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Abstract

Recently, neural implicit functions have demonstrated re-
markable results in the field of multi-view reconstruction.
However, most existing methods are tailored for dense views
and exhibit unsatisfactory performance when dealing with
sparse views. Several latest methods have been proposed
for generalizing implicit reconstruction to address the sparse
view reconstruction task, but they still suffer from high train-
ing costs and are merely valid under carefully selected per-
spectives. In this paper, we propose a novel sparse view re-
construction framework that leverages on-surface priors to
achieve highly faithful surface reconstruction. Specifically,
we design several constraints on global geometry alignment
and local geometry refinement for jointly optimizing coarse
shapes and fine details. To achieve this, we train a neural net-
work to learn a global implicit field from the on-surface points
obtained from SfM and then leverage it as a coarse geometric
constraint. To exploit local geometric consistency, we project
on-surface points onto seen and unseen views, treating the
consistent loss of projected features as a fine geometric con-
straint. The experimental results with DTU and BlendedMVS
datasets in two prevalent sparse settings demonstrate signifi-
cant improvements over the state-of-the-art methods.

Introduction

Surface reconstruction from multi-view images is a critical
task in the fields of computer vision and computer graph-
ics. Traditional methods, like Multi-View Stereo (Campbell
et al. 2008; Schonberger and Frahm 2016; Yao et al. 2018),
leverage geometric consistency between images to compute
the depth map. Subsequently, they obtain the reconstructed
point cloud through depth map fusion. Nonetheless, the
conversion of this intermediate representation might intro-
duce cumulative geometric errors. In scenarios with sparse
views, the MVS method faces challenges in reconstructing a
smooth and detailed surface due to the scarcity of matching
points and variations in viewing angles.

In recent years, neural rendering-based surface recon-
struction methods (Yariv et al. 2021; Wang et al. 2021; Yu
et al. 2022) have been widely used to improve the recon-
struction results by producing smoother and more complete
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Figure 1: Surface reconstruction results from sparse-view
images (large-overlap setting). The state-of-the-art methods
SparseNeuS (Long et al. 2022) and VolRecon (Ren et al.
2023) produce noisy and broken surfaces, while the results
of ours (NeuSurf) are detailed and complete.

geometries. These methods simultaneously optimize both
implicit geometry and neural radiance fields by minimizing
the discrepancy between the rendered and the ground truth
images. However, the well-optimized photometric loss may
distort the geometry due to shape-radiance ambiguity (Zhu
et al. 2023). Especially under the situation of sparse view
input, learning of the geometry field may further collapse.

As aremedy, some recent methods (Long et al. 2022; Ren
et al. 2023) partly solved the sparse view reconstruction by
introducing additional generalizable priors. They first learn
geometric priors from large-scale data, and then fine-tune
the implicit fields to achieve surface reconstruction in new
scenarios. However, the learned priors are only effective in
a fixed large-overlap sparse setting. Once the sparse view is
inconsistent with the pose distribution with the fixed setting,
the priors will be invalid and fail to bring robust guidance to
surface reconstruction. As a result, the performance of the
generalizable methods is dramatically limited in cases with
different sparse settings. Due to the long training time and
complex data pre-processing, it is unrealistic to train a prior
for each sparse setting.

In this paper, we propose a novel sparse view reconstruc-



tion framework to achieve highly faithful surface reconstruc-
tions using on-surface point priors. The proposed priors are
achieved directly from the raw input sparse views without
requiring any extra training or data, which effectively im-
prove the reconstruction results and are robust to different
sparse settings. The effectiveness of our method is not af-
fected by different sparse settings. Specifically, we obtain
initial on-surface points by SfM method, which can be con-
sidered as “free data” in the training process. Instead of us-
ing these points directly for depth supervision, we design
two constraints in terms of loss functions to make full use
of on-surface points. One is conducted with the guidance of
the global geometry field, where we train a neural network
to learn the geometric field of on-surface points and then use
that field as a rough geometric constraint. The other is local
geometric refinement loss, which is achieved by projecting
surface points onto visible and invisible views and optimiz-
ing the consistency of projection features to reconstruct fine
local geometry. Our contributions are listed below.

* We propose a novel framework for surface reconstruc-
tion from sparse view images. our framework takes full
advantage of on-surface point clouds, which is easy to
access, as an additional effective supervision to guide the
geometry learning.

* We use the global geometric fields obtained from the sur-
face points to help learn rough and continuous geometry.
In addition, we optimize the local feature consistency of
on-surface points to help learn fine geometry.

¢ We achieve state-of-the-art reconstruction results under
different prevalent sparse settings on the widely-used
DTU and BlendedMVS datasets.

Related Work
Multi-View Stereo (MVS)

Traditionally, MVS methods use point clouds (Furukawa
and Ponce 2010; Lhuillier and Quan 2005), depth maps
(Galliani, Lasinger, and Schindler 2015; Schonberger et al.
2016; Xu and Tao 2019) and voxel grids (Kostrikov, Horbert,
and Leibe 2014; Choe et al. 2021; Ji et al. 2017) as 3D rep-
resentations of scenes to reconstruct the surface geometry.
Due to the need for parallel computing, depth maps based
methods are now widely used. Depth maps based methods
predict the depth of each image and then fuse them to get
the surface point cloud of the object. After the point cloud is
obtained, Screened Poisson surface reconstruction method
(Kazhdan and Hoppe 2013) can be used to further obtain the
surface mesh.

