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A hybrid deep learning technology for PM2.5 air quality forecasting
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Abstract
The concentration of PM2.5 is one of the main factors in evaluating the air quality in environmental science. The severe level of
PM2.5 directly affects the public health, economics and social development. Due to the strong nonlinearity and instability of the
air quality, it is difficult to predict the volatile changes of PM2.5 over time. In this paper, a hybrid deep learning model VMD-
BiLSTM is constructed, which combines variational mode decomposition (VMD) and bidirectional long short-term memory
network (BiLSTM), to predict PM2.5 changes in cities in China. VMD decomposes the original PM2.5 complex time series data
into multiple sub-signal components according to the frequency domain. Then, BiLSTM is employed to predict each sub-signal
component separately, which significantly improved forecasting accuracy. Through a comprehensive study with existingmodels,
such as the EMD-based models and other VMD-based models, we justify the outperformance of the proposed VMD-BiLSTM
model over all compared models. The results show that the prediction results are significantly improved with the proposed
forecasting framework. And the prediction models integrating VMD are better than those integrating EMD. Among all the
models integrating VMD, the proposed VMD-BiLSTM model is the most stable forecasting method.

Keywords Air quality prediction . Deep learning . Variational mode decomposition . Bidirectional long . Short-term memory
network

Introduction

Due to the acceleration of global urbanization, the air quality
decreases significantly around the world in general. Air pol-
lution incidents or abnormal weather have significantly in-
creased in many countries, and such pollution severely
threatens local lives and social development (Chan and Yao
2008; Zhao et al. 2019; Li et al. 2019a). Therefore, in recent
years, strengthening the monitoring of air quality and the fore-
casting of air pollution have become an increasingly popular
topic in the rapidly developing artificial intelligence (AI) tech-
nology. PM2.5 refers to fine particles in the air with an aero-
dynamic equivalent diameter of 2.5 microns or less.

Compared with other coarser atmospheric particles, PM2.5

particles are smaller and have a longer transmission distance
(Morillas et al. 2019; Wu et al. 2019). The PM2.5 level there-
fore is important for human health (O'Donnell et al. 2011;
Morillas et al. 2019).

In recent years, the forecasting of PM2.5 has aroused the
attention of researchers. There are mainly two types of fore-
castingmethods of PM2.5 in the literature, including numerical
modeling and statistical modeling. The numerical modeling
method builds models based on physical and chemical prop-
erties through numerical calculations. The prediction is con-
ducted by analysing distributions of PM2.5 in the atmosphere
and solving the conservation equations. The numerical model-
ing method is usually more practical, providing systematic
prediction results. However, it requires detailed and precise
information on regional climate, mountain landforms and the
distribution of pollution sources (Li et al. 2019a, b; Hao et al.
2020).

With the continuous development of AI technology, statis-
tical modeling, especiallymodels that integrate machine learn-
ing (ML) and deep learning (DL) techniques, attracts atten-
tions from a wide range of scientists belonging to various
fields (Ding et al. 2019; Wang and Zhang 2020). Most of
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the statistical models are also called data-driven methods.
These data-driven methods fit the target data by utilizing
many samples to refine and approximate the real model con-
tinuously. The state-of-art data-driven method is called long
short-term memory neural network (LSTM) (Hochreiter and
Schmidhuber 1997). In recent years, the LSTM neural net-
work is widely applied in prediction problems (Wu and Lin
2019a; Chang et al. 2020). LSTM is a recurrent neural net-
work (RNN) with a specialized internal structure. With its
unique gated structure, LSTM prevents the gradient disap-
pearance and gradient explosion by controlling the selective
processing of information, thus avoiding the problem of long-
term dependence (Gers et al. 2000).

