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A B S T R A C T   

Accumulation of fat, oil and grease (FOG) in the sumps of wastewater pumping stations is a common failure 
cause for these facilities. Floating solids are often not transported by the pump suction inlets and the individual 
solids can accumulate to stiff and thick FOG layers. The lack of data about the dynamics in FOG layer formation 
still hampers the design of effective measures towards its mitigation. In this article, we present a low-cost 
camera-based automated system for the observation of FOG layer dynamics in wastewater pumping stations 
at high-frequency (minutes) over extended time windows (months). Optical imagery is processed through a deep- 
learning computer vision routine that allows describing FOG layer dynamics (e.g. accumulation rate and changes 
in shape) and various hydraulic processes in the pump sump (e.g. the water level, surface flow velocity fields, 
vorticity, or circulation). Furthermore, the system can perform in-camera image processing, thus allowing the 
transfer of compressed-processed datasets when deployed in remote locations (Edge AI computing), which could 
be of great utility for the hydro-ecological monitoring community. In this study, the technology applied is 
illustrated with a dataset (six months, two-minute frequency) collected at a wastewater pumping station at the 
municipality of Rotterdam, The Netherlands. This monitoring system represents a source of information for the 
management of (waste)water pumping stations (e.g. detection of free-surface vortices and scheduling of sump 
cleaning operations) and facilitates the collection of standardized high-frequency FOG layer dynamics data for a 
detailed description of FOG build-up and transport processes.   

1. Introduction 

Uncontrolled accumulation of solids of Fat, Oil and Grease (FOG) in 
urban wastewater systems has drawn significant public media attention 
in the past years (for example, the famous 130 tonnes ‘Fatberg’ found in 
Whitechapel London and others, Adams, 2018). Despite an increase in 
public awareness, urban disposal of cooking oils and fat through 
wastewater transport systems still produces significant build-up of FOG 
solids. An international review by Wallace et al. (2016) found that this 
problem is ubiquitous and that its severity depends on the design and 
age of the wastewater system, disposal habits of citizens and mitigating 
measures (e.g. grease trapping). The presence of FOG solids in waste-
water transport systems induces reduction of hydraulic capacity (Ashley 
et al., 2000), urban flooding, sewage spills (imposing health risks, Ten 
Veldhuis et al., 2010) and damage to pumping stations (Duinmeijer, 
2020). 

For urban drainage systems, a reliable operation of wastewater 
pumping stations (WWPS) is critical to effectively meet their functional 
requirements (Korving et al., 2006). The presence of multiple phases and 
related transport phenomena (transport of solids, entrainment of 
gas/air) is known to increase WWPS failure rates. Meanwhile gas 
accumulation processes are well understood and managed (Pothof, 
2011), floating FOG accumulation in pump sumps are less known and 
receive little attention in guidelines for pump sump design (e.g. 
(American National Hydraulic Standards Institute 2012)). 

The sump geometry and configuration of most WWPS do not guar-
antee the transport of floating solids to wastewater treatment facilities. 
Furthermore, oil and fat deposits experience chemical and physical 
transformations (e.g. saponification, Keener et al., 2008 and He et al., 
2013) which hardens the material. The mixture of hardened FOG with 
additional materials such as textiles or plastics form a structurally stable 
stiff layer, often covering the entire sump surface (Duinmeijer and 
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Clemens, 2016), see Figure 1 and more examples in Appendix A. 
Manual removal of FOG layers results in high operational costs and is 

a health hazard for the personnel involved. For all WWPS in the mu-
nicipality of Rotterdam, the annual FOG removal cost is approximately € 
400.000 (requiring ~8.000 work-hours per year, 2020). Extrapolating 
this figure, we estimate a cost on the order of €10 M/year in The 
Netherlands. Similar estimates are reported for the UK with 15 to 50 
million pounds (€18-60 M in 2016) per year (Wallace et al., 2016). 
Furthermore, FOG disposals are also regarded as a potential source of 
energy (i.e. biofuel, see Jolis et al, 2010, Miot et al, 2013, Pastore et al, 
2015) and hence holds potential economic value which is still not widely 
exploited. For any FOG management strategy (mitigation, collection/-
reuse/recycling) to be feasible and successfully implemented, data on 
FOG layer dynamics (i.e. accumulation rate and transport mechanisms) 
are required. 

