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Figure 1: In our Cloth2Body problem, our model takes a 2D clothing image as input and produces 3D human body of various poses, which can fit
into the cloth pixel-wise when rendered back to the image plane, as shown in (a),(b) and (c). This framework also allows users to manipulate body
figure within cloth size constraints. (c′) is a shape variation from (c) but still in the same clothing and pose. (c′′) is an application of our methods
where a stable diffusion module consumes our output and generates human image.

Abstract

In this paper, we define and study a new Cloth2Body
problem which has a goal of generating 3d human body
meshes from a 2D clothing image. Unlike the existing
human mesh recovery problem, Cloth2Body needs to ad-
dress new and emerging challenges raised by the partial
observation of the input and the high diversity of the out-
put. Indeed, there are three specific challenges. First, how
to locate and pose human bodies into the clothes. Sec-
ond, how to effectively estimate body shapes out of vari-
ous clothing types. Finally, how to generate diverse and
plausible results from a 2D clothing image. To this end,
we propose an end-to-end framework that can accurately
estimate 3D body mesh parameterized by pose and shape
from a 2D clothing image. Along this line, we first utilize
Kinematics-aware Pose Estimation to estimate body pose
parameters. 3D skeleton is employed as a proxy followed
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by an inverse kinematics module to boost the estimation
accuracy. We additionally design an adaptive depth trick
to align the re-projected 3D mesh better with 2D clothing
image by disentangling the effects of object size and cam-
era extrinsic. Next, we propose Physics-informed Shape
Estimation to estimate body shape parameters. 3D shape
parameters are predicted based on partial body measure-
ments estimated from RGB image, which not only improves
pixel-wise human-cloth alignment, but also enables flexi-
ble user editing. Finally, we design Evolution-based pose
generation method, a skeleton transplanting method in-
spired by genetic algorithms to generate diverse reasonable
poses during inference. As shown by experimental results
on both synthetic and real-world data, the proposed frame-
work achieves state-of-the-art performance and can effec-
tively recover natural and diverse 3D body meshes from 2D
images that align well with clothing.
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1. Introduction
3D virtual human is widely used in contemporary indus-

try, such as animation and game [19, 42], VR/AR applica-
tions [12] and fashion design [18, 46, 44]. 3D human repre-
sentation has advantage over 2D images due to its manipula-
tion flexibility and generation robustness [5]. Indeed, many
studies have focused on recovering 3D humans from 2D im-
ages [30, 21, 47]. However, there are some application sce-
narios where target human is not present in an image but we
still want to imagine the person from certain context, such
as generating human face from hair or dressing [57, 34] and
generating posed human in a scene [49, 53, 37].

In this paper, we are interested in the scenario of gener-
ating human body meshes from a 2D clothing image. Ex-
isting methods can generate 2D human via deep generative
models [16, 43, 34]. However, these methods lack robust-
ness and explainability. The generated 2D humans are not
amenable to interactive manipulation afterwards, thus not
satisfying the need of many industrial scenarios. There-
fore, we formulate a novel task called Cloth2Body which
aims to generate 3D virtual human mesh that can fit into
2D clothing image. This task is non-trivial as it faces three
challenges: 1) Partial observation: Human body pixels are
absent from the 2D clothing image and the mesh should be
inferred from its interaction with clothing. 2) Pixel-wise
alignment: 3D human body should be well-aligned with
2D clothing in the pixel-wise level when re-projected onto
the 2D plane. 3) Diverse outputs: The same 2D clothing
is potentially suitable for multiple 3D human bodies of dif-
ferent poses and shapes, so we need to model this outcome
diversity.

To address these challenges, we propose an effective
end-to-end framework. First, partial observation com-
pels the model to effectively exploit contexts and priors for
making accurate predictions. As a solution, our pipeline
utilizes spatial information and pose database as priors for
invisible joints and exploits RGB context to accurately lo-
cate visible joints. In addition, we explicitly estimate body
measurements for shape estimation which significantly im-
proves the model performance. Here, body measurements
can either be extracted from the image by cloth landmark
detection [32] for convenience or from user input for in-
teractive manipulation. The explicitly estimated measure-
ments improve the model both in estimation accuracy and
explainability. Second, pixel-wise alignment requires the
model to accurately localize 3D body in camera space. We
adopt an inverse projection method and introduce a novel
adaptive-depth projection trick to improve the alignment be-
tween the reconstructed joints and the inversely projected
ones. Unlike camera parameter regression methods [21, 8],
our mechanism can guarantee image space alignment be-
tween the 2D clothing and the projected 3D body given
accurate pose and shape. Finally, diverse output aims to

diversify out-of-cloth poses while preserving human-cloth
alignment. We propose an evolution-based pose generation
method that uses skeleton crossover and mutation to gener-
ate diverse reasonable 3D bodies. This training-free method
is simple but effective for our pose diversifying purpose.
Our method demonstrates superior results over other alter-
native methods adapted to this task.