In this study, the cutting-edge bidirectional long short-term
memory neural network (BiLSTM) is proposed to predict time
series data of PM2.5. The principle of BiLSTM is that each
training sequence comprises two LSTM neuron sequences
(forward and backward), both connecting to the same output
layer. BiLSTM effectively learns the input data from two tem-
poral directions (Wu et al. 2020). In addition, the variational
mode decomposition (VMD) is employed to decompose the
PM2.5 non-periodic signal in the frequency domain. The input
signal frequency domain complexity is reduced by
decomposing the complex signal into multiple harmonic sub-
sequences (Han et al. 2019; Gendeel et al. 2018). The real-
world air quality data collected in Beijing, China, during
2013–2017 is utilized for the comparative study conducted
in Section IV (experimental process and results). And five
evaluation metrics are employed to evaluate the forecasting
performance. Experimental results show that the proposed
method is superior to existing data-driven PM2.5 forecasting
methods.

Related works

Time series forecasting is a popular topic in AI, especially
when the time series is dynamic and non-linear. For non-
linear time series data forecasting problems, AI-based
methods usually achieve better performance compared with
the traditional approaches.

Based on a specialized internal structure of neurons, LSTM
is widely implemented in a variety of time series forecasting
fields. In terms of household electricity forecasting and
photovoltaic power generation forecasting, LSTM and its
extensions show outstanding performance. Yan et al. (2018)
employed CNN to accurately extract one-dimensional house-
hold electricity data features and apply LSTM to predict
household energy consumption. The wavelet decomposition
was introduced to decompose the household electric energy
signal into signals of different frequencies for processing (Yan
et al. 2019). The process of wavelet decomposition reduced
the complexity of the frequency domain. The decomposed

data then input it into the LSTM unit for prediction.
Compared with the model without wavelet decomposition,
the forecasting performance is effectively promoted. Given
the periodicity and volatility, Zhou et al. (2019) added the
attention mechanism to the LSTM unit to increase the focus
upon CNN feature extraction. In addition, LSTM is also ap-
plied to other fields. Ding and Qin (2019) proposed a LSTM-
based multiple-input multiple-output recurrent neural network
model to predict stock price fluctuation trends and the highest
and lowest opening prices. Jin et al. (2020) employed LSTM
to recognize text data. Xie et al. (2019) applied the LSTM
neural network to classify language emotions (SEC).

LSTM and its extensions are widely adopted for air quality
forecasting. Li et al. (2020) proposed a hybrid deep learning
model combining convolutional neural network (CNN) and
LSTM to predict the concentration of air pollutants PM2.5 in
the next 24 h. Wang et al. (2020) combined chi-square test
(CT) with LSTM for air quality forecasting. The prediction
accuracy is higher than traditional machine learning methods,
including support vector machine regression (SVR), multi-
layer perceptron (MLP), back-propagation (BP) neural
network and RNN.Wu and Lin (2019a) used LSTM to predict
the high-frequency sub-sequence WD(D) after wavelet de-
composition in AQI and used the least square support vector
machine (LSSVM) to predict the low-frequency sub-sequence
WD(A), by combining the two methods to achieve efficient
prediction accuracy. Xu and Yoneda (2019) proposed a multi-
tasking LSTM auto-encoder model for air quality prediction.
The PM2.5 index in Beijing, China, was investigated. The
LSTM auto-encode model was capable of encoding key evo-
lution pattern of urban meteorological systems and providing
superior performance compared with traditional prediction
models.

Frommany of the above works, for unstable and non-linear
time series data forecasting, a good prediction model includes
both signal processing and deep learning models. Useful sig-
nal processing functions can effectively improve the accuracy
of prediction. Current effective signal processing methods in-
clude variational mode decomposition (VMD), empirical
mode decomposition (EMD), Kalman filter (KF), singular
value decomposition (SVD) and wavelet transform (WT).
Zheng et al. (2017) proposed an EMD-LSTM hybrid model
combining empirical mode decomposition (EMD) and
LSTM, which decomposes the power load data signal into
multiple intrinsic mode functions (IMF) for prediction and
evaluation. Wu et al. (2020) employed singular value decom-
position to reconstruct the original cutting force signal of the
tool and then used BiLSTM to predict the characteristic sub-
signal, which effectively improves the prediction accuracy.
Chang et al. (2019) applied wavelet transform (WT) to de-
compose the electricity price data, and the processed data will
have a more stable variance. Combined with the Adam opti-
mizer, a hybrid model WT-Adam-LSTM is proposed. Song
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et al. (2019) employed Kalman filter (KF) to process the orig-
inal data then input it into LSTM units, forming an LSTM-
Kalman hybrid model to predict the concentration of air pol-
lutants. Wu and Lin (2019b) used sample entropy (SE) to
reorganize the sub-sequences decomposed by VMD, and then
used LSTM to predict the new sequence. In such a way, the
computational complexity was reduced. And the signal over-
decomposition problem was prevented.