Despite the economic and environmental relevance of this problem, 
knowledge of FOG layer dynamics at WWPS facilities is currently 
limited. This is mainly due to a lack of understanding of the processes 
involved (transport, (bio)chemical transformations and evolution of 
physical properties), the highly heterogeneous catchment characteris-
tics and the fact that obtaining measuring data in sewers, given the 
physical/chemical conditions and the poor accessibility of these sys-
tems, is challenging. Nevertheless, some observational data have been 
reported in the literature. For instance, Nieuwenhuis et al., (2018) found 
correlations of FOG solids accumulation with socio-economic parame-
ters of the service area. Williams et al., (2012) showed links of FOG solid 
formation and local water composition. However, the discrete1 nature of 
this data hampers a quantitative assessment of the transport and 

accumulation processes involved. To the authors’ knowledge 
high-frequency data of FOG layer dynamics is missing. 

Camera-based monitoring of water processes is rapidly popularizing 
due to access to relatively inexpensive hardware (Pagnutti et al., 2017) 
and community driven open access software initiatives (e.g. OpenPIV or 
Opencv). In urban drainage, we can find examples such as the obser-
vation of in-sewer processes (Shahsavari et al., 2017 and Regueir-
o-Picallo et al., 2020) or the estimation of flow around drainage 
structures (Leitão et al., 2018, Duinmeijer et al., 2019, Martins et al., 
2018 and Naves et al., 2021). Furthermore, computer-vision deep--
learning (DL) routines allow extracting complex information from 
videos and images. DL allows exploiting spatial and contextual cues 
from imagery to extract information relevant for tasks such as object 
detection or classification. When sufficiently trained, these systems are 
robust to environmental changes (e.g. lighting, visual conditions) and 
can be deployed in the field. For instance, for the determination of 
flooding area estimates (Jiang et al., 2019 or Moy de Vitry et al., 2019) 
or lab-scale model surface classification (den Bieman et al., 2020). The 
synergies of computer-vision and DL applications will likely increase the 
number of variables that we are capable to measure in hydro-ecological 
environments (Valero et al., 2021) and for which the urban drainage 
community should adapt (Blumensaat et al., 2019). 

This article presents the design and deployment of an embedded- 
camera system for long-term and high-frequency automated moni-
toring of FOG layer dynamics in the sump of WWPS that is non-invasive, 
scalable and robust. A deep-learning routine was built and used to 
process large quantities of WWPS top-view images for the detection of 
FOG layers. We showcase the application of this system with a dataset of 
6-months (2 minutes frequency) collected at a WWPS in the munici-
pality of Rotterdam. Also, we discuss the possibility of extracting addi-
tional variables of interest for the management and control of WWPS (e. 
g. water level, surface flow velocity fields and vorticity estimations). 

The outline of the present article is as follows: The hard and software 

Fig. 1. Accumulation of loose floating FOG solids (a) to a closed stiff FOG layer that covers the entire sump surface (b).  

Fig. 2. Side-view of the sump of the Pretorialaan WWPS with approximate camera locations and camera view field. The dimensions are in meters.  

1 The term ‘discrete’ here refers to ‘observations made only once or with 
irregular time intervals’ that do not allow for quantification of the underlaying 
dynamic processes. 
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designs are described in section 2 Materials and methods. Section 3 re-
ports and discusses the results obtained in two pilot wastewater pump 
sumps. Finally, section 4 addresses the overall conclusions along with 
suggestions for future research and applications. 

2. Materials and methods 

2.1. Case studies 

2.1.1. WWPS Pretorialaan 
This pumping station discharges wastewater from a combined sewer 

system in the south of Rotterdam (the Netherlands) to a wastewater 
treatment facility. The connected catchment has a size of approximately 
650 ha and 120,000 inhabitants. The sump of the WWPS has a rectan-
gular geometry of 18 × 3 m (surface area), see a side-view in Figure 2. 
Waste- and stormwater enters the sump by a 1.2 × 1.2 m inlet with soffit 
level at -4.87 m NAP (Amsterdam Ordnance Datum). The station has five 
pumps for the discharge of wastewater (pump 1) and stormwater 
(pumps 2 to 5). Pump 1 has a fixed capacity of ~1200 m3/h. Pump 2 to 5 
has a variable capacity of 1500 to 2000 m3/h. In the middle of the sump 
there is a small restriction in the cross-sectional flow area (1.9 × 2.1 m). 
This restriction is used as dividing line for splitting up the sump in two 
sections (section 1 and section 2, see Figure 2). Two cameras were 
installed in section 1 one day after the operators cleaned the sump (28- 
07-2020). 

2.1.2. WWPS Nieuw Terbregge 
This WWPS is also located in Rotterdam and discharges wastewater 

from a separated sewer system. The connected catchment has a size of ~ 
61 ha and ~ 2000 inhabitants. The sump has a rectangular geometry of 
1.6 × 2.5 m. The wastewater enters the sump by an Ø600 mm inlet and 
discharges by two submersible pumps with a fixed capacity of about 35 
m3/h each. A set of flanges were installed in the inflow channel to 
promote circulation in the pump (Duinmeijer 2020) and investigate the 
formation of surface vortices. A top-view camera was installed at this 
station. Data from this station is used in this study to showcase the po-
tential to derive surface velocity fields and vorticity estimations in pump 
sumps. 