Neural Implicit Representations

Recently, advanced methods employing neural implicit
functions to represent 3D scenes have emerged, and these
can be applied to shape representation (Zhou et al. 2022b;
Mescheder et al. 2019; Zhou et al. 2023), novel view syn-
thesis (Mildenhall et al. 2020; Liu et al. 2020; Zhang et al.
2023) and multi-view 3D reconstruction (Oechsle, Peng, and
Geiger 2021; Wang et al. 2021; Yariv et al. 2021; Yu et al.
2022; Ma et al. 2023). Given raw point clouds, Neural-pull

(Ma et al. 2021) and CAP-UDF (Zhou et al. 2022a) design
neural networks to learn geometric fields that represent 3D
shapes. They provide a way to transform the raw point cloud
representation of an object surface into a geometric field rep-
resentation without the ground truth values of the geomet-
ric field. Neural Radiance Fields (NeRF) (Mildenhall et al.
2020), as a popular novel view synthesis method in recent
years, encodes color fields and volume density fields with
implicit representations.

Neural Surface Reconstruction

Inspired by NeRF, NeuS (Wang et al. 2021) and VolSDF
(Yariv et al. 2021) were proposed to encode signed distance
function (SDF) and color fields of the scene. By minimiz-
ing the discrepancy between the rendered image and the
ground truth image, they can obtain a smooth and complete
SDF geometric field. To make the geometry of the SDF field
more precise, MonoSDF (Yu et al. 2022) and Geo-NeuS (Fu
et al. 2022) add geometric loss in addition to photometric
loss, which reduces the possible bias in the volume render-
ing process. The above-mentioned methods are all based on
dense view input. However, in real world, there are often
only fewer views that can be used for reconstruction.

To achieve sparse view reconstruction, SparseNeuS (Long
et al. 2022) and VolRecon (Ren et al. 2023) learn generaliz-
able geometric priors from large-scale data, and then fine-
tune on new scenes. They train on 75 scenes of the DTU
(Jensen et al. 2014) for several days and then test on the
remaining 15 scenes. Although they have obtained some ge-
ometric priors of the data sets through large-scale training,
they still only generalize in the case of a fixed sparse setting.

In observation, when only sparse views are given, the
complexity of the neural surface learning increases, and it
is more likely to achieve a collapsed geometry (incomplete,
noisy), as shown in Figure 1. Current neural surface learn-
ing methods with large-scale training priors are often time-
intensive and only useful within a specific sparse setting.

Unlike previous works, instead of using costly large-
training priors, our method attempts to exploit the priors of
surface points to optimize the neural surface representation
both globally and locally.

Method
Given sparse-view images I = {I;|i € 1,.., M} with cam-
eraposes T = {T},|i € 1, ..., M}, our goal is to reconstruct
the high-quality geometry S of the scene represented by I.
In this paper, we propose NeuSurf, a neural surface recon-
struction method with sparse input views, as illustrated in
Figure 2.

Our motivation for proposing NeuSurf is to reduce the
complexity of neural surface learning with non-training pri-
ors and produce more complete and detailed reconstruc-
tion. Specifically, points obtained by Structure from Motion
(Schonberger and Frahm 2016) are regarded as a “free” data
source as it is easy to acquire with no extra input. We denote
the surface points obtained by SfM as P, which we do not
use as a depth loss function for the neural rendering directly.
Instead, we learn a global geometric field fy from these on-
surface points and use it to align the rough geometry. To get
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Figure 2: Structure of NeuSurf. For a set of 3 source views (in large-overlap or little-overlap), we first obtain the surface points
by the SfM method. Within the on-surface points, we train a UDF network as the geometric field and leverage it as global
geometry alignment. Then we utilize the feature consistency between seen and unseen views to optimize the local geometry. In
addition to the RGB rendering loss, explicit on-surface points regularization can be improved as an additional loss.

fine details of the surface, local feature consistency for on-
surface points is optimized as another constraint.

Learning Neural Implicit Surface by Volume
Rendering

We represent the geometry and appearance with SDF fields
and color fields, which are learned by the neural rendering
pipeline. We adopt NeuS (Wang et al. 2021) as our baseline,
which defines the geometry as the zero-level set of signed
distance function (SDF) S = {x € R?|f(x) = 0}, and
develop a novel volume rendering method to learn the ge-
ometry and appearance of the scene. The SDF and color are
parameterized with two MLPs as provided by NeuS.

Given a pixel from one image, the ray could be denoted as
{r(t) = o+ td|t > 0}, where o is the camera center and d
is the direction of the ray. The rendered color is accumulated
by volume rendering with /V discrete points:

N
C(r)=> T, ey
i=1

where T; is the accumulated transmittance, «; is opacity val-
ues, as denoted by

7= Tl - o), @)
B (f(r(t)) — B (F(x(ti41)))
2, ((x(t:))) ’O> -9

®, follows Neu$, expressed as @4 (z) = (14 e~5%)~! with
s being a trainable, diminishing parameter.

o = max(

On-Surface Global Geometry Alignment

On-surface points are discrete and thus fail to determine
some surface locations. We attempt to learn a continuous

geometric field from the discrete point cloud as a prior to
provide coarse information for surface learning. With the
guidance of the prior field, we largely reduce the difficulties
in optimization with neural volume rendering, thus enabling
robust learning process. We also justify that the prior is the
key factor that prevents collapse in the difficult sparse-view
setting, we are able to obtain a rough but relatively complete
geometric surface.