Methodology

Data and standardization

The dataset used in this study is from the UCI machine learning
knowledge base, which is the air quality data of 12 observatories
around Beijing recorded by the US Embassy from 2013 to 2017

(Zhang et al. 2017). The original data set was sampled and re-
corded at hourly intervals, with 35,064 samples (1461 days).

In the test experiment, the first 24,000 data samples (1000
days) of the first 26,400 data fromChangping Observatory are
selected as the training set, and the last 2400 data (100 days) as
the test set for the experiment.

Data standardization is one of the critical steps of time
series forecasting. The zero-mean standardization method is
applied to process the data. Data standardization with a mean
value of 0 and a standard deviation of 1 that obey the standard
normal distribution is obtained. The standardization and de-
standardization formulas are:

x* ¼ x−x
σ

ð1Þ

x ¼ σx* þ x ð2Þ

Variational mode decomposition (VMD)

Due to the violent fluctuation and the complex distribution in
the original PM2.5 data frequency domain, it is challenging to
achieve high-precision prediction. Therefore, the method of
variational mode decomposition (VMD) is employed to
stationarize the input data. The original PM2.5 data signal is
adaptively decomposed into several intrinsic mode functions
(IMFs) by VMD. This decomposition effectively reduces the
nonlinearity and volatility, thereby achieving signal stability
(Liang et al. 2020). When ensuring that the decomposition
sequence is IMFs with a limited bandwidth with a center fre-
quency, VMDmust finally minimize the sum of the estimated
bandwidth of each mode.

The specific resolution process is as follows.

Fig. 1 The result of variational mode decomposition
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Fig. 2 Internal structure of a traditional LSTM neuron
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Construct a variational problem, decompose PM2.5 data
into K mode variables, each mode uk(t) is a finite bandwidth
with a center frequency ωk. The variational problem’s objec-
tive function is the minimum sum of the estimated bandwidth
of each mode, and the constraint condition is that the sum of
the mode components is equal to the original signal. Then, the
corresponding expressions are

min
uk;ωk

∑
k

∂t δ tð Þ þ j=πtð Þ*uk tð Þ½ �e− jωkt
�� ���� ��2

2
ð3Þ

s:t: ∑
K

k¼1
uk ¼ f ð4Þ

where δ(t) is the Dirac function, f is the original signal and * is
the convolution operator.

To obtain the constrained variable problem’s optimal solu-
tion, the penalty factor α and the Lagrangian multiplication

operator λ(t) are introduced to transform the constrained var-
iational problem into an unconstrained variational problem.
The definitions are

L uk;ωk;λð Þ ¼ α∑
k

∂t δ tð Þ þ j=πtð Þ*uk tð Þ½ �e− jωkt
�� ���� ��2

2

þ f tð Þ−∑
k
uk tð Þ

���� ����2
2

þ λ tð Þ; f tð Þ−∑
k
uk tð Þ

� �
ð5Þ

Finally, the alternating direction multiplier (ADMM) itera-
tive algorithm is applied to optimize the obtained mode com-
ponents and center frequencies to solve the optimal solution of
the augmented Lagrangian equation iterator of the equation.
The iteration process is as follows:
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Fig. 3 Internal structure of
BiLSTM unit