To summarize our contributions: 1) We propose a novel
task Cloth2Body aiming at generating 3D human body
meshes from a 2D clothing image. Many fashion-related
downstream applications can benefit from this task. 2) We
design an end-to-end framework that can effectively handle
the new challenges emerging from the Cloth2Body prob-
lem setting. Specifically, our Landmark2Shape method
and the adaptive-depth projection approach can also benefit
other tasks such as human mesh recovery (HMR) towards
better 2D alignment and explainability. 3) We introduce
two new datasets based on existing 3D human datasets for
Cloth2Body training and evaluation.

2. Related Work
Virtual Try-On. Virtual try-on aims at re-targeting clothes
to a given person. 2D-based virtual try-on methods [15,
43, 50] use deep neural networks to synthesize clothed hu-
mans in different poses. Sometimes, 2D segmentations [13]
and body keypoints [34] are used as auxiliary informa-
tion to improve synthesizing quality. 3D-based virtual try-
on [45, 10, 11, 52] reconstruct a 3D garment from image
and re-target it to 3D human. The main challenges lie in
solving human-cloth collision [45] and representing a 3D
garment with high fidelity to its texture and topology [35].
Human Mesh Recovery (HMR). Human mesh recovery
aims at recovering 3D human mesh from person image.
Many works employ parametric mesh model [33, 40, 38]
driven by pose and shape parameters as 3D human represen-
tation. Regression based methods use CNN [21, 8], trans-
former [30, 28] or GNN [31, 6, 25] to extract features from
images and estimate mesh parameters. Optimization-based
methods [40, 20, 24] recover body pose by optimizing the
projected mesh joints towards 2D ground-truth keypoints.
HybrIK [27] combines deep learning methods with analyt-
ical inverse kinematics methods to estimate pose parame-
ters. However, in cases where large occlusions are present,
multiple feasible meshes may correspond to a single image.
Therefore, some methods [26, 4] model the mesh parame-
ters as a probabilistic distribution conditioned on the input
image to address this challenge.
Shape Under Clothing. Estimating shape under clothing
is challenging due to loose clothing types, body occlusions
and depth ambiguity. SIZER [48], ClothCap [41] register
3D models to clothed scans to construct shape data. [1,
51, 54] uses motion sequence or multiple views to improve
shape estimation. [7] also uses measurements and semantic
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segmentation to guide shape estimation, but cases where the
human body is invisible are still an open problem.

3. Our Approach
The proposed method (see Figure 2) consists of 3 com-

ponents: kinematics-aware pose estimation branch,
physics-informed shape estimation branch and an
evolution-based pose generation branch. In the fol-
lowing sections, we will first introduce some preliminary
methods upon which our work is built. Then, we will
introduce the three components in our framework.
Preliminary. Given a clothing image I ∈ RH×W×C , our
goal is to generate a 3D body mesh M whose 2D projec-
tion fits into the clothing well. We choose SMPL [33], a
parametric body model to represent the generated 3D body
mesh. SMPL model is a triangulated mesh M ∈ RV×3

with V = 6890 vertices controlled by two sets of variables,
pose parameters θ ∈ Rn and shape parameters β ∈ Rm.
θ is an n-dimensional variable used to control body poses,
where n is the number of body joints and θi is the relative
rotation matrix of the ith joint regarding to its parent in the
skeleton tree. β is used to describe body shape variation
with predefined number of m principle components in pa-
rameter space. In this setup, our goal can be decomposed
into three parts: estimating cloth part pose θc, estimating β,
and modeling invisible body pose P (θo).

3.1. Kinematics-aware Pose Estimation

Our pose branch takes the clothing image I as input and
produces pose parameters θ. Following HybrIK [27], we
first estimate pixel-aligned postion of joints xk ∈ R3 and
bone twist angle ϕk ∈ R for each joint k ∈ {0...n}. Then,
we conduct inverse kinematics (IK) to analytically calculate
the rotation matrix θk for each joint. This kinematics-aware
approach binds recovered mesh to observable clothing area
joints, resulting in significantly better reconstruction ac-
curacy and robustness compared to parameter-regression
based methods, as shown in Figure 5.

