nor variations in implementation techniques. Therefore, we
leverage the unsupervised BPE method to construct our
UCW sequences. Combining the ideas of REMI and CP, we
construct music elements in the same way as REMI. Then,
neighbouring elements belonging to the same “family” in
REMI are merged together as a family token according to the
concept of “family” in CP. Since we only compound the real
music events according to co-occurrence frequency, [PAD]
token presented in CP is not needed. Prior to constructing
UCW, it is necessary to get the corresponding REMI vocabu-
lary VREMI and set the size of the UCW vocabulary VUCW

artificially. This way, the UCW token can be represented as:

UCWj = eucwj,1 ⊙ eucwj,2 ⊙ ...⊙ eucwj,k ,

∀t ∈ [1, k], t corresponds to the family of Sj
eucwj,1 ⊙ ...⊙ eucwj,k ∈ VUCW

eucwj,1 ⊙ ...⊙ eucwj,k+1 /∈ VUCW

(5)

where ⊙ represents the actual symbol merging operation,
which combines two symbols into one symbol and treats it
as a single token in subsequent inputs, rather than represent-
ing multiple tokens that are concatenated together like in CP.
freq(·) represents a frequency counting function, k is a vari-
able length for a UCW.

Using Algorithm 1, we derive the UCW vocabulary from
our music event corpus. A comprehensive construction ex-
ample can be found in Appendix A. Through this, we’ve
effectively reduced the sequence length than REMI while
retaining the musical structure, demonstrating the power of
unsupervised compoundation in symbolic music represen-
tation. As noted by (Hsiao et al. 2021), CP sequences are
typically 30%-50% the length of REMI sequences. With
UCW, sequence length hinges on the BPE vocabulary size;
for instance, a size of 1000 results in sequences 165% the
length of CP and 70%-80% of REMI. It is worth noting that
the VN here is artificially set. Importantly, UCW, by effec-
tively grouping neighboring elements, captures robust cor-
relations, yielding semantically richer tokens that enhance
dependency detection in our model. Similar to the BPE al-
gorithm in NLP, it strikes a balance between REMI and CP.

N-gram Transformer Encoder
After constructing the UCW input sequence, the next step
is to utilize an encoder for feature extraction that can effec-
tively analyze and comprehend the music. In this section, we

Algorithm 1: Unsupervised Compoundation Construct Al-
gorithm

Require: Music event sequence corpus C, and the UCW’s
vocab size VUCW .

1: CUCW ← Group the events into families from C
2: VUCW ← VREMI

3: while VUCW .length < VUCW do
4: for UCW in CUCW do
5: for i← 1 to UCW.length− 1 do
6: span← (UCW [i], UCW [i+ 1])
7: freq[span]← freq[span] + 1
8: end for
9: end for

10: p← the event pair with highest frequency in freq
11: VUCW ← VUCW ∪ p
12: CUCW ← replace all p in CUCW with a new symbol
13: end while
14: for each sequence s in C do
15: Initialize an empty Set S
16: for i = 1 to s.length do
17: if (s[i], s[i+ 1]) not in S then
18: Add the pair (s[i], s[i+ 1]) in S
19: end if
20: end for
21: while S is not empty do
22: Remove the pair (s[m], s[m+ 1]) from S
23: if the pair (s[m], s[m+1]) appears in VUCW then
24: Replace all (s[m], s[m + 1]) with the new sym-

bol p
25: add (s[m− 1], s[n]) and (s[n], s[m+ 2]) in S
26: end if
27: end while
28: Append the segmented sequence s to the segmented

corpus C′
29: end for
Ensure: Corpus of UCW C′, UCW’s vocabulary VUCW

propose the use of an N-gram Transformer encoder, which
is first pre-trained on a large-scale unlabeled UCW sequence
for self-supervised learning, and then fine-tuned for down-
stream tasks related to symbolic music understanding.

Our implementation of the N-Gram Transformer encoder
is based on CP Transformer, which is a recent development
in this field. However, using each CP as a single token can
lead to a large vocabulary size, which may negatively im-
pact the model’s performance. To avoid this issue, CP trans-
formers have adopted an expansion-compression approach
presented in (Rae et al. 2019). This involves treating every
element ecpj,k in a CP as a separate token and embedding con-
catenation to integrate music elements.

