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Abstract

We propose a unified point cloud video self-supervised
learning framework for object-centric and scene-centric
data. Previous methods commonly conduct representation
learning at the clip or frame level and cannot well capture
fine-grained semantics. Instead of contrasting the represen-
tations of clips or frames, in this paper, we propose a unified
self-supervised framework by conducting contrastive learn-
ing at the point level. Moreover, we introduce a new pre-
text task by achieving semantic alignment of superpoints,
which further facilitates the representations to capture se-
mantic cues at multiple scales. In addition, due to the high
redundancy in the temporal dimension of dynamic point
clouds, directly conducting contrastive learning at the point
level usually leads to massive undesired negatives and in-
sufficient modeling of positive representations. To remedy
this, we propose a selection strategy to retain proper neg-
atives and make use of high-similarity samples from other
instances as positive supplements. Extensive experiments
show that our method outperforms supervised counterparts
on a wide range of downstream tasks and demonstrates the
superior transferability of the learned representations.

1. Introduction
Point cloud videos captured by 3D sensors describe the

dynamics of objects and their surrounding environments,
and have been applied in a wide range of fields to perceive
the environment, including robotics and autonomous driv-
ing. Early point cloud understanding approaches mainly
focus on the geometric modeling of static point clouds
[7, 18, 46]. Recently, more attention has been paid to
point cloud videos [12, 14, 40, 41]. However, since obtain-
ing point-wise annotation for point cloud videos is labor-
intensive [1,43], conducting self-supervised learning on dy-
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Figure 1. Existing works utilize clip-level (a) or frame-level (b)
instances for point cloud video pre-training, while we focus on
point-level (c) pre-training.

namic point clouds has drawn increasing interest. Despite
the great success of recent self-supervised learning on im-
ages and static point clouds [4,16,17,44,45], two questions
still remain for point cloud videos:

(i) How to build a unified self-supervised framework?
Multi-granularity perception of point cloud videos is de-
manded in different tasks, such as classification, seman-
tic segmentation, and part segmentation. Existing works
conduct self-supervised learning by predicting the orders
of randomly shuffled clips or distilling spatiotemporal
knowledge based on complete-to-partial sequences [9, 35]
(Fig. 1(a-b)). Representations learned by these paradigms
focus more on frame-level semantics and cannot well cap-
ture fine-grained semantic cues. Therefore, building a uni-
fied self-supervised framework that can learn representation
rich in multi-granularity semantics is highly demanded.

(ii) How to achieve effective learning between local sam-
ples? To build a unified self-supervised framework for
multiple point cloud video tasks, it is necessary to learn
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fine-grained semantics at the level of local samples. Tra-
ditional contrastive learning constructs two views from the
same instance as positives and pushes away all other in-
stances [2–4, 6, 16, 17, 37, 45]. Since dynamic point clouds
are highly redundant in the temporal dimension, directly ap-
plying previous approaches to local samples may introduce
massive undesired negatives. Therefore, how to conduct ef-
fective learning on local samples to obtain fine-grained se-
mantics still remains under-investigated.

In this paper, we propose a unified point-based con-
trastive prediction framework, termed as PointCPSC, for
self-supervised learning on point cloud videos. We con-
duct representation learning at the point level by contrast-
ing local superpoints of predictions and targets (Fig. 1(c)).
Regarding challenge (i), we propose a new pretext task to
align the predicted prototypes and target prototypes, as well
as soft category assignments between predictions and tar-
gets. For challenge (ii), we propose a negative sample se-
lection strategy and employ higher similar samples from
other instances as positive supplements. Compared with
the frame-based self-supervised framework, our method
achieves more effective representation modeling at a finer
granularity, and can be applied to multiple point cloud video
understanding tasks. The main contributions of our paper
are summarized as follows:

• We propose a unified self-supervised contrastive learn-
ing framework for point cloud videos. Our frame-
work facilitates the representations to capture both
fine-grained dynamics and hierarchical semantics for
multiple downstream tasks.