2.2. Monitoring system 

The camera system was composed by a programable micro-computer 
(Raspberry pi 4+ 4GB RAM, Raspbian Linux OS), an 8-megapixel cam-
era (Sony IMX219) mounting a 98◦FOV fisheye lens (ENTANIYA RP- 
L98). A custom-made 3D printed case was constructed in ABS plastic 
with a protective paint coating and an acrylate lens protector. The 
enclosure had a stainless steel backplate to ensure good thermal dissi-
pation of the hardware. Figure B1 (Appendix B) contains a graphical 
depiction of the camera case and power-supply box. Three LED flood-
light lamps (KONIG LED, 750 lumens, 10W) were used to illuminate the 
basin and were mounted below three access gates. Waterproof connec-
tors and the tailored design of the enclosure aimed at reducing corrosion 
and gas/condensation damage to the camera system. 

Two of these cameras were deployed (FATracker 1 and 2) at section 1 
of the Pretorialaan station (~9 × 3 m) as shown in Figure 2. The cameras 
were installed below one of the maintenance access gates to the basin at 
approximately -1.2 m NAP. Water level was maintained at an average of 
-4.2 m NAP and a maximum level of -1.94 m NAP was recorded during 
the measurement campaign. The cameras had a 5V power supply and 4G 
connection for remote operation and data transfer (provided by a router 
TP-Link TL-MR6400). Individual images were acquired using a shutter- 
speed of 100 ms, ISO-800, 1024 × 768 px resolution at 2 minutes in-
terval. Two consecutive images (at a user defined Δt) could also be 
collected for estimating displacement fields. Operational and mainte-
nance access was granted through a 4G VPN network, email alerts were 
scheduled for camera thermal levels (none were triggered during the 
observation period). 

A third camera was installed at Nieuw Terbregge WWPS to investigate 
the formation of surface vortices in 2018 (see Duinmeijer 2020). This 
consisted of a commercially available IP-camera (Axis M1125-E), 
recording at 30 images per second with a resolution of 480 × 640 px 
in a top-view configuration. Images were transferred through 4G 
network to a centralized server at the municipality of Rotterdam. Im-
agery of this camera is used in this study to showcase the potential use of 
top-view imagery to derive surface velocity characteristics (and 
vorticity) in a WWPS. 

2.3. Image pre-processing 

A pre-processing routine was applied to images collected in order to: 
i) Correct for lens and sensor optical deformation (intrinsic calibration), 
ii) rectify the water plane perspective and iii) mosaic images to create a 
seamless basin image. The python library OpenCV (Bradski, 2000) was 
used for the camera calibration and perspective rectification of the im-
ages. 15 images of a 17 × 21 chessboard pattern with 25 mm squares 
were taken at different orientations and positions from each camera. A 
fish-eye camera distortion model (OpenCV manual, 2014) was fitted to 
the detected checkerboard squares and used to correct for lens and 
sensor distortions (Figure 3, b), thus preserving linear features in the 
image. 

The cameras installed in Pretorialaan were top-down oriented at 
~45 degrees with the horizontal plane, this induced a perspective 
distortion of the water plane which was corrected using known corre-
sponding image-pump sump positions. A perspective-warping model 
was applied to create 4-point perspective transform to a water plane top- 
view position and to mosaic both camera views (Figure 3, c). 

2.4. Semantic-segmentation of FOG layer images 

A convolutional neural network (CNN) routine was developed to 
discriminate between and locate three types of surfaces (FOG, water and 
superstructure) in pump sump images. The network was built using 
Tensorflow (Abadi et al. 2016) and takes the form of a 
semantic-segmentation (Sem-Seg) architecture (Garcia-Garcia et al., 
2017 and Ye and Sung, 2019). This algorithm processes RGB-image data 

Fig. 3. Image pre-processing example. (a) Raw images from camera 1 and 2, 
(b) undistorted image, (c) perspective correction and mosaic. 
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to retrieve dense labelled regions (spatial localization and classification) 
from a pre-selected list of objects or surfaces of interest (i.e. WWPS su-
perstructure, FOG and water extent). 