An intuitive solution is first to train an SDF Network for
on-surface points and then use it as a part of NeuS directly.
This is like pre-training the SDF function by on-surface
points and then fine-tuning it with 2D images. However, fit-
ting an SDF field to a sparse point cloud is challenging, due
to the geometry complexity and the closed surface assump-
tion. Even though our reconstruction targets are all closed
surfaces, in sparse view, the on-surface points computed by
the SfM method are only part of the surface of the objects.
It means that enforcing the closed surface assumption leads
to the overfitting of the geometric field.

To resolve this issue, the unsigned distance function
(UDF) is considered to fit the global geometric field of the
on-surface points. It is flexible and can cope with open sur-
faces. We train a UDF network fy to fit the surface points to
obtain a complete and continuous geometric field. With the
geometric field, we treat it as a coarse global prior that can
stabilize the geometry optimizing with neural renderings.

Since the ground truth UDF values are not provided, we
follow the CAP-UDF (Zhou et al. 2022a) to train a network
fo within a moving operation. We randomly sample a set
of query locations @ = {q;,¢ € [1, M]} around given on-
surface points P. Then we move the point q; against the
direction of the gradient at q; with a stride of UDF value
fo(a;)- Since the gradient points to the steepest uphill direc-
tion, the moving operation aims to find a path to pull point



P onto the surface S. The operation can be formulated as:

z; = q; — fo(ds) x Vfo(q:)/I|V fo(ai)ll2- )

Here, z; is the location after the moving operation. The mov-
ing operation is differentiable in both the unsigned distance
value and the gradient, which allows us to optimize them
simultaneously during training.

For a well-learned network fp, the moved points should
be on the surface, which can be used as our learning ob-
jective. Hence, the Chamfer Distance between the moved
points and the on-surface points can be used as L4y to op-
timize our UDF network fy:

L.y = CD(Z,Q). )

With a trained UDF network fy, we attempt to incorpo-
rate the knowledge of the continuous geometry field into
neural rendering. For the effect of network fy, query points
closer to the surface are more accurate. Therefore, we design
a cut-off threshold e for network fy to supervise the geomet-
ric field near the surface. The global geometry alignment is
given by

Lglobal |N| Z ‘f

n;EN

o1 (1 methtn) —c0))
fo(n;) — € ’
(6)
where N and ¢ are the discrete points in ray rendering and
on-surface alignment threshold value, respectively.

On-Surface Local Geometry Refinement

Geometric field alignment can constrain the shape and en-
sure the integrity of the reconstructed object. However, the
learned geometric field is coarse and can not hone the details
of the reconstruction. The reason is that the sparse input pro-
vides less surface feature information, this may lead to se-
vere noise. Therefore, a local-level optimization is needed.
Our insight comes from the traditional MVS methods (Yao
et al. 2018; Ji et al. 2017) where the correctness of a surface
point estimation is guaranteed by the consistency of its cor-
responding feature between different views. We justify that
on-surface points obtained by SfM methods also follow this
assumption. Inspired by that, we render images with given
poses and a novel pose. By supervising the projection fea-
tures of the on-surface points, geometry and color fields are
optimized simultaneously, which can be expressed by

\PHII DD e

Pi€EP H;EH

— fo(Ho(pi))ll,

@)
where P is on-surface point cloud obtained by SfM method,
fo is a geometry feature extraction network, I and # are
input views and the transformation matrices respectively.

However, initial points obtained by SfM method are lim-
ited in quantity and unevenly distributed. The points are
barely concentrated on positions of relatively poor visibility,
which leads to biased optimization spatially. Hence, during
the ray rendering process, we obtain some points by calcu-
lating the ray-surface intersection points P’. We name them
pseudo on-surface points since they are acquired from the

ﬁlocal

(b)

(d)

Figure 3: (a) Ground truth on-surface points; (b) On-surface
points generated with SfM; (c) Pseudo and SfM on-surface
points at early stages of training; (d) Pseudo and SfM on-
surface points at the end of training process. The pseudo on-
surface points are optimized to potential real surface.

implicit surface to be optimized. The specific point p’ passed
through by a ray r during neural rendering is denoted as

= {r(t*)|f(r(t*)) = 0}. We first find ¢; by solving
f(r(tz)) (r(ti+1)) < 0. And t* can be calculated as:
f

(r(ti)tivr — f(r(tiza))ts ®)
fle(t:) = fe(tivn))

Since the computation of the pseudo on-surface points is
differentiable, it is reasonable to optimize the surface by
considering them within the feature projection alignment
loss. The implicit surface together with 3D coordinates of
the pseudo on-surface points themselves are optimized along
the training process, as we can see in Figure 3. Therefore, we
add differentiable pseudo surface points P’ to surface points
P during the training process to keep the projected features
consistent between seen and unseen views:

P+« P+P. 9)

t*

Loss Functions
The overall loss functions are:

L= ﬁcolor+)\1£global+>\2£local+)\3£eik+)\4£7‘egv (10)

where L gopa1 and Lyocq; are the on-surface global geometry
alignment loss and local refinement loss defined above.