3.1.1 3D Joints Estimation

In our Cloth2Body setting, body mesh M can be divided
into two parts, Mc and Mo. Mc denotes the mesh area cov-
ered by clothes and Mo is the body area outside clothes, i.e.,
M = Mc∪Mo. We observe that Mc is almost deterministic
and can be estimated from I while Mo should be modeled
as stochastic. We first use an encoder with ResNet34 [17]
backbone to extract features from I , followed by a deconvo-
lution head producing 3D joints heatmaps H , and an MLP
head producing bone twist angle ϕ of J . Finally, pixel-
aligned joint coordinates x̂ are calculated as the expecta-
tion of H . We use weighted L1 loss to supervise x and a
weighted L2 loss for ϕ, where we assign lower weight wk to

invisible xk ∈ Mo and higher wk to those visible xk ∈ Mc:

Lkp =

n∑
k=0

wk∥xk − x̂k∥1 (1)

Ltw =

n∑
k=0

wk∥(cosϕk, sinϕk)− (cos ϕ̂k, sin ϕ̂k)∥2 (2)

With 3D coordinates x and bone twist angles ϕ, we will
apply inverse kinematics on joints to get θ, described next.

3.1.2 Inverse Kinematics

Inverse kinematics (IK) takes x and ϕ as input and analyti-
cally calculates joint rotation matrix θ. This scheme is first
introduced to pose estimation by HybrIK [27] and achieved
near SOTA accuracy without much tuning. We retarget this
method to our setting because it can adhere the recovered
body to our estimated pixel-aligned joints through inverse
kinematics. The key insight is decomposing θ into twist
i.e., axial direction rotation matrix θtw and swing, i.e., ra-
dial direction rotation matrix θsw as:

θ = θswθtw, (3)

where θtw is converted from ϕ estimated by neural network
on last step and θsw is analytically computed from x by
IK. As illustrated in Figure 2(a), we denote the resting bone
vector as t⃗ and target bone vector as p⃗. Then, θtw is the
rotation along t⃗ and θsw is the rotation around axis n⃗, which
can be calculated as:

n⃗ =
t⃗× p⃗

∥t⃗× p⃗∥
. (4)

Then, the swing angle α can be calculated as:

cosα =
t⃗ · p⃗

∥t⃗∥∥p⃗∥
, sinα =

∥t⃗× p⃗∥
∥t⃗∥∥p⃗∥

. (5)

Then, we can obtain θsw using the Rodrigues Formula:

θsw = I + (sinα)K + (1− cosα)K2, (6)

where K is the cross-product matrix for the unit vector n⃗.

3.1.3 Adaptive Depth Estimation

One key reason that the re-projected body cannot align well
with the image is the camera estimation error. Human shape
and camera depth are entangled in projection. For exam-
ple, a taller man standing farther would appear the same in
2D image as a shorter man standing nearer to camera lens.
Besides, IK would accumulate error if two sets of skele-
tons have different bone lengths, as shown in [27]. How-
ever, in HybrIK, camera depth and shape parameters are
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Figure 2: Framework Overview. Our framework consists of three components. (a) The kinematics-aware pose estima-
tion module explicitly estimates 3D joint x and bone twist angle ϕ from I using a neural network, followed by an inverse
kinematics module to calculate θ. (b) The physics-informed shape estimation branch estimates explicit body measurements
from image and regress the β distribution based on them. (c) The evolution-based pose generation module produces diverse
cloth-conditioned poses by KNN matching and skeleton transplanting.

(a) bone measurements (b) cloth measurements

Figure 3: Illustration of body measurements. (a) shows the axial
body measurements, i.e., bone lengths. (b) shows the radial body
measurements such as shoulder width and breast width, which are es-
timated from clothing landmarks or input by users.

predicted separately at inference, breaking their dependency
with each other. To this end, we propose adaptive depth esti-
mation trick. We first recover M with shape β and template
pose. We then select a subset of anchor skeleton bones and
calculate their lengths {bicam|1 < i ≤ k} at camera space
from M and {biimg|1 < i ≤ k} at image space from x. The
camera depth zcam can be computed by skeleton size ratio:

zcam
f

=

∑n
i b

i
cam∑n

i b
i
img

, (7)

where f is the focal length of a perspective camera.