The network architecture was configured as a VGG16 (Simonyan and 
Zisserman, 2014) encoder, and a fully convolutional network (FCN) 
decoder (Figure 4). We used transfer learning to reduce the number of 
FOG labelled images required during training. To that effect, we 
initialized the encoder (VGG16 network) parameters with weights 
pre-trained on the ImageNet dataset (Deng et al., 2009), a multi-million 
labelled image public repository. This allowed acquiring a relatively 
general set of encoder filters capable of performing object classification 
before the application to FOG layer detection. A sparse categorical 
cross-entropy loss function was used to update the network parameters. 

Representative images across different water level and FOG layer 
extent states were manually selected to create a training database. A 
total of 89 mosaicked images (see Figure 3), c) were manually labelled 
(by the same individual), hence supplying masks of the extent of FOG 
layer, water and pump superstructure (e.g. walls, cables/pipes, gates 
etc.). A data augmentation routine was applied to increase the training 
size by mirroring all labelled images. Thus, a total of 178 labelled images 
were used during training and validation of the network with a split of 
70%-30% (124 training, 54 validation). During training, both encoder 
and decoder parameters were updated. Training was performed during 
250 epochs using a batch of size of 15 examples. An NVIDIA Tesla Turing 
4 GPU (16GB, 8.1 TFLOPS) was used during the learning and testing 
phase. 

During processing, images from both cameras were undistorted and 
mosaicked to create the optically-corrected basin top view. Then, input 
images were resized to the input size of the Sem-Seg network (320 ×
800px) and processed. Class-encoded output masks were upscaled back 
to the original mosaic size (640 × 1660px) and were fed to the post- 
processing algorithm, which computed geometrical properties of the 
FOG layer over time. 

The image segmentation routine was carried out offline using a 
NVIDIA Quadro T2000 GPU (4GB) with a processing time of 1.2 seconds 
per image. Also, in-sensor inference could be achieved at the camera 
(using a Raspberry Pi 4 Model B, ARM CPU Quad core Cortex-A72) with 
a processing time of 9.8 seconds per image. The camera could hence 
work in two modes, in-situ processing and transferring processed masks 
(reduced data transfer) or transfer raw RGB high-resolution images for 
offline postprocessing. 

2.5. Post-processing 

2.5.1. FOG-Water surface ratio 
Masks provided by the Sem-Seg CNN output classify regions of 

water-FOG-superstructure. A computer-vision algorithm was created to 
retrieve the extension and location of the layers over time. This consisted 
in a morphological opening and closing operation on the raw masks 
(border smoothing and noise filtering), extracting contours from the 
labelled mask and computing surface areas. Since images were 
perspective-rectified for a top-view of the basin, we assumed that the 
ratio between water surface and surface covered with FOG was 
approximately depth-invariant. 

Instantaneous FOG-water ratio was computed using the Sem-Seg 
derived FOG top-view pixel area (AFOG) and the water pixel area 
(AWater) as: 

FOG
/

water ratio =
AFOG

AFOG + AWater
(1) 

Additionally, in order to visualize FOG layer dynamics, we computed 
the along-length FOG/water pixel density average (from the inlet to the 
pump sump separation wall) as depicted in Figure 5, thus displaying a 
length-time 2D FOG pixel density. 

2.5.2. Cameras for water level estimation (optical gauge) 
Exploiting image-data to extract water level information is a prom-

ising strategy to leverage the growing number of CCTV networks in cities 
worldwide. For instance, Jiang et al., (2019), proposed extracting street 
flooding water levels by comparing landscape features of known shape. 
(Moy de Vitry et al., 2019), on the other hand, proposed a simple 
water-area proxy as a correlated variable to water level in street video 
data. Here, we applied a similar approach to de Vitry et al., 2019 to 
derive sump pump water level data as a by-product of the FOG moni-
toring system. We used the observed wet area ( Awetcam = AFOG + AWater, 
in pixels) to define a distance-to-camera proxy. However, since our 
imagery was strictly a top-down view of a rectangular basin (as opposed 
to street-camera applications), we used the square-root of the 

Fig. 4. Semantic-Segmentation CNN architecture scheme.  

Fig. 5. Scheme for the time-dependent length-wise FOG layer posi-
tion dynamics. 
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instantaneous wet area to transform to a length-proxy dimensions. 
Synchronized water level measurements (dobs) during a period of 8 days 
(25-09-2020 – 02-10-2020) and two-minutes frequency were used to 
calibrate a regression model from the proxy optical-gauge (A0.5

wet cam) to 
an estimated basin water level (d′

w). A gaussian process regression model 
(GP) was adjusted in the following form: 

d
′

w = f
(

A0.5
wetcam

)
+ ε

f (⋅) ∼ GP(0, k(⋅, ⋅))
ε ∼ N

(
0, σ2)

(2)  

with k(⋅, ⋅) a squared exponential covariance matrix (k(x,x′

) = ekp‖x,x′
‖

2
, 

kp a scale parameter) and ε a random variable of gaussian i.i.d noise. The 
calibrated regression model was used to obtain an optically derived 
water level estimated in the full time-series and was validated using a 
time-series of 30 days (2 min frequency, 20-08-2020 – 20-09-2020). 