Lecolor 18 the difference between the rendered and ground-
truth pixel colors:

Leolor = ZHO || 1D
rE’R
As with NeuS (Wang et al. 2021), an Eikonal term (Gropp
et al. 2020) on the random sample points ) to regularize
SDF of f(z) is introduced'

Leir = |y\ > UV -1 (12)
xey

Similar to Geo-NeuS (Fu et al. 2022), AutoRecon (Wang
et al. 2023). We adopt L,..4 as supervision with a zero-level
set. However, given sparse views, the points we obtain by
SfM are sparse and precious. We do not supervise rendered
depth with real depth for each view. Alternatively, We super-
vise the SDF values of all points in 3D space in each iteration

of training:

1
Lreg =15 Y [IF®)l (13)
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Scan ID \ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 \ Mean
Little-overlap (PixelNeRF Setting)
COLMAP (Schonberger and Frahm 2016) \ 288 347 174 216 263 327 278 3.63 324 349 246 124 159 272 187 \ 2.61
SparseNeuS 7, (Long et al. 2022) 481 556 581 268 330 3.88 239 291 308 233 264 312 174 355 231 | 334
VolRecon (Ren et al. 2023) 3.05 445 336 3.09 278 368 3.01 287 3.07 255 3.07 277 159 344 251 | 3.02
NeuS (Wang et al. 2021) 411 540 510 347 268 201 452 859 509 942 220 484 049 2.04 420 | 428
VoISDF (Yariv et al. 2021) 407 487 375 261 537 497 688 333 557 234 315 507 120 528 541 | 426
MonoSDF (Yu et al. 2022) 347 361 210 1.05 237 138 141 185 174 1.10 146 228 125 144 145 1.86
Ours \ 1.35 325 250 080 121 235 077 119 120 105 1.05 121 041 0.80 1.08 \ 1.35
Large-overlap (SparseNeusS Setting)
COLMAP (Schonberger and Frahm 2016) \ 090 289 163 1.08 218 194 161 130 234 128 1.10 142 076 1.17 1.14 \ 1.52
SparseNeuS 7, (Long et al. 2022) 217 329 274 1.67 269 242 158 186 194 135 150 145 098 1.86 1.87 | 1.96
VolRecon (Ren et al. 2023) 120 259 156 108 143 192 1.11 148 142 105 1.19 138 074 123 127 | 1.38
NeuS (Wang et al. 2021) 457 449 397 432 463 195 468 383 415 250 152 647 126 557 6.11 | 4.00
VoISDF (Yariv et al. 2021) 403 421 6.12 091 824 173 274 1.82 5.14 3.09 208 481 060 351 218 | 341
MonoSDF (Yu et al. 2022) 285 391 226 122 337 195 195 553 577 1.10 599 228 0.65 2.65 244 | 293
Ours \ 078 235 155 075 1.04 1.68 060 1.14 098 070 074 049 039 0.75 0.86 \ 0.99
Table 1: The quantitive comparison results of Chamfer Distances (CDJ) on DTU dataset.
Reference Image Ours NeuS SparseNeuS VolRecon MonoSDF

Scan 106 Scan 69 Scan 24

Scan 122

Figure 4: Visual comparisons of surface reconstruction results on the little-overlap sparse setting of DTU dataset. (*NeuS cannot
generate valid mesh for scan 122 with the generic 3 views. We take an additional view for training on this scan with NeuS for

visual comparison.)

Experiments and Analysis

We conduct abundant surface reconstruction experiments on
several generic public MVS datasets (Jensen et al. 2014; Yao
et al. 2020) from sparse views. We compare our results with
some recently presented neural implicit surface reconstruc-
tion methods, including the previous state-of-the-art sparse
views specified methods. Then we give an ablation study of
our approach.

Experimental Settings

Datasets. Previous neural sparse view reconstruction ap-
proaches normally select 3 proper input views from each
scan of the DTU dataset (Jensen et al. 2014), which contains
from 49 to 64 images at a resolution of 1200 x 1600 for
each object scan with known camera intrinsics and poses,
to evaluate the performance of the models. We notice that
different approaches differ in the choice of concrete input
views. SparseNeus (Long et al. 2022) and VolRecon (Ren
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Figure 5: Visual comparisons of surface reconstruction results on the large-overlap sparse setting of DTU dataset.

et al. 2023) take views 23, 24 and 33 of each scan as one
of the test sets for three-view reconstruction. We name it
large-overlap setting because the distribution of the selected
views is concentrated and the visibility overlap between the
pics is relatively large. While MonoSDF (Yu et al. 2022) fol-
lows PixelNeRF (Yu et al. 2022), taking views 22, 25 and 28
of each scan as sparse-view setting, which we name little-
overlap setting because of the scattered view distribution.
To evaluate our approach and the baselines comprehensively
and fairly, we conduct experiments on both two settings on
15 scans commonly used for evaluation.

Besides, we also employ the BlendedMVS dataset (Yao
et al. 2020) to estimate the versatility of our approach. We
randomly select 3 views from each scene as input and con-
duct the evaluation on 8 challenging scenes at a resolution
of 768 x 576.

