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Abstract

Federated learning is a powerful paradigm for large-scale machine learning, but it faces significant

challenges due to unreliable network connections, slow communication, and substantial data hetero-

geneity across clients. FedAvg and SCAFFOLD are two fundamental algorithms to address these

challenges. In particular, FedAvg employs multiple local updates before communicating with a central

server, while SCAFFOLD maintains a control variable on each client to compensate for “client drift” in

its local updates. Various methods have been proposed in literature to enhance the convergence of these

two algorithms, but they either make impractical adjustments to algorithmic structure, or rely on the

assumption of bounded data heterogeneity.

This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAF-

FOLD. When all clients participate in the training process, we demonstrate that incorporating momen-

tum allows FedAvg to converge without relying on the assumption of bounded data heterogeneity even

using a constant local learning rate. This is a novel result since existing analyses for FedAvg require

bounded data heterogeneity even with diminishing local learning rates. In the case of partial client par-

ticipation, we show that momentum enables SCAFFOLD to converge provably faster without imposing

any additional assumptions. Furthermore, we use momentum to develop new variance-reduced exten-

sions of FedAvg and SCAFFOLD, which exhibit state-of-the-art convergence rates. Our experimental

results support all theoretical findings.

1 Introduction

Federated learning (FL) is a powerful paradigm for large-scale machine learning (Konečnỳ et al., 2016;

McMahan et al., 2017a). In situations where data and computational resources are dispersed among a diverse

range of clients, including phones, tablets, sensors, hospitals, and other devices and agents, federated learning
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facilitates local data processing and collaboration among these clients (Kairouz et al., 2021). Consequently,

a centralized model can be trained without transmitting decentralized data from clients directly to servers,

thereby ensuring a fundamental level of privacy.

Federated learning encounters several significant challenges in algorithmic development. Firstly, the

reliability and relatively slow nature of network connections between the server and clients pose obstacles

to efficient communication during the training process. Secondly, the dynamic availability of only a small

subset of clients for training at any given time demands strategies that can adapt to this variable environment.

Lastly, the presence of substantial heterogeneity of non-iid data across different clients further complicates

the training process.

FedAvg (Konečnỳ et al., 2016; McMahan et al., 2017a; Stich, 2019; Yu et al., 2019a; Lin et al., 2020; Wang

& Joshi, 2021) has emerged as a prevalent algorithm for federated learning, leveraging multiple stochastic

gradient descent (SGD) steps within each client before communicating with a central server. While FedAvg

is readily implementable and has demonstrated success in certain applications, its performance is notably

hindered by the presence of data heterogeneity, i.e., non-iid clients, even when all clients participate in

the training process (Li et al., 2019; Yang et al., 2021). To mitigate the influence of data heterogeneity,

SCAFFOLD (Karimireddy et al., 2020b) maintains a control variable on each client to compensate for

“client drift” in its local SGD updates, making convergence more robust to data heterogeneity and client

sampling. Due to their practicality and effectiveness, FedAvg and SCAFFOLD have become foundational

algorithms in federated learning, leading to the development of numerous variants that cater to decentralized

(Koloskova et al., 2020; Rizk et al., 2022; Nguyen et al., 2022; Alghunaim, 2023), compressed (Haddadpour

et al., 2021; Reisizadeh et al., 2020; Mitra et al., 2021), asynchronous (Chen et al., 2020a,b; Xu et al., 2021a),

and personalized (Fallah et al., 2020; Pillutla et al., 2022; Tan et al., 2022; T Dinh et al., 2020) federated

learning scenarios.

Various methods have been proposed to enhance the convergence of FedAvg, SCAFFOLD, and their

variance-reduced1 extensions. While exhibiting superior convergence rates, these approaches typically make

impractical adjustments to algorithmic structures. For instance, STEM (Khanduri et al., 2021) requires

increasing either the batch size or the number of local steps with algorithmic iterations. Similarly, CE-

LSGD (Patel et al., 2022) and MIME (Karimireddy et al., 2020a) mandate computing a large-batch or

even full-batch local gradient per round for each client. Additionally, FedProx (Li et al., 2020), FedPD

(Zhang et al., 2021), and FedDyn (Durmus et al., 2021) rely on solving “local problems” to an extremely

high precision. These adjustments may not align with the practical constraints in federated learning setups.