3.2. Physics-informed Shape Estimation

In our shape estimation branch, we estimate clothing
landmarks from the input clothing image Irgb. Along with
body joints estimated from pose branch, we calculate both
axial and radial body measurements and render them as
measurements skeleton image Irgb, I ˆjts and I ˆlmk as illus-
trated in Figure 3. We then estimate SMPL shape param-
eters β conditioned on measurements and pelvis depth us-
ing a probabilistic model. Our idea of explicitly estimating
cloth landmarks and body joints as a physical proxy is based
on the observation that while clothing image potentially em-
beds body shape information, it’s challenging to accurately
estimate body shape from a single clothing image due to
occlusions, variations in clothing types and depth ambigu-
ities [2, 55]. Results in Table 2 show that our physics-
informed shape estimation can achieve significantly better
shape estimation results.

3.2.1 Keypoints to Measurements

Our keypoints set includes body joints and cloth landmarks.
As shown in Figure 3, we first define a set of physical mea-
surements ω consisting of axial direction measurements ωax

and radial direction measurements ωrd, i.e., ω = ωax∪ωrd.
ωax is responsible for attributes such as height, leg length
and arm span, calculated using skeleton x. ωrd influences
attributes regarding body weight such as breast and hip
width, calculated from detected clothing landmarks. To be
specific, we define a mapping to align landmarks of differ-
ent cloth categories in DeepFashion2 [14] based on their se-
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Figure 4: In crossover, we transplant compatible skeletons in
database to the invisible part of estimated skeleton. In mutation, we
disturb the rotation angle in a small range to diversify poses.

mantic meaning so that the uniform body measurements set
ω can be calculated consistently from landmarks and joints.
For example, the shoulder width measurement can be esti-
mated using the distance between the left and right shoulder
landmarks if available for input clothing types.

Note that despite we use estimated landmarks and joints
to calculate ω, they can also be provided by clothing man-
ufacturers or interactively manipulated by users. Some ma-
nipulation results are shown in Figure 7.

3.2.2 Probabilistic Shape Estimation

Stochasticity is an inherent challenge in our Cloth2Body
setting. Shape under clothing can have multiple feasible
solutions. For example, the shape of body parts not cov-
ered by clothing is undecided; the shape of body in loose
clothing is not strictly constrained; and 3D height is highly
entangled with camera distance from only 2D observation.
The noises of landmark detection also exacerbate this prob-
lem. To this end, we model β as a sample from conditional
distribution pθ(β|z), where z is the latent feature extracted
from Irgb, I ˆjts and I ˆlmk using ResNet [17] concatenated
with camera distance dcam, which in inference time is esti-
mated by RootNet [36]:

I ˆjts = π(f1(Irgb)), I ˆlmk = π(f2(Irgb)),

z = f(Irgb ⊕ I ˆjts ⊕ I ˆlmk)⊕ dcam,
(8)

where dcam is the estimated distance from camera to hu-
man body, π is the render operation, f1 is the pose estima-
tion model and f2 is the landmark detection model. The
extracted feature is then mapped to a latent distribution qϕ,
which is learned using ELBO [22]:

Lm2s = −Ez∼qϕ

[
log

pθ(β, z)

qϕ(z)

]
(9)

3.3. Evolution-based Pose Generation

Our pose generation module aims to diversify body
poses conditioned on clothes. Inspired by evolutionary al-
gorithms [29], we use crossover and mutation to evolve
skeletons and poses in designated area. In pose crossover,
we collect θ from real world dataset to form database Dp.

The rotation of joint i is annotated as θck if i ∈ Mc else-
wise θok. During inference, we match θc with poses in Dp

by KNN to find reasonable surrogate θo. The crossover op-
eration in pose estimation can be formulated as:

θcross = [θc, θok], k = argmin
k∈Dp

∥θc − θck∥. (10)

As for pose mutation, we randomly disturb the estimated
θo with small noise to get diversified poses. The mutation
operation is formulated as:

θmut = [θc, θo +∆θo], ∥∆θo∥ < ϵ. (11)

With pose crossover and mutation, we can easily model
the diversity of out-of-cloth body gestures with robustness,
as shown in the right part of Figure 5.

4. Experiments
We evaluate our model performance qualitatively and

quantitatively on synthetic dataset and real world dataset*.