• We introduce a new pretext task by achieving the
semantic alignment between predictions and targets.
This facilitates our self-supervised framework to cap-
ture semantic information on multiple scales.

• We design a feature similarity based sample selection
strategy to retain proper negatives and positive neigh-
bors for effective representation learning.

• Our framework produces remarkable performance on
a wide range of downstream tasks. We also perform
extensive ablation studies and visualized analysis to
demonstrate the effectiveness of our method.

2. Related Work
In this section, we first present related works of con-

trastive learning on images and static point clouds. Then,
we introduce the advanced works about dynamic point
cloud modeling.

2.1. Contrastive Learning

Self-supervised learning has achieved great success in
images, notably represented by instance-based discrimina-

tive methods [2–6, 16, 17, 38, 45]. This classic paradigm
augments two views of an instance as a positive pair, while
treating all views of other instances as negatives. Many
techniques have been introduced to enhance the representa-
tion learning capability [3,6,16,34,36,37]. He et al. [17] in-
troduced dynamic queues to store massive negatives. Chen
et al. [6] indicated that massive negatives and momentum
updated encoder are not essential for contrastive learning,
and a simple siamese network structure with a stop gradi-
ent can avoid mode collapse. Caron et al. [3] established a
teacher-student self-distillation framework and aligned the
two branches with a classification loss. In addition, De-
bidatta et al. [10] utilized feature similarity to mine the
nearest neighbors from the support set as positive sample
supplements, making positive representations robust and in-
variant to deformations.

Recently, contrastive learning has been extended to static
point cloud understanding. PointContrast [43] generates
two views of point clouds, and then utilizes the contrastive
loss to pull matched point pairs and push unmatched ones.
DepthContrast [47] learns global representations from two
augmented depth views by setting an instance discrimina-
tion task. Although contrastive learning has achieved great
success on images and static point clouds, the utilization of
contrastive learning on dynamic point clouds is still under-
investigated.

2.2. Dynamic Point Cloud Modeling

Currently, most point cloud video understanding meth-
ods focus on supervised learning [11–14, 20, 39–41, 48].
Liu et al. [20] added a temporal dimension to PointNet++
[28] to process dynamic point clouds. Wang et al. [39]
extracted motion information from regularized voxels, and
then combined these voxels with raw points for spatiotem-
poral modeling. Fan et al. [13] used stacked convolutions to
extract hierarchical spatiotemporal features. P4Transformer
[11] captures long relationships between tokens obtained
from spatiotemporal tubes. Zhong et al. [48] and Wen
et al. [41] introduced traditional techniques, such as ST-
surface or primitives, into the existing network structure to
effectively learn spatiotemporal representations. Niemeyer
et al. [25] learned a temporally and spatially continuous
vector field to assign a motion vector to each point, which is
suitable for generative tasks such as dynamic point cloud re-
construction. Rempe et al. [29] learned object-centric spa-
tiotemporal representations from normalized point clouds
and proved to be effective on multiple downstream tasks.

Meanwhile, several works make attempts to conduct
self-supervised learning on dynamic point clouds. Wang et
al. [35] divided input sequences into several temporal clips
and then predicted the correct order of randomly shuffled
clips. Dong et al. [9] used complete and partial sequences
as inputs to the teacher and student networks for realizing
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Figure 2. The framework of our PointCPSC. The samples with lower similarities in the memory bank are used as negatives. We only
present the selection of positive neighbors from the memory bank for simplicity.

spatiotemporal knowledge distillation. However, the rep-
resentations learned by contrasting samples at the clip or
frame level cannot capture local spatiotemporal dynamics.
To remedy this, Sheng et al. [32] proposed a self-supervised
framework to learn fine-grained representations through
contrastive prediction and reconstruction. Although spa-
tiotemporal reconstruction of raw points pays more atten-
tion to fine-grained information, the learned representations
are susceptible to noises and the network is difficult to be
optimized. Shen et al. [33] combined contrastive learning
and masked predictions to achieve self-supervised repre-
sentation learning. However, their clip-level masking strat-
egy is insufficient to explore fine-grained dynamics of point
clouds. Different from the above methods, in this paper,
we propose to conduct contrastive learning between super-
points and introduce semantic clustering as a pretext task to
learn representations versatile to diverse downstream tasks.