Baselines. We compare our approach with various types
of surface reconstruction methods on adopted datasets. a.
COLMAP (Schonberger and Frahm 2016): A widely used
classical SfM framework, which is also the pro-precessing
approach we employ in our pipeline. b. Generalizable
neural implicit surface reconstruction methods, including
SparseNeuS; (Long et al. 2022) and VolRecon (Ren et al.
2023). ft indicates that we do fine-tuning on every single
scene before we test the model. ¢. Per-scene optimization
methods, including NeuS (Wang et al. 2021), VolSDF (Yariv
et al. 2021) and MonoSDF (Yu et al. 2022). We adjust the
experiment settings for specific baselines to maximize their
performance.

Implementation details. We use naive COLMAP (Schon-
berger and Frahm 2016) to obtain the coarsely estimated

point clouds of the test scenes with ground truth poses as
inputs. We implement SDF representation model and neural
radiance field based on NeuS (Wang et al. 2021) baseline
and adopt similar network architecture as CAP-UDF (Zhou
et al. 2022a) to learn UDF network fy. To achieve better lo-
cal geometry refinement, we use Vis-MVSNet (Zhang et al.
2020) as the feature extraction network fo.

For a training procedure of a single scene, we sample 512
rays per batch and train the model for 300k iterations on an
NVIDIA RTX3090 GPU.

Comparisons

Sparse View Reconstruction on DTU. We conduct com-
parisons on both two DTU sparse settings without mask
supervision. We measure the Chamfer Distances on DTU
dataset in the same way as (Ren et al. 2023) to quantitatively
evaluate the reconstruction quality, which is demonstrated in
Table 1. Our approach achieves better performance on most
of the scenes in little-overlap setting and all of the scenes in
large-overlap setting, outperforming the compared baselines
including previous state-of-the-art methods.

We present visualizations for both types of DTU sparse-
settings. Figure 4 shows the reconstruction results on little-
overlap setting, while Figure 5 shows the reconstruction re-
sults of the approaches on large-overlap setting. It is chal-
lenging for most of the compared methods to obtain com-
plete geometry when the distribution of input views is
relatively concrete, while our approach not only captures
enough global information to basically rebuild the correct
coarse shape but also better restore the facial details of the
objects.
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Figure 6: Visual comparison of surface reconstruction re-
sults on BlendedMVS dataset.

Sparse View Reconstruction on BlendedMVS. To eval-
uate the generalization ability of our approach on different
datasets, we perform an evaluation on BlendedM VS dataset.
We conduct reconstruction tests on 8 representative scenes,
from each of which 3 views are randomly selected together
with the corresponding camera poses. Some of the recon-
struction results are visualized in Figure 6. It shows that our
approach could obtain both better global shapes and finer
geometric details.

Ablation and Analysis

On-surface global geometric loss L4044, and local geomet-
ric 1oss Lycq; S€IVE as two main components of our recon-
struction approach. To better evaluate the effectiveness of
these supervisions, we conduct an ablation study. We test
our models on the little-overlap DTU sparse setting because
this would better reflect the performance of the methods.
We separately evaluate the model without £ g;44;, the model
without £;,.q:, and the model without both two losses on all
15 scenes. The mean Chamfer Distances are demonstrated
in Table 2.

Although even the model without £g;opq; and Liocqr still
outperforms NeuS baseline, global geometric prior and local
feature projection boost the performance to a huge extent.
To point out the concrete contributions of these components
more intuitively, we give a visualization of the reconstructed

w/o Lgiobarr Liocar w/0 Ligcal

w/o Lglobal Full

Figure 7: Comparison for reconstructed normal maps of ab-
lation results on DTU scan 24.

Lgiobal Liocat |  MeanCD]
X X 2.46
X v 1.96
v X 1.67
v v 1.35

Table 2: Reconstruction results comparison of mean Cham-
fer Distance on little-overlap sparse input subset of DTU
dataset by variants of our approach.

normal maps of these ablation models on a single scene in
Figure 7. As we can see from the comparison, the rarity
of input views leads to the dislocation of some local struc-
tures. The participation of L;,.,; alleviates the error. The
sparsity of view distribution also introduces a new problem:
some spatially continuous parts are incomplete out of the
hardness to distinguish foreground and background. Global
UDF prior significantly improves the integrity, even when
the point clouds obtained by COLMAP are fragmented.

Conclusion

In this paper, we proposed NeuSurf, a novel sparse view sur-
face reconstruction method with on-surface priors. To obtain
a rough and complete geometric surface, we train a UDF
network to learn the on-surface geometry field and leverage
it as global geometry alignment. Then we optimize the fea-
ture consistency as local geometry refinement loss to recon-
struct detailed surfaces. Our method does not require large-
scale training and is robust in various sparse settings. Our
method achieves state-of-the-art performance on the DTU
dataset in both large-overlap and little-overlap settings. Ad-
ditionally, we conduct qualitative experiments on the Blend-
edMVS dataset in different sparse settings and find signifi-
cant improvement over previous methods.
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Supplementary Materials for
“NeuSurf: On-Surface Priors for Neural Surface
Reconstruction from Sparse Input Views”

In this supplementary document, we first discuss architec-
tural and implementation details in Section A. Next, we pro-
vide additional ablation studies and report additional quan-
titative and qualitative results in Section B and Section C.
Following that, in order to further interpret and analyze the
reconstruction results of COLMAP, we have conducted both
qualitative and quantitative comparisons in Section D. Then,
We summarize all relevant work according to the sparse set-
ting and training method in Section E. Finally, we discuss
the potential social negative impact of this work in Section
F.