2.5.3. Particle tracking velocimetry and vorticity estimations 
Velocity data of the surface flow in the sump can also be derived as a 

by-product of the camera installation. This requires the presence of 
optical tracers (e.g. debris or FOG solids) to be captured by subsequent 
images (Jeanbourquin et al., 2011), or by seeding the domain with a 
visual tracer (e.g. fluorescent particles, Naves et al., 2020). These tracers 
can be used to find spatiotemporal correlation patterns and retrieve 
velocity fields by Particle Image Velocimetry (PIV, Adrian and West-
erweel, 2011), or Particle Tracking Velocimetry (PTV, Agüí and 
Jiménez, 1987). 

To illustrate this, we use imagery from the Nieuw Terbregge station. 
The geometry of this station was modified with a deflector flange 
installed at the inlet to enhance flow circulation and promote the gen-
eration of free-surface vortices (Duinmeijer 2020), an undesirable 

process for the operation of pumping systems. We acquired consecutive 
images with a frequency of 1.51 Hz (each 20 frames). These were un-
distorted and perspective-corrected at the water plane (as described in 
Section 2.3). A sequence of 244 images was used to derive 
particle-tracking velocimetry (PTV) for the quantification of the surface 
velocity field ( u→) and flow vorticity ( ω→ = ∇ × u→) from the floating 
particles embedded in the flow. The signal-to-noise ratio in the images 
was improved using an ensemble background subtraction and a manu-
ally defined area of interest. An initial velocity estimation was obtained 
by a sum-of-correlation (SOC) approach with 2 passes at 16 × 16 px with 
50% overlap. Particle tracks and velocities were derived using the 
2D-PTV algorithm from DaVis PIV software (LaVision, version 8.0) using 
the SOC field as initial displacement. Vorticity was computed directly 
from the (SOC) velocity field. 

2.6. Additional datasets 

A set of additional measured variables were used to describe the 
interaction of the FOG layer with different processes of the WWPS. 
Table 1 presents the main characteristics of all sensors used in this study. 

3. Results and discussion 

3.1. Semantic segmentation of FOG surfaces 

The weights of the Sem-Seg CNN structure were updated during 250 
epochs when training. This resulted in a final loss of 0.051 and 0.054 for 
training and validation respectively, corresponding to 97.9% and 97.8% 
accuracy. The progression of loss and accuracy during training is shown 
in Figure 6. The results of training and validation of the Sem-Seg CNN 
routine were deemed appropiate for the application. 

A collection of 30 manually-selected images at representative states 
of water-level and FOG cover (outside the training and validation 
datasets) were used to visually assess the behaviour of the Sem-Seg al-
gorithm. Figure 7 shows the output at six random samples of the 30 
cases. The color-coded classification mask is shown in the middle col-
umn and a merged raw input and classified mask is shown in the right 
column. 

We processed ~106,000 images captured at the WWPS Pretorialaan 
generating masks for surface class (i.e. superstructure, FOG and Water). 
Figure 8 shows an example of the detection of water and FOG cover at a 
time-snapsot. 

3.2. Analysis of FOG layer dynamics 

Figure 9 shows the time-series processed at the WWPS Pretorialaan 
with measured rainfall intensity, measured sump water level and sewer 
inflow. The image-derived dynamics of the FOG/Water layer capture the 

Table 1 
Sensor characteristics.  

Variable Freq Unit Resolution Characteristics 

Water level at the 
pumping station 
(Pretorialaan) 

1 
min 

m ±0.075% 
water depth 

Pressure gauge 
Endress+Hauser type 
FMB70 

Pump flow 
(Pretorialaan) 

1 
min 

m3•s− 1 ±0.5% flow 
rate 

Electromagnetic flow 
meter 

Rainfall intensity 1 h mm•h− 1 ±0.1 mm/h KNMI Station ID-344 
Rotterdam 

FATracker 1 and 2 
(Pretorialaan) 

2 
min 

px 1024 × 768 
px ~10.6 
mm/px 
(mean) 

Camera (Sony 
IMX219) Processing 
unit (ARM Cortex- 
A72) 

IP-Camera (Niew 
Terbregge) 

30 
fps 

px 480 × 640 px 
~ 6.2 mm/px 
(mean) 

Camera (AXIS M1125- 
E)  

Fig. 6. Training and validation loss value (left) and accuracy (right) after 250 epochs of training.  
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progressive FOG build-up from the initially clean sump. The WWPS 
sump went from a FOG/Water surface ratio of 2% on the 28-07-2020 
until a 77% on the 31-01-2021 (187 days) computed as a 10-day roll-
ing mean. A video animation of the full dataset can be found in 
Appendix D. 