In contrast, our approach views each UCW token as a lo-
cally semantically complete unit. We then transform these
UCW tokens into input embeddings:

Xj = EMB(UCWj)
−→
Xj = Xj + POSEMB(j)

(6)

where EMB converting each UCW token into a dense vector
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Figure 2: The overall architecture of our proposed N-gram Transformer Encoder. It only displays part of the layers of the model.
In reality, after multiple layers of computation, the left Transformer Encoder will access different layer structures to accomplish
specific pre-training or downstream tasks, such as Masked Language Modeling (MLM), and Sequence Classification.

representation; POSEMB utilize relative position encoding,
assigns vectors based on the relative distances between to-
kens in the sequence.

−→
Xj represents the final input of the

j-th UCW into the Transformer layers.

Our N-gram Transformer encoder, visualized in Figure 2,
augments attentional encoding by harnessing N-gram rela-
tionships between tokens. The standard Transformer encod-
ing is formulated as:

Hl = FFN(Softmax(
QK√
dk

)V +Hl−1), (7)

where Hl−1 and Hl represent the output of l− 1-th and l-th
layer, respectively. Q = WQHl−1, K = WKHl−1, V =

WV Hl−1, and H0 =
−→
X . dk is the dimension of the key

vectors, usually set as the hidden layer dimension divided
by the number of attention heads.

To harness N-gram information in both pre-training and
fine-tuning, we extract N-grams from the UCW sequence
corpus, forming an N-gram vocabulary, denoted as VN . Ini-
tially, we obtain the frequency of each N-gram occurrence
in the corpus and remove low-frequency N-grams to reduce
the size of VN . For each input UCW sequence, we extract
all N-grams and select a subset of them contained within
the input. We then match these extracted N-grams with the
previously obtained N-gram vocabulary VN , forming a se-
quence G = {g1, g2, ..., gM}, where M represents the max-
imum number of N-grams that can be included in a single in-
put sequence. These N-grams are ranked by their frequency
in the corpus, ensuring top N-grams in the input are more
frequent. Similar to encoding sequences of music elements,
input sequences of N-grams also need to be converted into
embeddings for the encoder. We encode each N-gram token

similarly as in the token Transformers encoder. Specifically,

XG
j = EMBNG(gj),

−−→
XG

j = XG
j + POSEMB(j)

HG
l = FFN(Softmax(

QGKG

√
dk

)V G +HG
l−1),

(8)

where QG = WQHG
l−1, KG = WKHG

l−1, V G =

WV HG
l−1, and HG

0 =
−−→
XG; EMBNG converting each N-

gram token into a dense vector representation;
Our current approach encodes N-Gram token sequences,

aiming to integrate N-Gram information into music se-
quence encoding. We introduce the N-gram Position Matrix
Injection (NPMI) method. With NPMI, we create a matrix
called N-gram position matrix (P ), which is an M ×N ma-
trix that records the positions and frequencies of each N-
gram extracted from the input sequence. This matrix is con-
structed using the previously extracted N-gram vocabulary
and the corresponding N-grams from each input sequence.
The N-gram position matrix captures the alignment between
N-Grams and their original music sequence, which forms
the core of the N-gram Transformer encoder that enhances
the model’s understanding capabilities using N-gram infor-
mation. Specifically, based on the position of each N-gram
in the sequence, we assign values to the matrix as:

Pi,j =

{
freq(gj), UCWi ∈ gj
0, UCWi /∈ gj

(9)

where UCWi denotes the i-th music token, gj denotes the
j-th n-gram token, and freq(gj) denotes the frequency of gj
in VN .

To determine the relative frequencies of N-grams, we nor-
malize by dividing each N-gram’s frequency by the total fre-
quency of all N-grams at the same position. This normaliza-
tion captures the N-gram distribution:

Pi,j =
Pi,j∑M

k=0 Pi,k + ε
(10)



where ε is a small constant (1 × 10−10) to prevent division
by zero.