Furthermore, many of these algorithms, including FedAvg, STEM, FedProx, MIME, and CE-SGD,

still rely on the assumption of bounded data heterogeneity. When this assumption is violated, the theoretical

analyses of these algorithms become invalid. While some algorithms, such as LED (Alghunaim, 2023) and

1Throughout the paper, variance reduction refers to techniques aiming to mitigate the influence of within-client gradient

stochasticity, as opposed to the inter-client data heterogeneity.
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Table 1: The comparison of convergence rates of FL algorithms when all clients participate in training. Notation

L is the smoothness constant of objective functions, ∆ = f(x0)−min
x

f(x) is the initialization gap, σ2 is the variance

of gradient noises, N is the number of clients, K is the number of local steps per round, and R is the number of

communication rounds, ζ2 and G are uniform bounds of data heterogeneity (1/N)
∑

1≤i≤N

∥∇fi(x) − ∇f(x)∥2 and

gradient norm max
1≤i≤N

∥∇fi(x)∥ with G2 ≫ ζ2 typically. The “Assumptions” column lists all assumptions beyond

Assumption 1 and 3.

Algorithm Convergence Rate E[∥∇f(x̂)∥2] ≲ Assumptions

FedAvg

(Yu et al., 2019b)

(
L∆σ2

NKR

)1/2

+

(
L∆G

R

)2/3

+
L∆

R
Bounded grad.

(Koloskova et al., 2020)

(
L∆σ2

NR

)1/2

+

(
L∆Kζ

R

)2/3

+
L∆K

R
Bounded hetero.

(Karimireddy et al., 2020b)

(
L∆σ2

NKR

)1/2

+

(
L∆ζ

R

)2/3

+
L∆

R
Bounded hetero.

(Yang et al., 2021)

(
L∆σ2

NKR

)1/2

+
L∆

R
Bounded hetero.1

LED

(Alghunaim, 2023)

(
L∆σ2

NKR

)1/2

+

(
L∆σ√
KR

)2/3

+
L∆

R
−

VRL-SGD

(Liang et al., 2019)

(
L∆σ2

NKR

)1/2

+

(
L∆σ√
KR

)2/3

+
L∆

R
−

FedAvg-M (Thm. 1)

(
L∆σ2

NKR

)1/2

+
L∆

R
−

Variance-Reduction

BVR-L-SGD

(Murata & Suzuki, 2021)

(
L∆σ

NKR

)2/3

+
σ2

NKR
+

L∆

R

Sample smooth

O(K) batchsize2

CE-LSGD

(Patel et al., 2022)

(
L∆σ

NKR

)2/3

+
σ2

NKR
+

L∆

R

Sample smooth

O(K) batchsize2

STEM

(Khanduri et al., 2021)

L∆+ σ2 + ζ2

(NKR)2/3
+

L∆

R

Sample smooth

Bounded hetero.

FedAvg-M-VR (Thm. 2)

(
L∆σ

NKR

)2/3

+
L∆

R
Sample smooth

1 The local learning rate vanishes to zero when data heterogeneity is unbounded, i.e., ζ → ∞.

2 A large batch is needed by each client per communication round.

VRL-SGD (Liang et al., 2019), can handle unbounded data heterogeneity, their convergence rates are not

state-of-the-art, as demonstrated in Table 1. These limitations motivate us to develop novel strategies that

are easy to implement, robust to data heterogeneity, and exhibit superior theoretical convergence rates.
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1.1 Main results and contributions

This paper examines the utilization of momentum to enhance the performance of FedAvg and SCAF-

FOLD.

In order to ensure simplicity and practicality in implementations, we only introduce momentum to the

local SGD steps, avoiding any inclusion of impractical elements, such as gradient computation of large

batchsizes or solving local problems to high precision. Remarkably, this straightforward approach effectively

alleviates the necessity for stringent assumptions of bounded data heterogeneity, leading to noteworthy

improvements in convergence rates. The main findings and contributions of this paper are summarized

below.

First, when all clients participate in the training process:

• We demonstrate that incorporating momentum allows FedAvg and its variance-reduced extension to

converge without relying on the assumption of bounded data heterogeneity, even using constant local

learning rates. This is rather surprising as, to our knowledge, all existing analyses for FedAvg, e.g.,

(Karimireddy et al., 2020b; Yang et al., 2021; Wang et al., 2020b), require bounded data heterogeneity

even with diminishing local learning rates.