Data derived from the optical location of FOG-water surfaces in the 
sump, can be used to assess the accumulation and transport of FOG 
solids over time. Additionally, this data provides valuable information to 
understand interactions between the sump geometry, and the WWPS 
operational rules. Figure 10 presents a detailed analysis of a 13-day 
period (03-11-2020 – 16-11-2020), depicting FOG/water ratio (2nd 

row) and the length-wise FOG layer location dynamics (3rd row). We 
could observe that the FOG layer dynamics are strongly influenced by 
the water level, pump discharge and pump operation pattern. 

During dry-weather flow (DWF) the FOG layer presented stable 
fluctuation (minute-day timescale) due to the intermittent variation of 
kinetic energy generated by the inlet flow and the DWF pump switch- 
on/off levels (pump 1, see Figure 2). The inlet flow mobilizes the FOG 
layer mass shifting it towards pump 1 (sump section 2). High inflow 

during storm events (wet weather flow, WWF) leads to an increase of 
water level in the pump sump and the activation of storm-water pumps 
(pump 2 to 5). The FOG layer extent showed a strong sensitivity to water 
level. This could be explained by the hydrodynamics in the sump; at high 
water level, the flow of FOG towards the sump section 2 is blocked by 
the restriction in the middle of the sump (Figure 2). Simultaneously, the 
submerged inlet inflow and the activation of WWF pumps creates a 
surface recirculation pattern in the sump extending the FOG layer to-
wards the inlet. A similar behaviour in the dynamics of the FOG layer is 
observed in the 13th of October, when pump 1 was temporally discon-
nected and a higher DWF pump switch-on water level was maintained 
during several days. This increased water level resulted in a restriction of 
FOG flow towards the pump section 2 and the reduction of the sewer 
inflow velocity, thus producing a larger FOG layer length-wise ampli-
tude than with the previous DWF settings (see Figure 10). 

It should also be noted, that the field of view (FOV) of the camera 
mosaic did not cover the entire sump surface at extreme high-water 
levels. For a sump water level above − 3.5 m the water surface-view 
exits the FOV of camera 1. The entire mosaic FOV was covered by the 
water surface at an approximated depth of − 2.8 m (see Figure 7, first 
row). The degree of FOV cover can be seen at Figure 10 (middle graph) 
which shows the length-wise location of the wet (FOG and water) cover 
with respect to the camera view. This may induce a bias at high-water 
level and should be taken into consideration during the design (e.g. 
use of wide-angle lenses) and analysis of the FOG measurement 
campaign. 

During the observation period the system suffered several incidents 
that required maintenance. An automated sampler (to monitor evolution 
of SARS-CoV-2) was installed in view of camera 2 from 08:46 10-09- 
2020 onwards. The Sem-Seg algorithm filtered this view obstruction 
(see examples 4, 5 and 6 in Figure 7). Also, camera 2 suffered inter-
mittent loss of connection during three periods (seen in the FOG data 
gaps in Figure 9). This has now been remediated by the installation of a 
connection monitor-device. It should also be noted that the dataset 

Fig. 7. Input image and predicted multilabel mask (green - water, yellow - FOG and purple – superstructure) at six test images independent from the training dataset.  

Fig. 8. Example for a mosaicked and rectified pump sump view with overlay of 
the CNN-classified water and FOG cover zone at the WWPS Pretorialaan. Image 
corresponding to 25-10-2020 00:27 with a 47% FOG ratio cover. 
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Fig. 9. WWPS Pretorialaan processed timeseries. Rainfall, image-derived FOG/Water ratio, measured water level and estimated WWPS inflow (derived from pump 
discharge and water level changes). 

Fig. 10. Detailed FOG layer dynamics. In order from top to bottom: i) Water level (m NAP referenced), ii) FOG/water ratio, iii) Length-wise FOG spatial location 
(cross-section percentage of FOG (yellow) to water (blue) from the inlet section to the rear wall), iv) pump discharge and estimated WWPS inflow (from sewer) and v) 
pump operation pattern. 
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presented was gathered from 28-07-2020 until 31-01-2021. Most of this 
period was under the influence of restrictions (of varying severity) to 
mitigate the COVID-19 pandemic in the Netherlands (see Figure C1, 
Appendix C). Consequently, this data might capture changes in behav-
ioural patterns in the population (due to restrictions) and might not be 

fully representative of a pre- or post-pandemic situation. 