After converting the tokens of both the music input se-
quences and the N-gram sequences into embeddings and
constructing the N-gram position matrix P , we combine the
representations of the music tokens and their corresponding
N-grams. For each layer in the Transformer, the music token
representation Hl is updated by adding the corresponding
N-gram representations HG

l :

Hl,i = Hl,i +
∑
t∈A

HG
l,t × Pi,t (11)

where A is the set of indexes of N-gram tokens that corre-
spond to the music token UCWi, HG

l,t indicate the repre-
sentation of t-th N-Gram in l-th layer. Notably, our N-Gram
encoding has fewer layers than the music token encoding.
Thus, we only add representations for matching layers and
skip addition for higher layers.

In fact, for the sake of computational efficiency, we have
implemented this injection as:

Hl = Hl + P ×HG
l (12)

Experiments
Setup and Downstream Tasks
Our model undergoes a two-stage training: pre-training on
a symbolic music dataset, and fine-tuning for six specific
downstream tasks. Details on the dataset can be found in
Appendix . We set the UCW vocabulary size at 1000, trans-
forming MIDI music files into UCW sequences, and the re-
sultant sequence length is just 165% of the CP sequence. For
our N-gram approach, we extracted an N-gram vocabulary
VN from the pre-trained corpus. Each N-gram was indexed
and its frequency recorded. We chose an N-value of 4, ex-
cluding N-grams with frequencies below 200.

We used the same hyper-parameters as the MIDI-Bert
model (Chou et al. 2021), which has a 12-layer structure
with 12 self-attention heads, and a hidden layer size of 768
for each self-attention layer. We set a sequence length of 512
for both training stages. The N-gram encoder in our model
has a 6-layer structure, with each UC sequence correspond-
ing to an N-gram sequence of length 128. Pre-training took
44 hours (about 128k steps) on 4 NVIDIA GeForce RTX
3060 GPUs, using the AdamW optimizer and a learning rate
that warmed up over the initial 1k steps. Our pre-training
employed Masked Language Modeling (MLM), masking
15% of input tokens for prediction. Notably, MIDI-Bert
(Chou et al. 2021) and CP Transformer (Hsiao et al. 2021)
differ in constructing CP sequences. While MIDI-Bert uses
pitch, duration, sub-beats, and bars (CP-4), CP Transformer
incorporates all seven musical elements (pitch, duration, ve-
locity, bar, beat ,chord and tempo) with padding (CP-7). For
a fair comparison, we experimented with both settings, cre-
ating UCWs (UCW-4, UCW-7) corresponding to CP-4 and
CP-7 based on input music events.

We assessed our model across two main categories of
tasks. For sequence classification, we focused on Composer

(Com), Emotion (Emo), Genre (Gen), and Dance (Dan) clas-
sification. Meanwhile, Melody extraction (Mel) and Veloc-
ity classification (Vel) were our primary token classification
tasks. A detailed introduction for these six downstream tasks
and their corresponding datasets can be found in Appendix .

For all tasks, we fine-tuned our pre-trained model for up
to 15 epochs, maintaining a consistent sequence length of
512 CP tokens. Given that a CP might encompass multi-
ple UCWs, we input only the initial 512 UCWs during fine-
tuning, which might limit the musical input in our approach.
For token-level tasks, we segmented the sequence into 512
UCWs for each token’s classification. However, this UCW
sequence retains approximately 60% of the CP data, poten-
tially putting our model at a disadvantage.

Throughout both pre-training and fine-tuning, we desig-
nated 90% of each task’s dataset for training and the remain-
ing 10% for validation.

Main Analysis

Table 1 contrasts the NG-Midiformer’s performance with
the baseline MIDI-Bert model across all tasks. We aligned
our comparison with the CP-4 and CP-7 datasets, leading to
our UCW sequences UCW-4 and UCW-7. While CP-4 cap-
tures basic musical elements, CP-7 provides a comprehen-
sive view of piano track data. However, CP-7 and UCW-7
aren’t apt for velocity and melody classification due to po-
tential data leakage.

For sequence-level classification tasks, we standardized
input music sequences to match the length of 512 CP tokens
to ensure a fair comparison. In our method, only the initial
60% of the sequence is utilized during inference.