3. Method

The overall framework of our PointCPSC is presented in
Fig. 2. A point cloud video is denoted as P ∈ RT×N×3,
where T is sequence length and N is the number of points
in each frame. We equally divide the video into L segments.
After all segments are processed by the spatiotemporal en-
coder, the former L-1 segments are fed into transformer au-
toregressor to predict the L-th target segment in the latent
space. We follow previous works [6,17] to implement a pre-
dictor to further transform the predictions. To make local
contrasts more effective and model comprehensive positive
representations, we propose to select appropriate negatives
and beneficial positive neighbors. Meanwhile, we also per-

form semantic clustering to adapt the self-supervised frame-
work for multiple downstream tasks.

3.1. Point Contrastive Prediction

Following [13], spatiotemporal tubes are defined as tubes
within spatial radius s and temporal radius t centered on
certain points. We first encode these spatiotemporal tubes
to obtain the embeddings of superpoints. These superpoints
aggregate local information and can well preserve local se-
mantics, thereby facilitating the learning of fine-grained in-
formation.

Specifically, after the L-th segment is encoded by the
spatiotemporal encoder, we obtain the target embeddings
Z ∈ Rl×r×c, where l, r, and c are frame length, super-
point number, and feature dimension, respectively. We then
take the representations of the L-1 segment as predictions,
which are denoted as Q ∈ Rl×r×c. However, owing to
the disorder of point clouds, the predictions are not aligned
with the corresponding targets. We take target positions
as anchors to search for neighbors within predictions and
perform feature interpolation to obtain updated predictions
Q̂ ∈ Rl×r×c.

Negative Selection. Due to the high redundancy in a
point cloud video, numerous superpoints contain similar se-
mantics. For effective contrastive learning, samples with
high similarities are discarded. Specifically, we use dynam-
ically updated memory bank, denoted as M , to store his-
tory target embeddings. During per-training, we calculate
the similarities between the current target and those in M
as follows:

sim = cos(m, z),m ∈ M , (1)



where sim represents the similarity between history embed-
ding m and current superpoint z. For embeddings in M ,
we sort their similarities with z and retain 70% negatives
with the lowest similarity for contrastive learning.

Positive Neighbors. Instead of directly employing the
embeddings of the same spatiotemporal position as posi-
tives, we propose to explore favorable positive neighbors
by utilizing feature similarity:

Nk(z) = argmax
m∈M

(cos(m, z), topn = K), (2)

where Nk(z) represents the retrieved K neighbors related
to the current target superpoint z. Following [15], we
adaptively introduce these positive neighbors into local Info
Noise Contrastive Estimation (InfoNCE) loss [26] to per-
form contrastive learning between predictions and targets,
which is represented as follows:

w = Softmax(Nk(z) · z) ∈ RK , (3)

Ll = − log

∑K
j=0 wj exp(z

Tq/τ)∑K
j=0 wj exp(zTq/τ)+

∑
q
′∈Ψ exp (zT

i q
′/τ)

,

(4)
where q ∈ {q̂+∪Nk(z)} is the positive set that contains the
positive sample q̂+ and neighbors Nk(z), Ψ is the negative
set, w0 is set as 1 and means the weight between z and q̂+,
wj=1,...,K is calculated using Eq.3, and τ is temperature
hyper-parameter.

Overall, we make point contrastive prediction more ef-
fective by selecting proper negatives, and robust represen-
tations are learned by supplying positive neighbors from
other instances. The feature similarity is utilized as adaptive
weights to combine neighbors and positive samples. We
further investigate how to utilize retrieved positive neigh-
bors in ablation studies.