• We further establish that, by effectively removing the influence of data heterogeneity on convergence,

momentum empowers FedAvg and its variance-reduced extension with state-of-the-art convergence

rates in the context of full client participation.

Second, when partial clients participate in the training process per iteration:

• The proposed SCAFFOLD-M that incorporates momentum into SCAFFOLD achieves a provably

faster convergence rate. To our knowledge, this is the first result that improves upon SCAFFOLD

without imposing any additional assumptions beyond those used in (Karimireddy et al., 2020b).

• We further introduce momentum to SCAFFOLD with variance reduction, achieving the first variance-

reduced federated learning algorithm that does not rely on the assumption of bounded data heterogene-

ity. This algorithm attains a state-of-the-art convergence rate in the context of partial client participation

and unbounded data heterogeneity.

Tables 1 and 2 present a comprehensive comparison of the convergence rates and associated assumptions

of existing algorithms, as well as our newly proposed approaches.

It is observed that by simply adding momentum to local steps, FedAvg, SCAFFOLD, and their

variance-reduced extensions all attain state-of-the-art convergence rates without resorting to further as-

sumptions such as bounded data heterogeneity. We support our theoretical findings with extensive numerical

experiments.
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Table 2: The comparison of convergence rates of FL algorithms when S clients among N ones participate in

training per iteration. Notations are the same as those in Table 1.

Algorithm Convergence Rate E[∥∇f(x̂)∥2] ≲ Assumptions

SCAFFOLD

(Karimireddy et al., 2020b)

(
L∆σ2

SKR

)1/2

+
L∆

R

(
N

S

)2/3

−

SCAFFOLD-M (Thm. 3)

(
L∆σ2

SKR

)1/2

+
L∆

R

(
1 +

N2/3

S

)
−

Variance-Reduction

MimeLiteMVR1

(Karimireddy et al., 2020a)

(
L∆(σ + ζ)

R

)2/3

+
L∆+ σ2 + ζ2

R

Sample smooth

Noiseless grad.

MB-STORM

(Patel et al., 2022)

(
L∆σ

S
√
KR

)2/3

+

(
L∆ζ

SR

)2/3

+
ζ2

SR
+

L∆

R
+

σ2

NKR

Sample smooth

Bounded hetero.

O(K) batchsize2

CE-LSGD 1

(Patel et al., 2022)

(
L∆σ

S
√
KR

)2/3

+

(
L∆ζ

SR

)2/3

+
ζ2

SR
+

L∆

R
+

σ2

NKR

Sample smooth

Bounded hetero.

O(K) batchsize2

SCAFFOLD-M-VR (Thm. 4)

(
L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S

)
Sample smooth

1 MimeLiteMVR and CE-LSGD consider the setting of streaming clients.

2 A large batch is needed on each client per communication round.

1.2 Related work

Federated learning with homogeneous clients. FedAvg is a well-known algorithm introduced by

(McMahan et al., 2017b) as a heuristic to enhance communication efficiency and data privacy in federated

learning. Numerous subsequent studies have focused on analyzing its convergence under the assumption

of homogeneous datasets, where clients are independent and identically distributed (iid) and all clients

participate fully (Stich, 2019; Yu et al., 2019b; Wang & Joshi, 2021; Lin et al., 2020; Zhou & Cong, 2017).

However, when dealing with heterogeneous clients and partial client participation, FedAvg is found to be

vulnerable to data heterogeneity because of the ”client drift” effect (Karimireddy et al., 2020b; Yang et al.,

2021; Wang et al., 2020b; Li et al., 2019).

Federated learning with heterogeneous clients. Considerable research efforts have been devoted to

mitigating the impact of data heterogeneity in federated learning. For example, Li et al. (2020) propose

FedProx, which introduces a proximal term to the objective function. Yang et al. (2021) utilize a two-

sided learning rate approach, while Wang et al. (2020a) propose FedNova, a normalized averaging method.

Additionally, Zhang et al. (2021) present FedPD, which addresses data heterogeneity from a primal-dual op-
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timization perspective. Notably, Karimireddy et al. (2020b) introduces SCAFFOLD, an effective algorithm

that employs control variables to mitigate the influence of data heterogeneity and partial client participation.