4.1. Datasets and Settings

To the best of our knowledge, there exists no dataset
containing both clothing images and their corresponding
clothed human with 3D parametric annotations. To evaluate
methods on the proposed Cloth2Body task, we introduce
two new datasets, AGORA-CLOTH and Deepfashion2-
SMPL, based on two existing datasets.
AGORA-CLOTH. We introduce a new synthetic dataset
AGORA-CLOTH, which includes various cloth types and
3D body annotations. This dataset is adapted from
AGORA [39], a synthetic 3D human body dataset with ac-
curate 3D annotations and rich clothing types. However,
AGORA does not provide clothing images required as in-
puts in our setting. Thus, We crop the clothing part from
original images using segmentation methods. Images with
too much occlusion are dropped during processing. The
final collected AGORA-CLOTH training dataset includes
∼75,000 single-person cloth images and annotations.
DeepFashion2-SMPL. We also propose a real-world
dataset DeepFashion2-SMPL which consists of tremen-
dous fashionable clothing images and corresponding 3D hu-
man annotations. DeepFashion2 [14] (DF2) is a large im-
age dataset containing real-world humans with fashionable
poses and covers 13 types of clothes with annotated cloth-
ing landmarks. To adapt DF2 dataset to Cloth2Body, we fit
SMPL [33] on DeepFashion2 dataset combining regression-
based method [27] and optimization-based method [40].
After fitting, we filter the results by fitting errors and keep
the well-reconstructed ones in our final dataset. The fi-
nal collected dataset includes ∼8,700 single-person images

*More results and implementation details are reported in the supple-
mentary materials.
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AGORA DeepFashion2 Multi-Garment Net
MPJPE-C ↓ PA-MPJPE-C ↓ 2D-KPE-C ↓ MPJPE-C ↓ PA-MPJPE-C ↓ 2D-KPE-C ↓ MPJPE-C ↓ PA-MPJPE-C ↓ 2D-KPE-C ↓

HMR [21] 83.51 63.44 31.68 87.88 59.63 37.27 109.73 80.79 24.04
PARE [23] 84.38 69.63 26.52 72.80 55.90 28.69 88.96 74.59 13.97

HybrIK [27] 60.49 51.83 19.47 65.16 43.82 27.46 88.71 74.22 11.87
Ours 60.01 51.48 19.28 62.35 43.54 23.53 86.99 73.93 10.66

Table 1: Clothing area joints accuracy on AGORA-CLOTH, DeepFashion2-SMPL and MGN dataset. We compare our
methods to HMR, PARE and HybrIK and achieve the best cloth-human alignment results.

Table 2: Shape estimation accuracy. HMR, PARE and Hy-
brIK directly regress β from the image, while our method
first estimates landmarks and joints as middle proxy.

Height (mm) ↓ Chest (mm)↓ Waist (mm)↓ Hips (mm)↓
HMR [21] 76.0 20.0 22.6 21.0
PARE [27] 79.3 64.8 63.2 28.7

HybrIK [27] 78.3 20.3 23.2 21.0
Ours 75.8 18.7 21.3 19.6

with 3D annotations. This Deepfashion2-SMPL dataset is
used to evaluate our Cloth2Body framework.
Multi-Garment Net. Multi-Garment net(MGN) [3] pro-
vides 3D clothed humans as well as their SMPL registra-
tions. We get the clothing image by first rendering the
groundtruth meshes at an average distance and then apply-
ing a segmentation algorithm to crop the clothing part out.
We only use MGN for evaluation.

4.2. Evaluation Metrics

Pose Evaluation. To evaluate pose estimation quality in
cloth area, we propose two new metrics: mean per joint
position error in cloth(MPJPE-C) and procrustes aligned
MPJPE in cloth(PA-MPJPE-C), adapted from MPJPE and
PA-MPJPE, two commonly used metrics in 3D pose estima-
tion. MPJPE-C computes the mean position error of joints
lied in clothing area. Since only joints in this area are al-
most deterministic from the given clothing image, higher
MPJPE-C can indicate better cloth-conditioned pose esti-
mation quality. PA-MPJPE-C is a variant of MPJPE-C,
which eliminates the effect of translation, rotation and scal-
ing via procrustes alignment.
Shape Evaluation. To evaluate body shape estimation
quality, we compute typical anthropometric measurements
of the output 3d mesh and calculate their difference from
ground-truth value. Specifically, we measure height and the
width of chest, waist and hips similar to SHAPY [7]. We
choose width instead of circumference used in SHAPY so
that we can seamlessly use 2D distance between clothing
landmarks to estimate body measurements at inference.
Image Alignment Evaluation. The pixel-wise alignment
between the re-projected human mesh and clothing image
is very important for downstream applications such as re-
shaping and pose transfer. To evaluate pixel-wise alignment

quality, we use 2D keypoint error(2D-KPE) which com-
putes the average distance between re-projected body joints
and ground-truth body joints in 2D image space.