3.2. Semantic Clustering

Local spatiotemporal representations are learned based
on the above contrastive learning framework. As multiple-
granularity semantics are critical to diverse downstream
tasks, we introduce a semantic clustering task on dynamic
point clouds.

Specifically, we first parameterize two group prototypes
for prediction and target embeddings. During pre-training,
these two group prototypes are gradually learned. The dis-
tances from predictions to their corresponding prototypes
are calculated to obtain soft category distributions for each
predicted superpoint. The same operation is also performed
to obtain soft category distributions for each target super-
point. Intuitively, the embeddings of predictions and targets
should follow the same category probability distribution.
Meanwhile, the two group prototypes should also follow
approximate distributions. We denote the initial target pro-
totypes as St = [s1, s2, . . . , sk] ∈ Rk×c and the semantic

clustering is achieved as follows:

At = Softmax
k

(Z · ST
t ) ∈ Rl×r×k, (5)

Ŝt =
1∑

i,j At[i, j]

∑
i,j

At[i, j]⊙Z[i, j] ∈ Rk×c, (6)

where At represents soft category assignments of Z, Ŝt

are updated prototypes of Z, and ⊙ is a Hadamard product.
Similarly, the soft category distributions Ap and updated
prototypes of predictions Ŝp can be obtained.

Following [42], an extra predictor is utilized to further
transform Ŝp. Finally, an InfoNCE loss [26] is employed to
align Ŝp and Ŝt as follows:

Lc = − log
exp(ŝT

t ŝp/τ)

exp(ŝT
t ŝp/τ)+

∑
ŝ
′
p∈ϕ exp (ŝT

t ŝ
′
p/τ)

, (7)

where (ŝt, ŝp) is a positive pair, and ϕ is the negative set
that contains unmatched prototypes.

Moreover, we utilize Kullback-Leibler Divergence (KL)
loss to achieve the alignment of soft category distributions
between predictions and targets:

Lk =

k∑
i=1

ai
p(loga

i
p − logai

t), (8)

where ai
p and ai

t are i-th category probabilities of predic-
tions and targets, respectively.

Overall, the total loss of our self-supervised framework
consists of three parts:

Ltotal = Ll + λ1Lc + λ2Lk, (9)

where λ1 and λ2 are hyper-parameters for balance. By per-
forming the alignment of superpoint categories and proto-
types, our method can well capture multiple-granularity se-
mantics.

Note that, prototypes and soft category alignments are
performed when pre-training on dynamic point cloud se-
mantic segmentation. This is because soft category align-
ment is capable of extracting fine-grained point-level infor-
mation which is beneficial for segmenting objects. While
pre-training on action recognition, we only conduct proto-
types alignment to provide high-level semantics.

4. Experiments
Firstly, the dataset benchmarks and implementation de-

tails are introduced, and then we compare the performance
of PointCPSC with previous methods under multiple set-
tings. Extensive ablation studies are also conducted to
demonstrate the effectiveness of each sub-module in our
framework. Finally, we present qualitative analysis and vi-
sualizations to verify our motivation.



Table 1. Action recognition accuracy (%) on MSRAction-3D.

Methods #Frames

8 12 16 24

Supervised
Learning

MeteorNet [20] 81.14 86.53 88.21 88.50
Kinet [48] 83.84 88.53 91.92 93.27
PST2 [40] 86.53 88.55 89.22 -
PPTr [41] 84.02 89.89 90.31 92.33
P4Transformer [11] 83.17 87.54 89.56 90.94
PST-Transformer [12] 83.97 88.15 91.98 93.73
PSTNet [13] 83.50 87.88 89.90 91.20
PSTNet++ [14] 83.50 88.15 90.24 92.68

End-to-end
Fine-tuning PointCPSC 88.89 90.24 92.26 92.68

Linear
Probing PointCPSC 86.87 89.56 88.89 90.24

4.1. Datasets and Pre-training Details

We perform point cloud action recognition on
MSRAction-3D [19] and NTU-RGBD [31], 4D se-
mantic segmentation on Synthia 4D [8], and gesture
recognition on NvGesture [24].