FedGate (Haddadpour et al., 2021) and LED (Alghunaim, 2023) are two recent effective algorithms that

have alleviated the impact of data heterogeneity, utilizing gradient tracking (Xu et al., 2015; Di Lorenzo

& Scutari, 2016; Pu & Nedić, 2020; Xin et al., 2020; Alghunaim & Yuan, 2021) and exact-diffusion (Yuan

et al., 2019, 2020, 2021a) techniques, respectively.

Federated learning with momentum. The momentum mechanism dates back to Nesterov’s accelera-

tion (Yurri, 2004) and Polyak’s heavy-ball method (Polyak, 1964) in deterministic optimization, which later

flourishes in the stochastic scenario (Yan et al., 2018; Yu et al., 2019a; Liu et al., 2020) and other com-

munication efficient algorithms (Yuan et al., 2021b; He et al., 2023b,a). Extensive research has explored

incorporating momentum into federated learning (Reddi et al., 2021; Wang et al., 2020b; Karimireddy et al.,

2020a; Khanduri et al., 2021; Patel et al., 2022; Das et al., 2022; Yu et al., 2019a), and numerous empirical

studies have demonstrated its substantial impact on enhancing the performance of federated learning algo-

rithms (Wang et al., 2020b; Xu et al., 2021b; Reddi et al., 2021; Jin et al., 2022; Kim et al., 2022). However,

whether momentum can offer theoretical benefits to federated learning remains underexplored. This work

demonstrates that momentum can improve non-iid federated learning simply and provably. It is worth not-

ing that the theoretical utility of momentum has been demonstrated in various scenarios beyond federated

learning. For instance, Guo et al. (2021) proved that momentum can correct the bias experienced by the

Adam method, while a very recent work (Fatkhullin et al., 2023) demonstrated that momentum can improve

the error feedback technique in communication compression. The analysis presented in this work is different

from (Guo et al., 2021) and (Fatkhullin et al., 2023) due to the unique challenges encountered in federated

learning including multiple local updates, data heterogeneity, and partial client participation.

2 Problem setup

This section formulates the problem of non-iid federated learning. Formally, we consider minimizing the

following objective with the fewest number of client-server communication rounds:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) where fi(x) := Eξi∼Di [F (x; ξi)].

Here, the random variable ξi represents a local datapoint available at client i, while the function fi(x)

denotes the non-convex local loss function associated with client i. This function takes expectation with

respect to the local data distribution Di. In practice, the local data distributions Di among different clients

typically differ from each other, resulting in the inequality fi(x) ̸= fj(x) for any pair of nodes i and j. This

phenomenon is commonly referred to as data heterogeneity. If all local clients were homogeneous, meaning

that all local data samples follow the same distribution D, we would have fi(x) = fj(x) for any i and j. In
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addition, throughout the paper we assume that the function f is bounded from below and possesses a global

minimum f∗. To facilitate convergence analysis, we also introduce the following standard assumptions.

Assumption 1 (Standard smoothness). Each local function fi(x) is differentiable. For any 1 ≤ i ≤ N

and x, x̃ ∈ Rd, there exists a constant L ≥ 0 such that

∥∇fi(x)−∇fi(x̃)∥ ≤ L∥x− x̃∥.

Assumption 2 (Sample-wise smoothness). Each sample-wise function F (x; ξ) is differentiable in terms

of x. For any 1 ≤ i ≤ N , ξi ∼ Di, and x, x̃ ∈ Rd, there exists a constant L ≥ 0 such that

∥∇F (x; ξi)−∇F (x̃; ξi)∥ ≤ L∥x− x̃∥.

It is worth noting that Assumption 2 implies Assumption 1, which is typically used in variance-reduced

algorithms, e.g., (Karimireddy et al., 2020a; Khanduri et al., 2021; Fang et al., 2018; Cutkosky & Orabona,

2019). We will utilize either Assumption 1 or 2 in different algorithms.

Assumption 3 (Stochatic Gradient). For any 1 ≤ i ≤ N and x ∈ Rd, there exists a constant σ ≥ 0

such that

Eξi∼Di [∇F (x; ξi)] = ∇fi(x) and Eξi∼Di [∥∇F (x, ξi)−∇fi(x)∥2] ≤ σ2.

3 Accelerating FedAvg with momentum

This section focuses on the scenario in which all clients participate in the training process of federated

learning. We will introduce momentum to both FedAvg and its variance-reduced extension. Additionally, we

will demonstrate that the incorporation of momentum effectively eliminates the impact of data heterogeneity,

leading to improved convergence rates.