3.3. Cameras as an optical-gauge for water level estimations 

Water levels were derived from a regression model (see eq. (1)) that 
transformed the camera view wet-area extent to a water level estimate. 
Figure 11 shows the results of training and testing the optical-gauge 
model. In the top-left, the gaussian process model mean and 95% CI is 
shown. It is to be noted, that intermediate/high water level was well 

Fig. 11. Cameras as an optical water level gauge. A Gaussian process regression model was fitted for water level measurements and an optically derived depth proxy 
(top-left). At the top-right, comparison of optically derived water level vs. measured at an independent test dataset (30 days). The graph at the bottom presents a 1 
day time-series (2-min resolution) of water level measurements and optically-derived water level. 

Fig. 12. Surface flow particle-tracking velocimetry (left) and vorticity (right, shown together with arrows displaying velocity direction and magnitude) estimations 
in the sump of the WWPS Nieuw Terbregge. 

Fig. A1. Detail of a stiff FOG layer at the Pretorialaan WWPS (a), and (b) 
cleaning of a 1.8-meter thick stiff FOG layer in the W.M. Schurmannstraat 
WWPS (source: municipality of Rotterdam). 

Fig. A2. Cleaning of the FOG layer at the Hoekersingel WWPS (source: mu-
nicipality of Rotterdam). 
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captured. We observed an increase in variance at low water levels, 
explained by the top-view perspective that is expected to reduce surface 
differences with increasing camera-to-object distance. On the other 
hand, extreme water level (dobs > − 2.8 m NAP), which fully cover the 
camera view could not be derived (denoted by the change in slope at the 
end the regression plot, Figure 11, top-left). Using the period of 20-08- 
2020 to 20-09-2020 (31 days, 2 minutes frequency) as a test dataset, 
resulted in a root-mean-square error of 0.11 m and a Nash-Sutcliffe ef-
ficiency of 0.901. This shows, that once calibrated, the optical-gauge can 
be used as a reliable source of water level information for wet to dry 
weather flow transitions or as a redundant alarm system for pump 
malfunction events. Higher accuracy can likely be achieved with a 
dedicated design, for instance deploying a calibrated high-contrast ob-
ject (e.g. white board in a wall) or optimizing the camera position for 
water level observations. 

3.4. Surface flow velocimetry and vortex detection in pump sumps 

Figure 12 shows the estimation of a surface flow velocity field by 
means of PTV (left) and the estimation of the flow vorticity (right) in the 
sump of the WWPS Nieuw Terbregge. These measurements may be 
affected by the slip between the tracer and the water flow and thus 
underestimate the real flow velocity. The severity of this bias will 
depend on the particle-flow characteristics (i.e. mass, superficial density 
and lumping/aggregation phenomena). The extent and correction of 
these processes remains to be further investigated. We observed that 
tracers appear to be between 0.01 to 0.2 m, and often mix buoyant 
objects of different nature (e.g. plastic litter) with ellipsoidal FOG lumps. 
An example of the raw imagery used for the PTV processing can be found 
in Appendix E. Also, Appendix A, Figure A3 (A) shows a typical high 
surface density tracer distribution at a different WWPS. 

Nevertheless, these estimated flow velocity and vorticity fields 
represent a relevant source of information (even qualitatively) about 
surface particle motion and may be used for the detection of free-surface 
vortices in the pump sump (highly relevant for the pump operation). 

4. Conclusion 

This study describes the use of a programable camera system that can 
be deployed in (wastewater) pumping stations and can acquire and 
automatically process high-frequency data of FOG layer dynamics. The 
relatively inexpensive hardware involved makes the technology widely 
accessible. Estimation of the FOG layer cover through the deep-learning 
routine resulted in a performance comparable with human classification 
(0.978 accuracy during validation). This AI solution shows a good 

Fig. A3. Accumulation of loose floating FOG solids (A) to a closed stiff FOG 
layer that covers the entire sump surface (B), (Duinmeijer, 2020). 

Fig. B1. Hardware scheme. a) 3D design of the camera case, mount and piv-
oting camera stand. b) Raspberry pi and camera physical layout. c) Setup box 
with power supply, 4G connection and lighting control. 