The MSRAction-3D [19] dataset records 567 human ac-
tion sequences with Kinect, including 20 action categories
performed by 10 subjects. We follow [20] to obtain 270
training videos and 297 test videos.

The NTU-RGBD [31] dataset collects 56880 videos
recorded by three cameras from different angles, with a total
of 40 subjects and 60 categories. There are 40,320 training
videos and 16,560 test videos under a cross-subject setting.

The Synthia 4D dataset [8] contains 6 videos of different
driving scenarios, generated from the Synthia dataset [30].
Following [8, 20], this dataset is split into 19,888 training
frames, 815 validation frames, and 1,886 test frames.

The NvGesture [24] dataset collects 1532 dynamic se-
quences with 25 categories. We follow [23] to obtain 1050
training videos and 482 test videos.

Pre-training on action recognition. PSTNet [13] is uti-
lized as our encoder to conduct experiments. During train-
ing, we use 88 clips as one batch, where each clip contains
24 1024-point frames. The frame interval of sampling for
MSRAction-3D and NTU-RGBD are set to 1 and 2, re-
spectively. The number of neighbors for the ball query is
set to 9. The spatial search radius is set to 0.5 and 0.1
for MSRAction-3D and NTU-RGBD, respectively. Follow-
ing [13], random scaling is adopted for data augmentation.
The AdamW optimizer [21] with a cosine decay scheduler
is employed for optimization. We pre-train the model for
200 epochs with an initial learning rate of 0.0008. The tem-
perature hyper-parameter is set to 0.01.

Pre-training on semantic segmentation. The encoder
in P4Transformer [11] is adopted to conduct experiments.
The 04 sequence of the Synthia 4D dataset is employed for
pre-training. We sample 4-frame clips with each frame con-

taining 4096 points for training. The frame interval is set to
1, and the spatial search radius and the number of neigh-
bors for the ball query are set to 0.9 and 32, respectively.
The data augmentation strategy in [11] is adopted in the ex-
periments. We employ the same optimization strategies as
those for pre-training on action recognition.

4.2. End-to-end Fine-tuning

We first perform pre-training on MSRAction-3D, and
then add a new classifier after the encoder for fine-tuning.
Two linear layers with a batch normalization layer are
adopted as the classifier. Following the previous works
[11,13,20], we test the performance with various lengths of
frames. 2048 points are sampled for each frame. The spa-
tial search radius and the number of neighbors for the ball
query are set to 0.3 and 9, respectively. We finetune the pre-
trained model for 35 epochs and employ a warmup strat-
egy. We compare the performance of our PointCPSC with
previous supervised methods in Table 1. As we can see,
PointCPSC consistently outperforms the baseline method
PSTNet under different frames. This demonstrates the ef-
fectiveness of our method, which helps the model to learn
semantic information that is beneficial to the point cloud
action recognition task.

After pre-training on Synthia 4D, we follow [11, 27]
to add a decoder and a classifier for fine-tuning. Dur-
ing fine-tuning, 3-frame clips with each frame containing
16384 points are sampled. The spatial search radius and
the number of neighbors for the ball query are set to 0.9
and 32, respectively. We finetune the pre-trained model
for 150 epochs and adopt the warmup strategy. We com-
pare our PointCPSC with other supervised methods and the
results are presented in Table 2. The PointCPSC with 3
frames achieves 84.47 mIOU, which is 2% higher than that
of P4Transformer with 1 frame. This indicates that tem-
poral context information benefits semantic segmentation.
Compared with the baseline P4Transformer, PointCPSC
achieves significant improvements, especially in small ob-
ject segmentation, including traffic signs, pedestrians, lanes,
and traffic lights. This validates that our self-supervised
framework can well fit fine-grained downstream tasks.