4.3. Comparative Studies

Since this is a new task setting with no existing end-
to-end solution, we adapted three widely-used methods in
human mesh recovery tasks to our task for comparison,
i.e., HMR [21], PARE [23] and HybrIK [27]. Although
many other works [40, 24, 8] have been introduced to hu-
man mesh recovery, they cannot be trivially adapted to our
task since they need other information such as human key-
points. Our implementation is based on mmhuman3d [9]
framework. All these baselines are trained from scratch on
AGORA-CLOTH dataset.
Body Alignment. We compared our method with baselines
on AGORA-CLOTH and DeepFashion2-SMPL dataset
about their reconstruction quality and cloth-human align-
ment accuracy. Our method achieves the most accurate
body joints alignment (see Table 1) and the most natural
clothing detail alignment (see Figure 5). HMR and PARE
can generate reasonable poses conditioned on clothes and
roughly align recovered mesh to the clothing area, but they
lack naturality in generated poses and robustness to clothing
types. HybrIK can generate a better-aligned human mesh
and more natural pose in our setting, but still cannot align
well with clothes in detail, especially clothing edges. More
importantly, all these methods directly regress β from RGB
information and tend to generate average-shaped human,
which further hurts cloth-human alignment.
Shape Estimation. We evaluate the performance of our
Landmark2Shape scheme on DeepFashion2-SMPL dataset.
As shown in Table 2, our model achieves the best accu-
racy in shape estimation in all testing indicators, including
height, chest, waist and hips, which means the recovered β
in our pipeline successfully captures the human figure un-
derneath a clothing image.
Diverse Body Generation. In the right half of Figure 5,
we display several diversified poses that fit into the same
clothing. During post-processing, we transplant poses only
to body parts not covered by clothing. Results show that
our model can generate reasonable and diverse poses con-
ditioned on clothing. For example, the arms and hands can
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Figure 5: Visualization results of generated meshes of several methods and our diverse pose generation method.

freely cross, bend or naturally hang down along body side,
while keeping a good alignment between the whole body
and the clothing. To test the effectiveness of our defined
measurements to control β, we train an MLP regressor that
maps measurements to shape and visualize the results of
measurement editing in Figure 7.

4.4. Applications

We show two application scenarios here. The first is hu-
man image generation. Traditional human image generation
methods often require a reference human as input and would
fail to generate a real-like human with only clothing image.
Instead, our model generates 3D meshes and pose skele-
tons that are well-aligned to the clothing in the image space.
This serves as a strong guiding signal for generative mod-
els to generate both controllable and diverse human images.

In Figure 6, we extend our pipeline with a pretrained sta-
ble diffusion module [56], which generates photo-realistic
human images guided by our 3D outputs.

The second application is virtual try-on(VITON). VI-
TON tasks [15] involve re-targeting clothing images to hu-
man models of various poses and shapes. They often com-
pute 2D warp fields based on 2D correspondences extracted
from image, which often lacks 3D priors when transform-
ing images. Since our model can generate pixel-aligned and
parametric mesh from clothing images, we can estimate the
clothing warp field using the dense 3D correspondences of
human mesh vertices. We demonstrate a clothing reshape
application in Figure 6. By manipulating SMPL shape pa-
rameters, we easily achieve natural and fine-grained control
of clothing shape and size.
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(a) Input (b) Estimated poses (c) Estimated SMPL (d) Controled diffusion (a) Input (b) Estimated poses (c) Estimated SMPL (d) Controled diffusion
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Figure 6: Application cases of our Cloth2Body setting. The upper line demonstrates the human image generation task with (a)two input samples.
(b)(c)Our model generates 3D skeleton and mesh given a single clothing image, which is consumed by (d) a stable diffusion model to generate a
photorealistic human image. The lower line demonstrates a clothing reshape task in virtual try-on. (a) is the clothing image input and the 3D SMPL
vertices extracted from our Cloth2Body estimation. We then can manipulate β to obtain (b)reshaped meshes and dense warp field generated from
3D correspondence, and generate models of different shapes. (c) is the same reshaping pipeline but set β as ”thin”.