Fig. 4 Experiment flow chart of VMD-BiLSTM
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bunþ1

k ωð Þ ¼
bf ωð Þ− ∑

i¼k
bui ωð Þ þ

bλ ωð Þ
2

1þ 2α ω−ωkð Þ2 ð6Þ

ωnþ1
k ¼

∫∞0 ω buk ωð Þ
��� ���2dω

∫∞0 buk ωð Þ
��� ���2dω ð7Þ

bλnþ1
ωð Þ ¼ bλn

ωð Þ þ γ bf ωð Þ−∑
k
bunþ1

k ωð Þ
� �

ð8Þ

where γ is the noise tolerance, bunþ1
k , ωnþ1

k and bλnþ1
are the

Fourier transform values newly generated in the iteration.
Figure 1 shows the original PM2.5 time series data wave-

form after VMD decomposition, and the waveform is distrib-
uted from low frequency to high frequency.

Bidirectional LSTM

In the traditional recurrent neural network (RNN) model and
the long- and short-term memory recurrent neural network

(LSTM) model, information can only propagate forward.
This makes the current state information output by the model
solely depend on the lead at present. BiLSTM can obtain
information about the distribution of periods before and after
combining the bidirectional (BiRNN) model and the LSTM
unit (Fig. 2).

This paper chooses the BiLSTM model to predict PM2.5
data and obtain the forward and backward characteristics of
PM2.5, respectively. This mechanism enables BiLSTM to
receive more comprehensive feature information and improve
the prediction accuracy of experimental results.

In the LSTMunit, the decisive role is the forget gate, which
ignores the historical information selectively. The second is
the input gate and output gate, which are used to input and
output the current unit (Moniz and Krueger 2018). The ex-
pression of each equation is

it ¼ σi xtWxi þ ht−1Whi þ bið Þ ð9Þ
f t ¼ σ f xtWxf þ ht−1Whf þ b fð Þ ð10Þ
ct ¼ f t � ct−1 þ it � σc xtWxc þ ht−1Whc þ bcð Þ ð11Þ
ot ¼ σo xtWxo þ ht−1Who þ boð Þ ð12Þ
ht ¼ ot � σh ctð Þ ð13Þ

Figure 3 shows the internal unit structure of BiLSTM. It is
seen from the figure that the BiLSTM model consists of a
forward LSTM and a backward LSTM. This makes it obtain
the forward and backward characteristics of the current time,
respectively, and compared with LSTM, the output of
BiLSTM is more affected by the data before and after.
Because the air quality data fluctuates significantly over time
and strongly correlates with the state before and after, this
paper intends to use BiLSTM to predict PM2.5 data.

Table 1 Test results of different K value

Value of K MAE RMSE% MAPE R2 ACC Time(s)

3 9.61 19.03 26.22 0.9772 61.358 76.972

4 8.23 15.59 24.49 0.9847 66.24 105.06

5 7.339 13.732 22.233 0.9881 68.112 127.416

6 6.743 12.296 19.922 0.9904 70.071 157.598

7 6.232 11.818 18.024 0.991 73.155 180.792

8 5.482 10.46 16.889 0.993 75.364 210.507

9 5.73 10.157 16.516 0.9935 76.2405 242.55

Fig. 5 Prediction curve of each
IMF
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Evaluation metric

To evaluate the models’ forecasting performance and justify
the effectiveness of the proposed method, five evaluation met-
rics are employed in the experiment. The evaluation metrics
include mean absolute error (MAE), root mean square error
(RMSE), mean absolute percentage error (MAPE), coefficient
of determination (R2) and forecasting trend accuracy (ACC).
The calculation formula for each evaluation metrics are

MAE y;by� 	
¼ 1

n
∑
n

i¼1
yi−byi��� ��� ð14Þ

RMSE y;by� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
yi−byi��� ���� 	2

s
ð15Þ

MAPE y;by� 	
¼ 1

n
∑
n

i¼1

yi−byi��� ���
yi

ð16Þ

R2 y;by� 	
¼ 1−

∑
n

i¼1
yi−byi� 	2

∑
n

i¼1
yi−y

� 	2 ð17Þ

ACC ¼ icorrect
iall

� 100 ð18Þ

where y is the true value, by is the predicted value, y is the
average of the true values, n is the total number of samples.
In (22), icorrect is the number of times samples that the PM2.5
increase/decay trend is correct, and iall is the total number of
times samples, which is the length of the test set.