Yet, our NG-Midiformer, leveraging unsupervised com-
poundation and N-gram Transformer encoding, consistently
outperformed both MIDI-Bert and RNN models in nearly
all tasks. Specifically, we observed performance boosts of
+8.22%, +5.67%, +15.08%, +6.17%, and +0.4%, setting
new state-of-the-art results in five tasks, including composer,
emotion, genre, dance classification, and velocity prediction.

These outcomes underscore the value of N-gram infor-
mation in enhancing symbolic music understanding. The fu-
sion of UCW and N-Gram Transformer encoding surpasses
the CP or REMI tokenization methods used by MIDI-Bert
or RNN (Chou et al. 2021). Notably, UCW-7 demonstrated
superior performance over UCW-4, indicating that richer in-
formation aids the model’s musical comprehension.

While our model excelled in many areas, it fell short in
Melody classification. This limitation might stem from us-
ing only about 60% of the available information in UCW
sequences compared to CP. This might exclude crucial
melodic information present in the latter part of sequences,
which can be especially important for melody classification.
Additionally, our labeling method assigns identical labels
to multiple UCWs within the same CP group. This means
the model faces increased inference demands in token-level
classification tasks, potentially affecting melody classifica-
tion performance.



Table 1: The testing accuracy (in %) of various tokenization methods and models on 6 different downstream tasks. Symbol (*)
indicates that the corresponding experimental results were replicated by us.

Model Token Sequence Classification Token Classification

Composer Emotion Genre Dance Velocity Melody

MidiGPT (Ferreira, Lelis, and Whitehead 2020a) CP - 61.88 - - - -

RNN (Chou et al. 2021) REMI 51.97 53.46 - - 44.56 89.96
CP-4 60.32 54.13 - - 43.77 88.66

OM-MIDI-Bert (Liu, Xu, and Xu 2022) REMI 82.41 75.58 - - 50.82 92.01
CP-4 75.40 68.81 - - 53.42 97.87

RoAR (Li et al. 2023) REMI 78.48 73.73 - - 51.40 91.84
CP-4 80.95 76.15 - - 53.73 97.59

MIDI-Bert (Chou et al. 2021)
REMI 67.19 67.74 - - 49.02 90.97
CP-4 78.57 67.89 50.49(*) 57.02(*) 51.63 96.37
CP-7 84.16(*) 72.72(*) 48.65(*) 46.89(*) - -

NG-Midiformer UCW-4 90.63 73.44 56.67 55.05 54.13 92.31
UCW-7 90.63 81.25 65.87 63.19 - -

Table 2: The testing accuracy (in %) of various tokenization
methods on 6 different downstream tasks with MIDI-Bert.

Model Token Sequence Classification Token Classification

Com Emo Gen Dan Vel Mel

MIDI-Bert

REMI 67.19 67.74 - - 49.02 90.97
CP-4 78.57 67.89 50.49 57.02 51.63 96.37
CP-7 84.16 72.72 48.65 46.89 - -

UCW-4 66.61 63.75 40.34 55.22 54.87 92.26
UCW-7 76.30 72.17 49.56 47.40 - -

Table 3: The testing accuracy (in %) of various tokenization
methods and models on 6 different downstream tasks.

Model Token Sequence Classification Token Classification

Com Emo Gen Dan Vel Mel

MIDI-Bert

CP-4 78.57 67.89 50.49 57.02 51.63 96.37
CP-7 84.16 72.72 48.65 46.89 - -

UCW-4 66.61 63.75 40.34 55.22 54.87 96.26
UCW-7 76.30 72.17 49.56 47.40 - -

NG-Midiformer

CP-4 83.33 65.87 53.89 61.30 59.82 96.92
CP-7 85.94 70.63 65.63 47.62 - -

UCW-4 90.63 73.44 56.67 55.05 54.13 92.31
UCW-7 90.63 81.25 65.87 63.19 - -

Ablation Study
In this section, we will examine the effects of unsuper-
vised compoundation, N-Gram Transformer encoding and
pre-training with N-gram respectively.

Effect of Unsupervised Compoundation Unsupervised
compoundation, a tokenization method lying between REMI
and CP, was evaluated for its impact on symbolic music un-
derstanding. Using the same structures as MIDI-Bert, we
compared five tokenization methods on downstream tasks.
As Table 2 reveals, CP-4 and CP-7 outperformed others.
The diminished performance with UCW-4 or UCW-7 sug-
gests their heavy reliance on N-gram encoding. MIDI-BERT
might expect a different granularity level than what UCW

Table 4: The testing accuracy (in %) of on different methods
for initializing downstream tasks’ models.