A. Details of Architectural and
Implementation
Architectures

In the main paper, we propose a novel framework NeuSurf
for surface reconstruction from sparse view images. overall,
NeuSurf shares a similar base structure to NeuS (Wang et al.
2021), but introduce two main constraints for sparse view
reconstruction. Figure 1 is a comparison of our framework
and NeusS. The key idea is to use the global geometric fields
obtained from the surface points to help learn rough and con-
tinuous geometry, and optimize the local feature consistency
of on-surface points to help learn fine geometry.

On-Surface Global Geometry Alignment

Inspired by CAP-UDF, we first generate a bunch of query
points () near the surface point cloud, and learn a UDF Net-
work fp from the point cloud without ground truth UDF val-
ues by moving the query points () to the surface S. The op-
eration of moving the query point is differentiable. By opti-
mizing the distribution difference between the moved query
point and the real surface point, we can optimize the expres-
sion of the entire UDF Network, which is a solid field learn-
ing method. According to our main text, the move operation
can be expressed as

z; = q; — fo(d:) X Vfo(a:)/[|Vfo(ai)ll2- (D

We use chamfer distance as the learning goal of UDF Net-
work

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: NeuS and NeuSurf.

According to the definition of chamfer distance (Barrow
etal. 1977), CD can be expressed as
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Using the chamfer distance loss function to optimize fo,
we can get a continuous and complete field function fy in-
stead of discrete points P to complete global the geometric
alignment.

The global geometry alignment is given in the main paper
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On-Surface Local Geometry Refinement

In the task of few-shot NeRF (Yu et al. 2021), many recent
methods (Jain, Tancik, and Abbeel 2021; Kim, Seo, and Han
2022) optimize the field with rendering results from unseen
viewpoints. But there is no ground truth for color from un-
seen views, and only some semantic-based methods can be
used to optimize the color field and density field.

In the paper, we impose on-surface local geometry re-
finement to improve the details of surfaces. Our goal is
to ensure that the points on the surface meet the condi-
tional assumptions of multi-vie consistency between seen
and unseen views. We render images with given poses and
a novel pose. By supervising the projection features of the
on-surface points, geometry and color fields are optimized
simultaneously, which can be mathematically expressed by

Ciocat = ﬁ ST ST s Ha(pa) — Fs(HoPO)l,

pPiEP H;EH
(5)

where #;(p;) can be calculated as:
H;(pi) = Kj(Rypi + t5). ©)

Kj; and [R;, t;] are the corresponding camera intrinsic and
extrinsic parameters.

In order to further strengthen our prior assumptions, we
continuously calculate pseudo on-surface points in the pro-
cess of neural rendering, and add them into the on-surface
point set to jointly optimize our geometric field.

Implementation Details

The overall loss functions are:
L= Lcolo’r + )\1 £global + A2£local + )\3£eik + )\4£reg; (7)

To obtain faithful reconstruction results, the hyperparame-
ters A1, A2, A\g, A4 are set to 1.0,0.1,1.0,0.1, 1.0.

For the obtained on-surface points, to get a credible on-
surface global geometry alignment, we adopt a UDF net-
work as fy, similar to CAP-UDF, which contains 8 256-node
layers of MLP and a skip connection in the fourth layer. Re-
ferring to most UDF network designs, before the network
outputs the result, we take the absolute value of the output
value to ensure that the output result is a UDF value. In ad-
dition, we use the feature extractor in Vis-MVSNet as f, to
extract the features of the seen and unseen image to ensure
the feature consistency of the initial and pseudo on-surface
points for on-surface local geometry refinement.

Sparse Setting Details

There are currently two popular sparse-settings for DTU
dataset, we have summarized and named these two, pointed
out their differences, and then visualized their distribution
differences.

SparseNeuS (Long et al. 2022) and VolRecon (Ren et al.
2023) take views 23, 24 and 33 for sparse view reconstruc-
tion. We name it large-overlap setting because the pose dis-
tribution of the selected views is concentrated and the visi-
bility overlap between the pictures is large.

MonoSDF (Yu et al. 2022) follows PixelNeRF (Yu et al.
2022), taking views 22, 25 and 28 as sparse view setting,
which we name little-overlap setting because of the scat-
tered view distribution and little overlap between images.

We visualize the camera poses and orientations for two
different sparse settings in Figure 2. As we describe, the
distribution of large-overlap camera poses in blue is more
tightly distributed, while the distribution of poses of orange
little-overlap cameras is more discrete. Because the datasets
are taken around the circle, their camera orientations are all
pointing towards the object’s surface.

Large-overlap Poses
Little-overlap Poses

Figure 2: Sparse Settings Poses Visualization.