4.3. Linear Probing

After pre-training on MSRAction-3D, we evaluate the
pre-trained encoder under the setting of linear probing. The
same experimental setups as fine-tuning are adopted. As
shown in Table 1, our results are competitive compared to
previous methods, where the performance of PointCPCS
with 8 frames outperforms all supervised methods. Further-
more, our method with 12 frames achieves the accuracy of
89.56%, surpassing the baseline PSTNet [13] with notable
margins. These results demonstrate that our pre-training can
learn beneficial high-level semantics.



Table 2. Semantic segmentation accuracy (%) on the Synthia 4D dataset.

Methods Input Frame Bldn Road Sdwlk Fence Vegittn Pole Car T. Sign Pedstrn Bicycl Lane T. Light mIOU

Minkowski [8] voxel 3 90.13 98.26 73.47 87.19 99.10 97.50 94.01 79.04 92.62 0.00 50.01 68.14 77.46
PointNet++ [28] point 1 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17 79.35
MeteorNet [20] point 3 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60 81.80
PSTNet [13] point 1 96.32 98.07 85.40 94.66 97.16 97.51 94.83 76.65 76.99 0.00 75.39 76.45 80.79
PSTNet [13] point 3 96.91 98.33 90.83 95.00 96.96 97.61 95.15 77.45 85.68 0.00 75.71 77.28 82.24
P4Transformer [11] point 1 96.76 98.23 92.11 95.23 98.62 97.77 95.46 80.75 85.48 0.00 74.28 74.22 82.41
P4Transformer [11] point 3 96.73 98.35 94.03 95.23 98.28 98.01 95.60 81.54 85.18 0.00 75.95 79.07 83.16

PointCPSC point 3 95.88 98.31 94.13 96.32 97.12 98.55 95.74 85.35 87.11 0.00 78.85 86.28 84.47

Table 3. Action recognition accuracy (%) on NTU-RGBD under
cross-subject setting.

Methods Accuracy (%)

3DV-Motion [39] (voxel) 84.5
3DV-PointNet++ [39] (voxel+point) 88.8
Kinet [48] 92.3
P4Transformer [11] 90.2
PST-Transformer [12] 91.0
PSTNet [13] 90.5
PSTNet++ [14] 91.4

PointCPSC (50% Semi-supervised) 88.0

4.4. Semi-supervised Learning

We first pre-train the models on NTU-RGBD, and then
conduct semi-supervised fine-tuning with 50% training data
under the cross-subject setting. The spatial radius is set as
0.5. We finetune 20 epochs and adopt a warmup strategy.
The other experimental setups and optimization strategies
are the same as those used for fine-tuning on MSRAction-
3D. As shown in Table 3, we compare the performance of
PointCPSC with previous supervised methods. Our method
with only 50% annotated data achieves the accuracy of
88.0%. This clearly demonstrates the effectiveness of our
self-supervised pre-training, which learns advantageous in-
formation to assist in semi-supervision.

4.5. Transfer Learning

We conduct pre-training on NTU-RGBD and then trans-
fer the pre-trained encoder to gesture recognition to demon-
strate the generalization of the pre-trained representations.
We finetune the pre-trained model on the NvGesture dataset
for 50 epochs. During fine-tuning, 32 1024-point frames
are sampled. The batch size and initial learning rate are
set to 32 and 0.02, respectively. The SGD optimizer with
cosine decay strategy is adopted for optimization. We com-
pare our PointCPSC with other supervised methods and the
results are shown in Table 4. It can be seen that our method
facilitates the baseline PSTNet to achieve higher accuracy.
This validates that our method has superior generalization
capability and the learned representations are beneficial for

Table 4. Gesture recognition accuracy (%) on NvGesture.

Methods Input NvGesture

FlickerNet [22] point 86.3
PLSTM-base [23] point 87.6
PLSTM-early [23] point 93.5
PLSTM-PSS [23] point 93.1
PLSTM-middle [23] point 94.7
PLSTM-late [23] point 93.5
Kinet [48] point 89.1
PSTNet [13] (50epochs) point 86.1

PointCPSC (50epochs) point 87.3

gesture recognition on point cloud videos.