Model Token Sequence Classification

Composer Emotion Genre Dance

Midi-Bert UCW-7 76.30 72.17 49.56 47.40

NG-Midiformer UCW-7 90.63 81.25 65.87 63.19
w/o N-Gram Pre-training UCW-7 58.73 68.97 31.03 52.63

provides, leading to inefficiencies in capturing the nuances
of music sequences. For a fair comparison with CP, we stan-
dardized sequence lengths to 512 CPs. However, this meant
only the first 512 UCW tokens were utilized, potentially af-
fecting performance. This underscores the significance of N-
Gram feature injection for model enhancement.

Effect of N-gram Transformer Encoding We evaluated
the N-gram Transformer Encoder against MIDI-Bert using
four tokenization methods, as shown in Table 3. The results
highlight the N-gram’s advantage in music modeling, espe-
cially when combined with UCW tokenization in our NG-
Midiformer. However, the two CP methods didn’t benefit
from N-gram in emotion classification, possibly due to lost
correlations during music event merging, and N-gram en-
coding might not be sufficient to recover them, especially if
they arise from longer-range dependencies.

Effect of pre-training with N-gram To evaluate the ef-
fectiveness of using N-gram information for pre-training, we
conducted experiments to assess the model’s performance
on downstream tasks. We excluded the N-gram pre-training
stage and present the results of these experiments in Table
4. When comparing Midi-Bert with our NG-Midiformer, we
found that our NG-Midiformer results far exceeded Midi-
Bert under the same input, indicating the importance of N-
Gram feature injection.

However, without its pre-training, the N-Gram Trans-
former’s performance, relying on mere random parameter
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Figure 3: The convergence rate of the Bert model and our
model (Taking UC-4 as an example ).

updates during fine-tuning, fell below Midi-Bert, underscor-
ing pre-training’s crucial role. Additionally, with consis-
tent hyperparameters and pre-training datasets, our N-gram
Transformer encoder converged more rapidly than Midi-
Bert, indicating our model’s heightened efficiency in inter-
preting symbolic music sequences (Figure 3).

Conclusion
In this paper, we introduce the NG-Midiformer model,
which proposes an unsupervised compoundation and N-
gram feature injection approach. Due to the strong corre-
lation between neighbouring elements in music, N-gram is
particularly suitable for symbolic music understanding and
enhances the model’s ability to understand symbolic mu-
sic. Our method first reconstructs the input token sequence
through unsupervised methods, then pre-trains the model
on a large-scale corpus using N-gram information to en-
hance music understanding, and finally fine-tunes on differ-
ent downstream tasks to complete specific tasks. The exper-
imental results and analysis of our method demonstrate the
effectiveness of our approach. In the future, we will apply
our proposed method to music generation tasks to generate
various styles and genres of music.
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APPENDIX
Datasets
Table 5 presents the dataset we used in this study. In the
pre-training stage, we extracted and transformed the four
datasets listed in the table, and ultimately obtained 24,979
UCW sequences that corresponded to the music midis. In
the previous work, symbolic music datasets such as GIant-
MIDI Piano (Kong et al. 2020), Maestro (Hawthorne et al.
2019), and Pop1K7 (Hsiao et al. 2021) are often utilized for
pre-training. Additionally, ADL Piano (Ferreira, Lelis, and
Whitehead 2020b), a widely used large-scale music dataset,
is also incorporated for pre-training. By integrating these
diverse symbolic music datasets, we aim to improve the
model’s generalization capabilities and expand its knowl-
edge base. In the fine-tuning stage, we selected six differ-
ent music classification tasks with 5 datasets to verify the
performance of the model.