B. Additional Ablation Study

As we mentioned in the main text, SDF field, as an ac-
ceptable representation of surface point geometric contin-
uous field, can also be used for global geometric alignment.
However, the geometry complexity and the closed surface
assumption limit its use in such sparse view conditions. To
corroborate our statement, we conduct ablation experiments
with SDF field priors. Here, we use the method of Neural-
pull(Ma et al. 2021) to train an SDF network fy. Similar to
the supervision of UDF, we directly use the value of SDF to
constrain the geometric function f in neural rendering. The
results are shown in Table 3

SDF Prior  UDF Prior | Mean CD

v X 2.49
X v 1.35

Table 1: Comparison of reconstruction with different global
geometric priors on DTU little-overlap setting.

C. More Quantitative and Qualitative Results

Geo-NeuS (Fu et al. 2022) is the SOTA neural-rendering
method in dense view reconstruction on DTU (Jensen et al.
2014) dataset. To demonstrate the priority of our method,
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Figure 3: The remaining visual results of surface reconstruction on the little-overlap sparse setting of DTU dataset.

we further apply Geo-NeuS to sparse view reconstruction
and compare it with our method, as shown in Table 2.

It can be seen that there is a gap when the SOTA recon-
struction method of dense views is directly used for sparse
view reconstruction. Geo-NeusS uses the projection depth of
discrete points to optimize the geometry, which makes sense
under the experimental setting of dense views, but the point
cloud of the sparse view is more sparsely distributed, discon-
tinuous and incomplete optimization may lead to localized
geometry collapse. Whereas our method addresses this issue
by learning the continuous geometric field of point clouds,
which makes better use of the geometric priors of on-surface
points.

In our paper, we show several representative scenes for
visual comparison on DTU dataset. To demonstrate the in-
tegrity of the experiment, in this supplementary, we present
qualitative results with DTU (Jensen et al. 2014) datasets in
Figure 3 and Figure 4 for the remaining 11 scenes in little-
overlap setting and large-overlap setting.

For the BlendedMVS dataset, we also show the visual-
ization results of more scenes in Figure 6. According to the
comparison, it can be found that our method can achieve the
best results no matter what kind of sparse setting and dataset.

D. Comparision with COLMAP
Reconstruction

The results from COLMAP consist of point clouds rather
than mesh surfaces. Similar to previous methods, we have
included it solely for reference purposes. To enhance the
clarity of our results, we utilized Poisson Reconstruction
(Kazhdan and Hoppe 2013) and OnSurfacePrior (Baorui,
Yu-Shen, and Zhizhong 2022) to generate mesh surfaces
from the COLMAP points on DTU little-overlap setting. As
shown in Figure 5, compared with the results of COLMAP
points and surfaces, our results are more complete and de-
tailed.

In order to further explore, we conduct quantitative com-
parisons for several non-NeusS related reconstruction meth-
ods (models not based on the NeuS backbone). The results
are shown in Table 3. OnSurfacePrior is proposed to opti-
mize reconstruction on sparse point clouds rather than in-
complete points generated from sparse views, while Neu-
ralUDF takes a similar pipeline for UDF field reconstruction
without refinement on sparse-views scenes. Our method’s
reconstruction results outperform theirs.

E. Concurrent work
We summarize all sparse view implicit reconstruction meth-
ods (including published articles and preprinted articles on
arxiv). From what we mentioned in the main text, some
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Figure 4: The remaining visual results of surface reconstruction on the large-overlap sparse setting of DTU dataset.

ScanID | 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | Mean

Little-overlap (PixelNeRF Setting)

Geo-NeuS | 9.26 10.86 * 1.39 839 649 200 1.80 190 122 140 0.89 053 127 158 3.50
Ours 135 325 250 080 121 235 077 119 120 1.05 105 121 041 080 1.08 | 1.35

Large-overlap (SparseNeusS Setting)

Geo-NeuS | 355 1399 3.03 0.77 156 501 074 116 100 0.68 0.84 052 041 0.78 0.92 | 233
Ours 078 235 155 075 1.04 168 0.60 114 098 070 0.74 049 039 0.75 0.86 | 0.99

Table 2: The quantitive comparison results of Chamfer Distances (CDJ) on DTU dataset. (*Geo-NeuS failed to generate valid

mesh on Scan 40 of little-overlap setting.)

COLMAP OnSurfacePrior Poisson ' Ours
Figure 5: Visual comparison of reconstruction on 3-view im-
ages from DTU.

methods use three views with a large overlap to complete
sparse view reconstruction.

» SparseNeuS (Long et al. 2022) in ECCV 2022 is the
first work to adopt a large-overlap setting for sparse

Method \ NeuralUDF OnSurfacePrior Poisson Ours

Mean CDJ | 5.16 4.59 3.27 1.35

Table 3: More comparison on DTU little-overlap setting.

view reconstruction. They present a novel neural sur-
face reconstruction method, which trains for days on
large amounts of data, then generalizes to new scenes to
achieve better reconstruction results.

VolRecon (Ren et al. 2023) in CVPR 2023 follows
the sparse-setting of SparseNeuS. They introduce a
novel generalizable implicit reconstruction method with



Signed Ray Distance Function. Same as the SparseNeuS,
they also require longer training time to learn a prior that
generalizes well.

¢ C2F2NeuS (Xu et al. 2023) in arXiv 2023 combines the
multi-view stereo with neural signed distance function
representations. This paper is still a preprint and not yet
open source. It is the closest performance to our work in
the large-overlap setting.

others use three views with a little overlap to complete
sparse view reconstruction.