3.1 FedAvg with momentum

Algorithm. We introduce momentum to enhance the estimation of the stochastic gradient, resulting in

the new algorithm FedAvg-M, as presented in Algorithm 1. In FedAvg-M, the subscript i represents

the client index, while the superscripts r and k denote the outer loop index and inner local update index,

respectively. The structure of FedAvg-M remains identical to the vanilla FedAvg, except for the inclusion

of momentum in gradient computation (see the highlight in Algorithm 1):

gr,ki = β∇F (xr,k
i ; ξr,ki ) + (1− β)gr,

where β ∈ [0, 1] is the momentum coefficient, and gr represents an global gradient estimate updated in the

outer loop r. It is important to note that FedAvg-M will reduce to the vanilla FedAvg when β = 1.

Furthermore, FedAvg-M is easy to implement, as it maintains the same algorithmic structure and incurs

no additional uplink communication overhead compared to FedAvg.

7



Algorithm 1 FedAvg-M: FedAvg with momentum

Require: initial model x0 and gradient estimate g0, local and global learning rate η and γ, momentum β

for r = 0, · · · , R− 1 do

for each client i ∈ {1, . . . , N} in parallel do

Initialize local model xr,0
i = xr

for k = 0, · · · ,K − 1 do

Compute gr,ki = β∇F (xr,k
i ; ξr,ki ) + (1− β)gr ▷ β = 1 implies FedAvg

Update local model xr,k+1
i = xr,k

i − ηgr,ki

end for

end for

Aggregate local updates gr+1 =
1

ηNK

N∑
i=1

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

end for

Convergence property. The inclusion of momentum in FedAvg yields notable theoretical improvements.

Firstly, it eliminates the need for the data heterogeneity assumption, also known as the gradient similarity

assumption. The assumption can be expressed as

1

N

N∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2, ∀x ∈ Rd (Data heterogeneity assumption)

where ζ2 measures the magnitude of data heterogeneity. By incorporating momentum, the above assumption

is no longer required for the convergence analysis of FedAvg. Secondly, momentum enables FedAvg to

converge at a state-of-the-art rate. These improvements are justified as follows:

Theorem 1. Under Assumption 1 and 3, if we set g0 = 0, β = min
{
1,
√

NKL∆/(σ2R)
}
,

γ = min

{
1

24L
,
β

6L

}
, ηKL ≲ min

{
1,

1

βγLR
,

(
L∆

G0β3R

)1/2

,
1

(βN)1/2
,

1

(β3NK)1/4

}

where ∆ ≜ f(x0)−min
x

f(x) and G0 ≜ N−1
∑

1≤i≤N

∥∇fi(x
0)∥2, then FedAvg-M satisfies

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

NKR
+

L∆

R

where notation ≲ denotes inequalities that hold up to a numeric number.

Comparison with prior works. Table 1 compares FedAvg-M with existing algorithms when all clients

participate in the training process. The results demonstrate that FedAvg-M attains the most favorable

convergence rate without relying on any assumption of data heterogeneity. Moreover, this rate matches the

lower bound provided by (Arjevani et al., 2019).
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Constant local learning rate. Based on Theorem 1, it can be inferred that when R ≳ NKL∆/σ2,

FedAvg-M allows the utilization of constant local learning rate η which does not decay as the number

of communication rounds R increases. This characteristic eases the tuning of the local learning rate and

improves empirical performance. In contrast, many existing convergence results of FedAvg necessitate the

adoption of local learning rates that diminish as R increases, as exemplified by e.g., (Yang et al., 2021; Li

et al., 2019; Karimireddy et al., 2020b; Koloskova et al., 2020).

Intuition on the effectiveness of momentum. The momentum mechanism relies on an accumulated

gradient estimate gr, which, although biased, exhibits reduced variance due to its accumulation nature

compared to the stochastic gradient ∇F (xr,k
i ; ξr,ki ) computed with a single data batch. Importantly, by

utilizing directions β∇F (xr,k
i ; ξr,ki )+(1−β)gr for local updates, an “anchoring” effect is achieved, effectively

mitigating the “client-drift” phenomenon. In the extreme case where β = 0, all clients remain synchronized in

their local updates, eliminating any drift. By appropriately tuning the coefficient β, FedAvg-M maintains

the same convergence rate as (Yang et al., 2021) while removing the requirement of data heterogeneity

assumption utilized in their analysis.