The GTZAN dataset (Sturm 2013) here is in wav format.
We first convert it into MIDI files using the piano transcrip-
tion system (Kong et al. 2021), which is a widely used neu-
ral network for transcribing music audios into MIDI for-
mat, and then convert them into the corresponding UCW
sequences. We also collected the Nottingham dataset (All-
wright 2003), a classic folk music collection, from an online
source. To evaluate our model’s performance, we utilized
the MIDI version of this dataset specifically for the task of
dance music classification. GTZAN dataset and Nottingham
dataset are used for genre classification and dance classifica-
tion, respectively. In line with our previous work, we utilized

Table 5: Summary of dataset usage.

Dataset Usage Pieces Hours

Pop1K7(Hsiao et al. 2021) Pre-training 1,747 108.8
ADL Piano(Ferreira, Lelis,
and Whitehead 2020b)

Pre-training 11086 1775

GIantMIDI-Piano(Kong
et al. 2020)

Pre-training 10855 1237

Maestro(Hawthorne et al.
2019)

Pre-training 529 84

POP909(Wang* et al. 2020) Melody Extraction 865 59.7Velocity Prediction
Nottingham Dance Classifica-

tion
1034 19.42

Pianist8(joann8512 2021) Composer Classifi-
cation

411 31.9

EMOPIA(Hung et al. 2021) Emotion Classifica-
tion

1,078 12.0

GTZAN(Sturm 2013) Genre Classifica-
tion

1000 8.3

the POP909 (Wang* et al. 2020) dataset for tasks related
to Melody Extraction and Velocity Prediction. Additionally,
we employed the EMOPIA dataset (Hung et al. 2021) and
Pianist8 dataset (joann8512 2021) for sentiment classifica-
tion and composer classification tasks, respectively.

Velocity classification and melody extraction are tasks of
token classification, whereas genre, emotion, composer and
dance classification are tasks of sequence classification.

Constructing Unsupervised Compoundation Word
Consider a short sequence: [“Bar”, “Beat 0”, “Tempo 119”,
“G M”, “Pitch 71”, “Duration 1080”, “Velocity 90”,
“Pitch 69”, “Duration 1560”, “Velocity 90”, “Bar”, “D 7“,
“Pitch 71”, “Duration 1080”, “Velocity 88”, “Pitch 73”,
“Duration 1560”, “Velocity 90”], where G M and D 7
are two different chords. Firstly, based on the concept of
family, we group music events and obtain the following
sequence: [“Bar”, “Beat 0 Tempo 119 G M”, “Pitch 71
Duration 1080 Velocity 90”, “Pitch 69 Duration 1560
Velocity 90”, “Bar D 7“, “Pitch 71 Duration 1080 Ve-
locity 88”, “Pitch 73 Duration 1560 Velocity 90”].The
algorithm1 identifies the most frequent event pairs with a
token, such as (“Pitch 71”, “Duration 1080”), and merges
them as a new token. After the first iteration, the sequence
becomes [“Bar”, “Beat 0 Tempo 119 G M”, “Pitch 71
Duration 1080”, “Velocity 90”, “Pitch 69 Duration 1560
Velocity 90”, “Bar D 7”, “Pitch 71 Duration 1080”, “Ve-
locity 88”, “Pitch 73 Duration 1560 Velocity 90”]. Next,
we identifies the next most frequent pairs (“Duration 1560”,
“Velocity 90”), and the sequences becomes [“Bar”, “Beat 0
Tempo 119 G M”, “Pitch 71 Duration 1080”, “Veloc-
ity 90”, “Pitch 69”, “Duration 1560 Velocity 90”, “Bar
D 7”, “Pitch 71 Duration 1080”, “Velocity 88”, “Pitch 73”,
“Duration 1560 Velocity 90”]. From this, we can derive
the UCW sequence and its associated vocabulary for this
sequence.

Recall and Precision Results
In addition to achieving uniform classification accuracy, we
also assessed the recall and precision metrics for our UCW-
7 and UCW-4 models in the context of four downstream se-
quence classification tasks on our dataset, for reference pur-
poses.

Composer Emotion Genre Dance

P R P R P R P R
UCW-7 0.84 0.77 0.76 0.78 0.67 0.54 0.39 0.43
UCW-4 0.85 0.84 0.69 0.69 0.41 0.49 0.41 0.45

Table 6: The precision and recall values of NG-Midiformer
on four sequence classification tasks using two types of to-
kens, where P represents precision and R represents recall.