¢ MonoSDF (Yu et al. 2022) in NeurIPS 2022 introduces
depth and normal geometric priors for dense reconstruc-
tion, and also applies them to the reconstruction of sparse
views. Unlike SparseNeusS, the sparse setting adopted by
MonoSDF is consistent with PixeINeRF(Yu et al. 2021),
which is also widely used in few-shot NeRF task.

¢ S-VoISDF (Wu, Graikos, and Samaras 2023) in arXiv
2023 follows the little-overlap sparse setting. They use
the MVS method to optimize the neural rendering pro-
cess, and use neural rendering to guide the calculation
results of MVS method. This paper is still a preprint and
not yet open source.

¢ DiViNet (Vora, Patil, and Zhang 2023) in arXiv 2023
for the case of little overlap, a neural template-based
method is proposed for constrained geometric learning.
The templates need training across different scenes and
serve as anchors in new scenes. This paper is still a
preprint and not yet open source.

Although these methods (published papers or unpub-
lished preprints) have their own advantages under differ-
ent settings, extensive comparative experiments prove that
our method outperforms all the above methods in both
sparse settings.

F. The potential negative impact of this work

The ability to reconstruct an object’s surface with only a
few photos may allow the geometric information of the ob-
ject to be obtained without authorization. Our reconstruction
method requires hours of training time on high-performance
GPU servers, which consumes energy and has a negative im-
pact on global environmental change.

References

Baorui, M.; Yu-Shen, L.; and Zhizhong, H. 2022. Recon-
structing Surfaces for Sparse Point Clouds with On-Surface
Priors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Barrow, H. G.; Tenenbaum, J. M.; Bolles, R. C.; and Wolf,
H. C. 1977. Parametric correspondence and chamfer match-
ing: Two new techniques for image matching. In Proceed-
ings: Image Understanding Workshop, 21-27. Science Ap-
plications, Inc.

Fu, Q.; Xu, Q.; Ong, Y. S.; and Tao, W. 2022. Geo-
Neus: Geometry-Consistent Neural Implicit Surfaces Learn-

ing for Multi-view Reconstruction. In Koyejo, S.; Mo-
hamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; and Oh, A,

eds., Advances in Neural Information Processing Systems,
volume 35, 3403-3416. Curran Associates, Inc.

Jain, A.; Tancik, M.; and Abbeel, P. 2021. Putting NeRF on
a Diet: Semantically Consistent Few-Shot View Synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 5885-5894.

Jensen, R.; Dahl, A.; Vogiatzis, G.; Tola, E.; and Aanzs,
H. 2014. Large Scale Multi-view Stereopsis Evaluation.
In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 406-413.

Kazhdan, M.; and Hoppe, H. 2013. Screened Poisson Sur-
face Reconstruction. ACM Trans. Graph., 32(3).

Kim, M.; Seo, S.; and Han, B. 2022. InfoNeRF: Ray Entropy
Minimization for Few-Shot Neural Volume Rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 12912-12921.

Long, X.; Lin, C.; Wang, P; Komura, T.; and Wang, W.
2022. Sparseneus: Fast generalizable neural surface recon-
struction from sparse views. In European Conference on
Computer Vision, 210-227. Springer.

Ma, B.; Han, Z.; Liu, Y.-S.; and Zwicker, M. 2021. Neural-
Pull: Learning Signed Distance Function from Point clouds
by Learning to Pull Space onto Surface. In Meila, M.; and
Zhang, T., eds., Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, 7246-7257. PMLR.

Ren, Y.; Zhang, T.; Pollefeys, M.; Siisstrunk, S.; and Wang,
F. 2023. Volrecon: Volume rendering of signed ray distance
functions for generalizable multi-view reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 16685-16695.

Vora, A.; Patil, A. G.; and Zhang, H. 2023. DiViNeT: 3D
Reconstruction from Disparate Views via Neural Template
Regularization. arXiv preprint arXiv:2306.04699.

Wang, P; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; and
Wang, W. 2021. NeuS: Learning Neural Implicit Sur-
faces by Volume Rendering for Multi-view Reconstruction.

Advances in Neural Information Processing Systems, 34:
27171-27183.

Wu, H.; Graikos, A.; and Samaras, D. 2023. S-VolSDF:
Sparse Multi-View Stereo Regularization of Neural Implicit
Surfaces. arXiv preprint arXiv:2303.17712.

Xu, L.; Guan, T.; Wang, Y.; Liu, W.; Zeng, Z.; Wang, J.; and
Yang, W. 2023. C2F2NeUS: Cascade Cost Frustum Fusion
for High Fidelity and Generalizable Neural Surface Recon-
struction. arXiv preprint arXiv:2306.10003.

Yu, A.; Ye, V.; Tancik, M.; and Kanazawa, A. 2021. pixel-
NeRF: Neural Radiance Fields from One or Few Images. In
CVPR.

Yu, Z.; Peng, S.; Niemeyer, M.; Sattler, T.; and Geiger, A.
2022. Monosdf: Exploring monocular geometric cues for
neural implicit surface reconstruction. Advances in neural
information processing systems, 35: 25018-25032.



Input Images Ours NeuS VolRecon

Figure 6: The remaining visual results of surface reconstruction on the random sparse setting of BlendedM VS dataset.