MAE, RMSE and MAPE are employed to evaluate the
error level of the prediction results. The smaller the value,
the more accurate the prediction effect. R2 is used to assess
the degree of fit of the prediction result to the overall original
data. The larger the value, the higher the degree of data fit and
the better prediction effect. ACC is employed to evaluate the
model's forecasting accuracy of trends in the short term.

Fig. 6 The overall prediction performance of the VMD-BiLSTM model in Changping station

Table 2 The evaluation of forecasting performance at Changping
Station

Algorithms MAE RMSE% MAPE R2 ACC

Decision tree 18.231 38.777 41.070 0.828 47.353

Random forest 13.642 28.678 31.331 0.906 48.770

SVR 12.403 29.858 29.179 0.898 48.479

MLP 12.026 26.251 27.702 0.921 48.187

LSTM 13.613 27.701 31.750 0.912 48.020

NLSTM 12.774 26.959 37.866 0.917 47.812

BiLSTM 12.058 25.469 26.932 0.926 48.312

EMD+LSTM 9.676 18.794 25.756 0.960 68.862

EMD+NLSTM 9.045 18.632 23.869 0.960 69.737

EMD+
BiLSTM

9.383 17.751 26.312 0.964 69.737

VMD+LSTM 5.792 11.089 18.185 0.986 74.364

VMD+NLSTM 5.212 9.436 16.845 0.990 75.490

Proposed 5.359 9.398 16.408 0.992 76.365 Fig. 7 The training (red) and validation (blue) loss curves of the VMD-
BiLSTM model
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Experimental process and results

The overall flowchart of the proposed is shown in Fig. 4. The
experiment process is divided into three stages: data prepro-
cessing, decomposition prediction, and result analysis. In the
first stage, the original data is standardized and divided. In the
second stage, the univariate PM2.5 data is decomposed into K
IMFs, then apply the BiLSTM model to learn and predict the
decomposed data components. In the last stage, all outputs
from BiLSTMs are concatenated and compared with the ac-
tual PM2.5 data. All K BiLSTMs have the same internal struc-
ture. The hyper-parameters in the actual implementation of
each BiLSTM inc lude epoch=16 , d ropou t=0 .1 ,
output_dim=64, activation=‘linear’, validation_split=0.05,
learning rate=0.001 (static), decay=0. All hyper-parameters
are tuned for optimized performance during the experimental
process. The mean square error (MSE) is used as the loss
function. The root mean square propagation (RMSProp) opti-
mizer is chosen to train the model. The RMSProp optimizer is
selected maximally avoiding the swing effect during the gra-
dient descent process and consequently accelerating the con-
vergence process.

The value of K is first determined, which decides the num-
ber of IMF decomposition for the original time series data.
The five evaluation metrics and the time of training are ap-
plied to evaluate the forecasting performance of VMD-
BiLSTM with different values of K. the results are shown in
Table 1.

According to Table 1, with the increment of K’s value, the
prediction performance is continuously improved with the
trend been saturated. Additionally, with the increment of K,
the consumption of calculation and time again rises. To ensure
that the ideal prediction effect and reduce the calculation cost,
the decomposition number K is finally chosen to be K = 8 in
the experiment.