Leg Length

Figure 7: Measurements editing. We modify the leg length entry in
ω and show that mesh shape varies accordingly.

4.5. Ablation Studies

Adaptive Depth. To examine how adaptive depth aids 3D
pose estimation, we only enable the adaptive depth module
and evaluate 2D-KPE on DeepFashion2-SMPL dataset. In-
ference time depth is estimated via RootNet [36] following
HybrIK. As shown in Table 3, both HybrIK and our model
with adaptive depth achieve lower 2D alignment error. The
adaptive depth module results in better 2D alignment not
only because it makes camera depth aware of body shape,
but also because it aids the inverse kinematic process by
aligning joints better in space.
Landmark2Shape. To investigate the contribution of each
input signal to the shape estimation module, we trained two
controlled-group models separately. The first model was
trained using only the RGB image Irgb, while the second
was trained with both the Irgb and the self-predicted joints
image, I ˆjts. Our full model utilized all three input signals,

Table 3: Ablation on adaptive depth. Results show it im-
proves 2D body-cloth alignment in both HybrIK and ours.

2D-KPE-C ↓ 2D-KPE-C ↓

HybrIK [27] 31.58 Ours 23.53
HybrIK-Ada 27.46 Ours-Ada 25.72

including Irgb, I ˆjts, and I ˆlmk. As shown in Table 4, I ˆjts

and I ˆlmk both contribute to shape estimation.

Table 4: Ablation on landmarks2shape. We test shape ac-
curacy w/o explicitly estimated landmarks and joints.

Irgb I ˆjts I ˆlmk MPJPE-C ↓ 2D-KPE-C ↓

control 1 ✓ - - 63.67 23.76
control 2 ✓ ✓ - 62.76 23.56

full ✓ ✓ ✓ 62.35 23.53

5. Discussion and Conclusion
Discussion. There is still room to improve this work. In
challenging non-frontal viewpoints, the predicted 3D mesh
may fail to align with the 2D clothes accurately. Besides,
measurements computed from cloth landmarks are not ro-
bust across rare clothing types. To address these limitations,
we need better semantic understanding of clothes.
Conclusion. In this paper, we introduced a novel
Cloth2Body task which aims to generate multiple plausi-
ble 3D human body meshes from a single 2D clothing im-
age. Specifically, we designed a two-branch framework
which estimates the pose and shape parameters of a para-

8



metric 3D body model. Also, we designed an adaptive
depth trick and a Landmark2Shape method for pixel-wise
alignment and fine-grained body shape control. Moreover,
our method allows users to generate diverse natural poses
via our evolution-based pose generation method. Finally,
qualitative and quantitative evaluations on real-world data
demonstrate the superiority of the proposed framework over
other alternatives.
Broad Impact. We found that human dataset lacks variety
in shape and may bias towards thinner humans. For better
performance and fairness, more diversified 3D human mod-
els are expected.
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[4] Benjamin Biggs, Sébastien Ehrhart, Hanbyul Joo, Benjamin
Graham, Andrea Vedaldi, and David Novotny. 3D multibod-
ies: Fitting sets of plausible 3D models to ambiguous image
data. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2020.

[5] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware
3D generative adversarial networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
16102–16112, 2022.

[6] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2mesh: Graph convolutional network for 3d human pose
and mesh recovery from a 2d human pose. In European Con-
ference on Computer Vision (ECCV), pages 769–787, 2020.

[7] Vasileios Choutas, Lea Müller, Chun-Hao P. Huang, Siyu
Tang, Dimitris Tzionas, and Michael J. Black. Accurate 3d
body shape regression using metric and semantic attribute.

In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2708–2718, 2022.

[8] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-
itrios Tzionas, and Michael J. Black. Monocular expressive
body regression through body-driven attention. In European
Conference on Computer Vision (ECCV), 2020.

[9] MMHuman3D Contributors. Openmmlab 3d human
parametric model toolbox and benchmark. https://
github.com/open-mmlab/mmhuman3d, 2021.

[10] Enric Corona, Albert Pumarola, Guillem Alenyà, Ger-
ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:
Topology-aware generative model for clothed people. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 11875–11885, 2021.
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