4.6. Ablation Studies

We conduct ablation studies on MSRAction-3D and
Synthia 4D. On MSRAction-3D, 16-frame clips are sam-
pled and the other hyper-parameters are the same as end-
to-end fine-tuning. On Synthia 4D, 4096-point frames are
sampled and the models are finetuned for 75 epochs. All
hyper-parameters except for the ablated ones are kept the
same for fair comparison.

The Negatives with Appropriate Ratios. For current
batch targets, we calculate their feature similarities with his-
tory embeddings stored in the memory bank. We rank the
similarities in descending order and use different ratios of
embeddings as negatives. The results are shown in Table 5.
It can be observed that our method achieves the highest ac-
curacy with 70% negatives and more negatives introduce
moderate performance drops. This indicates that there exist
negatives with high similarity in the memory bank, namely
undesired negatives, and they should be abandoned in pre-
training.

The Utilization of Positive Neighbors. Although the
positive neighbors are retrieved based on feature similar-
ity, how to utilize these neighbors still needs further ex-
ploration. Three different schemes are compared and the
results are presented in Table 6. Compared with integrating
positive neighbors with feature similarity as softmax weight
(B1), the accuracy of directly adding K positive pairs (B2)
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Figure 3. The visualization of positive neighbors. The neighbors with high similarities come from different actions or subjects. The number
denotes the similarity.

Table 5. The negatives with appropriate ratios.

A1 A2 (Ours) A3 A4

Negatives Ratio (%) 60 70 80 90
Accuracy (%) 91.38 92.26 90.91 90.23

Table 6. Ablation study on positive neighbors.

Weighting Scheme Accuracy (%)

B1 Softmax Weighting 89.90
B2 Add K positive pairs 90.91
B3 (Ours) Feature Weighted Fusion 92.26

Table 7. Results achieved using different numbers of positive
neighbors.

C1 C2 (Ours) C3 C4

Numbers 1 3 5 10
Accuracy (%) 91.58 92.26 91.25 90.57

has increased by 1%. When combining the target and its
neighbors with their similarity, the performance is optimal.
By utilizing weight fusion, the comprehensive representa-
tions of positive samples are constructed and they are more
generalized for performing contrastive learning.

The Number of Positive Neighbors. The highly sim-
ilar neighbors are mined from other instances as positive
supplements. We evaluate the number of positive neighbors
and the results are shown in Table 7. As we can see, the
performance is improved as the number of positive neigh-
bors is increased from 1 to 3. However, further increase of
positive neighbors cannot introduce accuracy gains but lead
to lower performance. Consequently, 3 positive neighbors
are used as the default setting in our experiments.

The Size and Cost of Memory Bank. We investigate
the performance of memory banks with different sizes in
terms of running time and memory consumption. Specif-
ically, we evaluate models with the memory bank size of
256, 512, and 1024. The results are shown in Table 8. It can
be observed that our method achieves higher accuracy with
a larger memory bank, producing an accuracy of 92.26%
with a memory bank of size 1024. Meanwhile, running

Table 8. Time (mins/epoch), memory (MiB), and accuracy (%)
achieved using memory banks with different sizes.

Size Time Memory Accuracy (%)

D1 256 1.2 8647 90.91
D2 512 1.7 9435 91.57
D3 (Ours) 1024 2.1 10276 92.26

Table 9. Accuracy (%) achieved using different numbers of proto-
types.

Prototypes MSRAction-3D Synthia 4D

E1 (Ours) 10 92.26 71.13
E2 20 90.91 70.53
E3 30 90.91 70.28

time and memory consumption have an acceptable increase.
Consequently, 1024 is used as the default size of the mem-
ory bank in our experiments.