The prediction performance and fitting effect of each IMF
are shown in Fig. 5. According to Fig. 5, the IMF8 curve
fluctuates sharply, and the amplitude is relatively large. Such
fluctuation leads to unsatisfactory forecasting results, which is
also one of the main factors affecting forecasting performance.
After the sample is decomposed, the range of changes is re-
duced, conducive to improving the prediction accuracy.
However, due to the superposition and accumulation of the
errors of eight independent forecasting processes, large errors

Fig. 8 The forecasting
performance of VMD-BiLSTM
compared with traditional
machine learning algorithms

Fig. 9 The forecasting
performance of VMD-BiLSTM
compared with LSTM and its
extended algorithms
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are still observed in a specific interval. A comparison of the
final prediction result with the actual PM2.5 data is demon-
strated in Fig. 6. According to it, at the peak of the 1765–1780
interval, the model achieved an unsatisfactory prediction
effect.

To further justify the proposed model’s effectiveness, sev-
eral existing models for time series forecasting are employed
to the comparison. The compared models include traditional
machine learning models, such as the decision tree, random
forest and support vector regression (SVR), LSTM
models, including the conventional LSTM, nested
LSTM (NLSTM) and BiLSTM, hybrid models combin-
ing LSTM with empirical mode decomposition (EMD),
or VMD. The evaluation results of the models’ forecast-
ing performance are recorded in Table 2. The training
and validation loss curves of the proposed VMD-
BiLSTM model are shown in Fig. 7, which show no
symptoms of over-fitting or under-fitting.

The forecasting performance of VMD-BiLSTM compared
with traditional machine learning algorithms are shown in Fig.
8. The compared standard machine learning algorithms in-
clude decision tree, random forest, support vector machine

regression (SVR), multi-layer perceptron (MLP).
Experiment results show that the machine learning method
cannot predict the actual value of the sample well. The ma-
chine learning algorithm’s prediction in the interval where the
data sample fluctuates frequently has a large deviation from
the actual value. The VMD-BiLSTM prediction curve is more
in line with the real value, and the prediction results are better
than traditional machine learning models.

The forecasting performance of VMD-BiLSTM compared
with LSTM and its extended algorithms are shown in Fig. 9.
The extensions of LSTM model include nested LSTM
(NLSTM) and bidirectional LSTM (BiLSTM). According to
the experiment result, there is a strong lag on the prediction
curve of LSTM models without signal decomposition.
Therefore, the prediction results are not ideal, and the
MAPE values are all around 30, while the trend prediction
accuracy is less than 50%.

The forecasting performance of VMD-BiLSTM compared
with hybrid models combining LSTM and empirical mode
decomposition (EMD) are shown in Fig. 10. The hybrid
models include EMD-LSTM, EMD-NLSTM and EMD-
BiLSTM. According to Fig. 9, the LSTM expansion

Fig. 10 The forecasting
performance of VMD-BiLSTM
compared with hybrid models
combining LSTM and EMD

Fig. 11 The forecasting
performance of VMD-BiLSTM
compared with hybrid models
combining LSTM and VMD

Environ Sci Pollut Res



algorithm combined with EMD decomposition has an ideal
result in predicting the peak. However, at the beginning and
end of the peak, EMD results in severe delays and fluctua-
tions. This drawback leads to the fact that the LSTM extension
algorithm combined with EMD cannot have ideal prediction
results. However, the VMD-BiLSTMmodel generates no sig-
nal delay phenomenon, and it is better than the models com-
bining with EMD in each evaluation result.

The forecasting performance of VMD-BiLSTM compared
with hybridmodels combining VMD and other LSTMmodels

are shown in Fig. 11; the compared models include VMD-
LSTM and VMD-NLSTM. According to the result, the three
algorithms show little difference in the smoothing interval.
When there is a wave crest, VMD-BiLSTM has higher pre-
diction accuracy in the beginning and end periods of the
range, and the prediction results are closer to the actual value
of the range.