Fig. B2. Installation detail for a) camera mounts (camera 1, right and camera 2, left) and b) final enclosing of cameras with a water/gas-tight gate at the Pretor-
ialaan station. 
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scalability since it can efficiently process large amounts of data (high- 
frequency, long term monitoring) with a reduced initial investment 
(manual labels). The Sem-Seg routine presented in this article used only 
data collected at the WWPS Pretorialaan (89 manually labelled images), 
and thus direct transferability of the classification algorithm to other 
stations cannot be guaranteed. Further work should aim at generalizing 
the FOG layer detection (transfer-learning) to a wider variety of pump 

sumps. 
The monitoring solution presented is also capable of in-situ pro-

cessing of images. We used an embedded camera system with a Linux 
based micro-computer (Raspberry pi 4 Model B) which could run the 
Semantic-Segmentation machine-learning routine for the detection of 
FOG layers in 9.8 seconds per image at the camera itself. Hence, the 
system can be deployed in the field and the data transfer can be limited 

Fig. C1. Covid-19 pandemic restrictions for Schools, social events, restaurants and public commercial businesses during the monitoring period of this study.  

Fig. E1. Example of raw imagery from the Nieuw Terbregge WWPS used for deriving particle tracking velocimetry fields. a) and b) represent two RGB frames taken 
at 0.66 s difference, and c) shows the processed particle velocity field. 
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to the post-processed variables alone, thus avoiding heavy raw-image 
data transfer. In-sensor deep-learning processing, also known as Edge 
AI computing (Deng et al., 2020) aims at leveraging inexpensive hard-
ware for low-power inference of ML algorithms (e.g. NVIDIA Jetson 
Nano or google coral TPUs) to reduce data transfer requirements by 
in-situ processing. This would allow for on-site observation of variables 
in remote locations with low-power low-bandwidth data links (e.g. 
LoRaWAN satellite links, Fraire et al., 2020). We believe that the pre-
sented application here shows a promising potential for monitoring 
other emerging bio-hazards in hydro-ecological environments, for 
instance monitoring of algae-blooms, plastic litter, fauna, sediment 
plumes or other processes in remote locations. 

In long-term monitoring of FOG, the adoption of a reproducible and 
robust optical calibration (corresponding frame-to-world coordinates) 
routine is encouraged. This should aim at restoring and allowing for 
continuity of the measurement series even under major disturbance of 
the camera position (e.g. cameras moved/disrupted during external 
maintenance). Also, due to the complex geometries found in WWPS 
sumps, the installation of multiple cameras is often required. This results 
in the need for robust image-stitching (mosaicking) routines. 

Top-view pump sump imagery can also be used to derive additional 
relevant variables for the operation of the pumping station. The use of 
calibrated optical-gauges for the estimation of water level data could 
help retrieving data in un-gauged locations, assist in model calibration 
(de Vitry and Leitão, 2020) or act as a redundant sensor to detect failures 
of WWPS water level sensors (e.g. clogging, de-synchronization). 
Additionally, particle tracking velocimetry can be exploited to esti-
mate the flow surface velocimetry, the flow circulation and vorticity at 
the pump sump. These variables are of high-interest for the management 
of WWPS since they could be used to detect the presence of 
air-entrapping free-surface vortices and as tools for assisting real-time 
control systems. Nevertheless, there are aspects of the surface velocity 
estimation that remains to be further investigated, for instance assessing 
the slip between flow and particle or the definition of robust parameters 
for (PTV/PIV) imagery in pump sumps (e.g. time delta, pixel resolution 
etc.). On the other hand, the FOG layer monitoring system constitutes a 
ready to use data source for the planning of FOG removal and mainte-
nance operations. 

One of the major limitations of the current measurement solution is 
that the top-view camera can only retrieve FOG surface characteristics, 
and thus neglects vertical growth and associated dynamics. Due to the 
buoyant and disaggregated nature of the loose FOG solids, this does not 
seem to affect the ability to capture long-term accumulation of FOG 
solids until the full surface of the sump is covered by a FOG layer. 
Further research is needed to devise a robust sensor for continuous 
monitoring of the layer depth and thus complement the measurements 
described in the present study. 

To the authors’ knowledge this is the first documented long-term 
high-frequency FOG layer dynamics database for WWPS. We believe 
that acquiring examples in a larger number of pumping stations would 
allow to describe fundamental processes involving accumulation and 
transport of FOG solids. Further research should aim at exploring FOG 
growth under the inherent variability of drainage systems (i.e. catch-
ment/climatic characteristics, pipe network geometry, social habits 
etc.). 
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Appendix A. WWPS FOG layer Examples 

Fig. A1, Fig. A2, Fig. A3. 

Appendix B. Hardware and installation 

Fig. B1, Fig. B2. 

Appendix C. Restrictions due to the COVID-19 pandemic 

Fig. C1. 

Appendix D. Dataset video animation 

Link to electronic supplementary material video: https://www. 
youtube.com/watch?v=R_G7hVlTje8 

Appendix E. Particle tracking velocimetry 

Fig. E1. 
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