The Size of Prototypes on Different Benchmarks. We
also study the number of prototypes on different bench-
marks. The results are shown in Table 9. Our method
achieves the highest accuracy on MSRAction-3D with the
prototype number of 10. Intuitively, the prototypes aggre-
gated from superpoint representations can be viewed as hu-
man body parts with specific semantics. From this point of
view, introducing too many prototypes may suffer semantic-
less fragments and decrease the performance. On Synthia
4D, our method achieves the highest accuracy of 71.13%.
It maybe because this prototype number is close to the ob-
ject categories in this dataset. This indicates that a suitable
number of prototypes that fit the dataset well is beneficial to
the final performance.

The Effectiveness of Self-supervised Tasks. We evalu-
ate the effectiveness of local contrastive prediction, positive
neighbors, and the pretext task of semantic clustering on
different datasets. The results are shown in Table 10. Note
that, we only perform prototype alignment on MSRAction-
3D. On MSRAction-3D, the supplements of positive neigh-
bors with the local contrastive prediction branch improve
the accuracy to 91.98%. When prototype alignment is in-
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Figure 4. The visualization of the prototypes learned in pre-training. Different prototypes correspond to specific human body regions.

(a) Raising Hands (b) Jogging

Figure 5. The visualization of human motion segmentation.

troduced, our method achieves an accuracy of 92.26%. On
Synthia 4D, the retrieved positive neighbors also contribute
to performance improvement. More importantly, joint pro-
totype alignment and soft category alignment further im-
prove the segmentation accuracy with a large margin. This
demonstrates that our method can well capture fine-grained
cues that benefit the semantic segmentation.

4.7. Qualitative Analysis

Positive Neighbors. During pre-training, several highly
similar superpoints stored in the memory bank are selected
based on feature similarity. The corresponding raw points
areas of superpoints are visualized in Fig. 3. These su-
perpoints come from diverse videos and categories, but
present highly similar human body regions. Since our self-
supervised pre-training aims to model local dynamics, these
highly similar superpoints from other instances should be
treated as positive neighbors. This motivates us to design
the strategy of sample selection, to achieve effective con-
trast and learn robust representations.

Prototypes Visualization. We explore what the pro-
totypes have learned by classifying the superpoints aggre-
gated from raw point cloud sequences with pre-trained pro-
totypes. We randomly select several prototypes and eval-
uate four videos. The visualization results are shown in
Fig. 4. Each prototype corresponds to a specific region of
human bodies. This demonstrates that our self-supervised
framework effectively models local structures and learns
high-level semantics beneficial for downstream tasks.

Potential Applications. We visualize the learned proto-

Table 10. Ablation results on different benchmarks.
Tasks MSR (%) Syn (%)

F1 Local Contrastive Prediction 91.38 70.01

F2 F1 + Sample Selection Strategy 91.98 70.45

F3 F2 + Prototype Alignment 92.26 70.73

F4 F2 + Soft Category Alignment - 70.67

F5
F2 + Prototype Alignment
+ Soft Category Alignment

- 71.13

types on two point cloud sequences in Fig. 5, where each
color represents a prototype. When visualizing, the proto-
types with the same semantics are incorporated. It can be
seen that these pre-trained prototypes embed specific hu-
man body parts. This demonstrates that the pretext task
of semantic clustering models human parts from superpoint
representations. Intuitively, the prior information learned
in pre-training is beneficial for non-rigid motion segmenta-
tion. Besides, the soft category assignments of points may
benefit interactive annotation tasks.

5. Conclusions
We propose a unified self-supervised framework for

pre-training on point cloud videos. To adapt the self-
supervised framework for diverse object-centric and scene-
centric downstream tasks, we design the pretext task of
semantic clustering, which achieves hierarchical semantic
alignment between predictions and targets. In addition,
we retain proper negatives for effective contrast and se-
lect highly similar negatives as positive neighbors for robust
representations. Extensive experiments and ablation studies
are performed to demonstrate the effectiveness of our self-
supervised framework.
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