In order to further study the VMD-BiLSTMmodel, we use
scatter plots to visualize the prediction results and combine the
absolute prediction error box plot and the relative prediction

Fig. 12 Scatter plot of predicted PM2.5 and true value in the model training phase

Fig. 13 Absolute prediction error (%) of predicted PM2.5 and true value in the testing phase
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error polar coordinate plot to comprehensively evaluate the
experimental result

Figure 12 scatter plot can be more intuitive to see the pre-
diction of the model. The dotted line represents the true value,
and the dashed line represents the straight line fitted according
to the predicted point. The closer to the y = x axis, the better
the prediction effect of the model. Among them, y =wx + b
represents linear fitting (w represents straight line gradient, b
represents intercept) to summarize the accuracy of the model.

It is seen from the Fig. 12 that the training results of the
traditional machine learning methods are not satisfactory with
large deviations; the prediction results using time series model
are improved and further improved by combining with EMD
decomposition. The most stable and optimal results are ob-
tained by combining the LSTM extensions with VMD

Figure 13 shows a box plot of the absolute prediction error
between the predicted value and the true value. The upper and
lower two short solid lines in the figure represent the extreme
absolute prediction errors (0–100%) of each model. The red
line in the middle represents 50% of the absolute prediction
error of the model. The bottom of the box chart represents
25% absolute error, and the upper bottom represents 75%
absolute error. Compared with other models, VMD-
BiLSTM has the smallest box plot distribution, which means
that the model has the highest prediction accuracy and the
smallest absolute prediction error.

To further confirm the prediction effect of the VMD-
BiLSTM model, this paper draws a polar coordinate diagram
of the relative prediction error for the above experiment (Fig.
14). Theoretically, the closer the prediction error curve is to

Fig. 14 The relative error (%) of the PM2.5 predicted value between VMD-BiLSTM and other models, where each circle from the origin represents a
relative prediction error of 25%

Table 3 Additional PM2.5 data sets collected by selected three observing stations

Index Dataset Total number Training set Training number Test set Test number

Dingling 2013/3/1–2014/4/9 9720 2013/3/1–2014/4/4 9600 2014/4/5–2014/4/9 120

Dongsi 2013/3/1–2014/4/14 9840 2013/3/1–2014/4/9 9720 2014/4/10–2014/4/14 120

Gucheng 2013/3/1–2014/4/9 9720 2013/3/1–2014/4/4 9600 2014/4/5–2014/4/9 120
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the origin, the better the prediction effect of the model. The
above figure compares the predicted value with the real value
(00.00–23.59) based on the day’s 24 h. It is seen that the
prediction effect of each model is the worst for the two-time
points at 6 o’clock and 19 o’clock, but the prediction curve of
VMD-BiLSTM is most concentrated at the origin, which
means that the prediction effect of the model is the best.

To better demonstrate the model’s generalization and avoid
randomness, the data of three more observatories are utilized
to conduct a further test on the proposed model. The basic
information of the data is shown in Table 3. The comparative
forecasting results are illustrated in Figs. 15, 16 and 17 and

evaluated in Tables 4, 5 and 6 using the five evaluation met-
rics. The results show that the proposed VMD-BiLSTM is
superior to other compared forecasting methods, specifically
manifested in the small prediction errors, high fit with real
data, high trend prediction accuracy, tall model stability and
strong generalization.

Conclusion

Considering the complex characteristics of non-linear, non-
periodic and non-stationary PM2.5 concentration data, a hy-
brid neural network VMD-BiLSTM model is proposed to
perform accurate hour-ahead time series forecasting.

First, a cutting-edge data decomposition method VMD is
employed to decompose the original PM2.5 time series data
into a sequence of IMFs according to the frequency. Secondly,
BiLSTM neural network is implemented to construct training
and prediction models for each IMF component. Finally, the
results of the prediction sub-sequences are combined to obtain
the final forecasting result.

Compared with other time series forecasting models, the
proposed VMD-BiLSTM method outputs quality forecasting
results by combining forward and backward data features in
the LSTM neural network. Compared with EMD decomposi-
tion, VMD effectively avoids the delay phenomenon of
prediction.