3.2 Variance-reduced FedAvg with momentum

When each local loss function is further assumed to be sample-wise smooth (i.e., Assumption 2), we can

replace the local descent direction in Algorithm 1 with a variance-reduced momentum direction

gr,ki = ∇F (xr,k
i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki )) (3.1)

to further enhance convergence, leading to variance-reduced FedAvg with momentum, or FedAvg-M-VR

for short, see the detailed algorithm in Appendix B.2. The variable xr−1 is the last-iterate global model

maintained in the server. The construction of the variance-reduced direction (3.1) effectively mitigates

the influence of within-client gradient noise and can be traced back to SARAH (Nguyen et al., 2017) and

STORM (Cutkosky & Orabona, 2019) in stochastic optimization; more discussion can be found in (Tan et al.,

2022). Same as FedAvg-M, turning off the variance-reduced momentum of FedAvg-M-VR, i.e., setting

β = 1, recovers FedAvg. FedAvg-M-VR shares the same algorithmic structure and uplink communication

workload as FedAvg.

Theorem 2. Under Assumption 2 and 3, if we take g0 =
1

NB

N∑
i=1

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼ Di and

set β = min

{
1,

(
NKL2∆2

σ4R2

)1/3
}
, γ = min

{
1

24L
,

√
βNK

54L2

}
, B =

⌈
K

Rβ2

⌉
, and

ηKL ≲ min

{(
L∆

G0γLR

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4
}
,
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then FedAvg-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

NKR

)2/3

+
L∆

R
.

Comparison with prior works. FedAvg-M-VR surpasses all existing variance-reduced federated learn-

ing methods in terms of convergence rate, as demonstrated by the results presented in Table 1. Additionally,

when compared to BVR-L-SGD (Murata & Suzuki, 2021) and CE-LSGD (Patel et al., 2022), FedAvg-M-

VR computes each local stochastic gradient using a batchsize of O(1), contrasting with the O(K) batchsize

employed by BVR-L-SGD and CE-LSGD. Furthermore, in comparison to STEM (Khanduri et al., 2021),

FedAvg-M-VR does not rely on the assumption of bounded data heterogeneity.

Based on discussions in Sections 3.1 and 3.2, we demonstrate that FedAvg-M and FedAvg-M-VR, in

the context of full client participation, can achieve the state-of-the-art convergence rate without resorting

to any stronger assumption, e.g., bounded data heterogeneity or impractical algorithmic structures such as

large batchsizes.

4 Accelerating SCAFFOLD with momentum

This section addresses the scenario where a random subset of clients participates in the training process

per iteration. To tackle the challenges arising from partial participation, SCAFFOLD employs a control

variable in each client to counteract the “client drift” effect during local updates. To further enhance

the convergence performance, we will introduce momentum to both SCAFFOLD and its variance-reduced

extension. Through our analysis, we will demonstrate that the incorporation of momentum results in new

state-of-the-art convergence rates for these algorithms.

4.1 SCAFFOLD with momentum

Algorithm. We introduce momentum to enhance the estimation of the stochastic gradient, resulting in

the newly proposed algorithm SCAFFOLD-M, outlined in Algorithm 2. In SCAFFOLD-M, S clients are

randomly selected from a pool of N clients for each iteration of trainining. The control variables ci and c are

maintained by the client and server, respectively. In SCAFFOLD, the local descent direction is given by

∇F (xr,k
i ; ξr.ki )− cri + cr. In contrast, SCAFFOLD-M incorporates momentum directions for local updates:

gr,ki = β(∇F (xr,k
i ; ξr,ki )− cri + cr) + (1− β)gr,

where gr represents the global stochastic gradient vector maintained by the server. It is worth noting that

SCAFFOLD-M can reduce to SCAFFOLD by setting β = 1.
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Algorithm 2 SCAFFOLD-M: SCAFFOLD with momentum

Require: initial model x0, gradient estimator g0, control variables {c0i }Ni=1 and c0, local learning rate η,

global learning rate γ, momentum β

for r = 0, · · · , R− 1 do

Uniformly sample clients Sr ⊆ {1, · · · , N} with |Sr| = S

for each client i ∈ Sr in parallel do

Initialize local model xr,0
i = xr

for k = 0, · · · ,K − 1 do

Compute gr,ki = β(∇F (xr,k
i ; ξr,ki )− cri + cr) + (1− β)gr ▷ β = 1 implies SCAFFOLD