In this article, PM2.5 data from four observation stations in
China are adopted for verification purposes. Traditional ma-
chine learning methods, LSTM models and hybrid models
combining LSTMs and decomposition methods are employed
in a comprehensive comparative study and justify the

Table 4 Results and evaluation of Dingling Station PM2.5 data by
various models.

Algorithms MAE RMSE% MAPE R2 ACC

Decision tree 17.082 25.742 21.608 0.810 47.826

Random forest 11.353 15.320 16.759 0.933 46.957

SVR 8.784 12.773 13.169 0.953 53.913

MLP 9.030 13.335 13.435 0.949 50.435

LSTM 8.772 12.688 15.206 0.954 53.913

NLSTM 8.915 13.162 15.647 0.950 53.913

BiLSTM 8.704 12.811 14.701 0.953 53.913

EMD+LSTM 9.378 12.220 14.634 0.957 68.696

EMD+NLSTM 11.896 13.585 21.742 0.947 73.043

EMD+
BiLSTM

4.987 7.852 7.181 0.982 67.826

VMD+LSTM 4.138 6.693 5.389 0.991 71.304

VMD+NLSTM 4.340 5.893 5.674 0.990 73.913

Proposed 3.562 5.232 5.427 0.992 77.391

Table 5 Results and evaluation of Dongsi Station PM2.5 data by
various models

Algorithms MAE RMSE% MAPE R2 ACC

Decision tree 28.159 38.852 27.745 0.713 41.739

Random forest 18.678 27.243 17.226 0.859 45.217

SVR 16.773 25.302 15.440 0.878 47.826

MLP 16.853 25.349 15.279 0.878 48.696

LSTM 16.679 25.127 15.304 0.880 46.957

NLSTM 17.038 25.528 15.537 0.876 45.217

BiLSTM 17.992 26.462 15.472 0.867 46.957

EMD+LSTM 16.456 36.092 20.423 0.752 64.348

EMD+NLSTM 12.464 25.699 15.268 0.875 69.565

EMD+
BiLSTM

15.279 33.071 19.355 0.792 66.957

VMD+LSTM 7.879 10.222 8.625 0.980 69.565

VMD+NLSTM 7.812 9.263 6.955 0.984 70.235

Proposed 7.124 9.295 6.368 0.981 70.435

Table 6 Results and evaluation of Gucheng Station PM2.5 data by
various models

Algorithms MAE RMSE% MAPE R2 ACC

Decision tree 16.155 22.937 21.406 0.846 44.348

Random forest 10.492 15.489 16.184 0.930 47.826

SVR 9.059 13.892 14.881 0.943 47.826

MLP 8.989 13.689 13.179 0.945 49.565

LSTM 9.652 14.029 15.698 0.942 47.826

NLSTM 9.413 14.266 13.578 0.940 48.696

BiLSTM 9.716 14.204 15.174 0.941 47.826

EMD+LSTM 5.892 7.692 10.319 0.983 60.000

EMD+NLSTM 4.877 6.393 8.080 0.988 66.957

EMD+
BiLSTM

4.768 6.497 7.581 0.988 66.957

VMD+LSTM 4.453 5.947 10.185 0.990 68.696

VMD+NLSTM 4.029 5.697 7.523 0.990 69.565

Proposed 3.481 5.121 6.185 0.992 73.043
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forecasting quality of the proposed model. Experimental
results show that BiLSTM is more suitable to be com-
bined with VMD decomposition compared with other
decomposition methods. The proposed model outper-
forms the existing models in terms of prediction error
and trend prediction accuracy.

The next step of the research is to extend the proposed
model to other forecasting fields, including photovoltaic fore-
casting and household electricity forecasting, which also show
strong nonlinearity and non-stationarity. Additionally, further
study of the multi-channel model for air quality prediction will
be conducted by comprehensively considering air quality data
series volatility.

Fig. 15 Prediction results of Dingling Station PM2.5 data by various models

Fig. 16 Prediction results of Dongsi Station PM2.5 data by various models

Fig. 17 Prediction results of Gucheng Station PM2.5 data by various models
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