Update local model xr,k+1
i = xr,k

i − ηgr,ki

end for

Update control variable cr+1
i :=

1

K

K−1∑
k=0

∇F (xr,k
i ; ξr,ki ) (for i /∈ Sr, c

r+1
i = cri )

end for

Aggregate local updates gr+1 =
1

ηSK

∑
i∈Sr

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

Update control variable cr+1 = cr +
1

N

∑
i∈Sr

(cr+1
i − cri )

end for

Convergence property. The inclusion of momentum in SCAFFOLD yields notable theoretical improve-

ments, as justified by the following theorem.

Theorem 3. Under Assumption 1 and 3, if we take g0 = 0, c0i =
1

B

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼

Di, c0 =
1

N

N∑
i=1

c0i and set B =

⌈
NK

SR

⌉
, γ =

β

L
, β = min

1,
S

N2/3
,

√
L∆SK

σ2R
,

√
L∆S2

G0N

, ηKL ≲

min

{
1

S1/2
,

1

βK1/4
,
S1/2

N

}
, then SCAFFOLD-M converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

SKR
+

L∆

R

(
1 +

N2/3

S

)
.

Comparison with SCAFFOLD. Compared to SCAFFOLD, SCAFFOLD-M exhibits provably faster

convergence under partial participation, as demonstrated in the comparison presented in Table 2. Specifically,

when the gradients are noiseless (i.e., σ2 = 0), achieving the same level of precision requires a ratio, between

SCAFFOLD-M and SCAFFOLD, of communication rounds given by

1 +N2/3/S

(N/S)2/3
≍ max

{(
S

N

)2/3

,
1

S1/3

}
,

where notation ≍ indicates that the equality holds up to a numeric number. Consequently, if S ≍ N2/3,

SCAFFOLD-M achieves up to N2/9 times improvement in comparison to the vanilla SCAFFOLD, when
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aiming for the same precision. This improvement is particularly significant as N , the number of clients, is

typically very large. It is also worth noting that prior to the introduction of SCAFFOLD-M, SCAFFOLD

was the only known non-iid federated learning method, to the best of our knowledge, that is robust to both

unbounded data heterogeneity and partial client sampling, and capable of attaining linear speedup without

relying on impractical algorithmic structures. Consequently, the development of SCAFFOLD-M provides

an alternative and superior choice.

4.2 Variance-reduced SCAFFOLD with momentum

Similar to FedAvg-M-VR, when the loss functions further enjoy the sample-wise smoothness property,

we can obtain SCAFFOLD-M-VR by replacing momentum directions in Algorithm 2 with variance-reduced

momentum directions

gr,ki = ∇F (xr,k
i ; ξr,ki )− β(cri − cr) + (1− β)(gr −∇F (xr−1; ξr,ki )).

The detailed algorithm is in Appendix C.2, and the convergence is shown below.

Theorem 4. Under Assumption 2 and 3, if we take c0i =
1

B

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼ Di, g

0 = c0 =

1

N

N∑
i=1

c0i and set β = min

{
S

N
,

(
KL∆

σ2R

)2/3

S1/3

}
, γ = min

{
1

L
,

√
βS

L

}
, B =

⌈
max

{
SK

NRβ2
,
NK

SR

}⌉
,

ηKL ≲ min

{(
β

S

)1/2

,

(
β

SK

)1/4
}
, then SCAFFOLD-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S

)
.

Comparison with variance-reduced methods. SCAFFOLD-M-VR outperforms all existing variance-

reduced federated learning methods under partial participation in terms of convergence rate when data het-

erogeneity is severe (i.e., ζ2 is large), see results listed in Table 2. Moreover, SCAFFOLD-M-VR has the

following additional advantages. Compared to MimeLiteMVR (Karimireddy et al., 2020a), SCAFFOLD-

M-VR does not need access to noiseless (full-batch) local gradients per iteration. Compared toMB-STORM

(Patel et al., 2022) and CE-LSGD (Patel et al., 2022), SCAFFOLD-M-VR does not require bounded data

heterogeneity and computes each gradient efficiently with batchsize 1, as opposed to batchsize O(K).

Based on discussions in Sections 4.1 and 4.2, we demonstrate that SCAFFOLD-M and SCAFFOLD-

M-VR, in the context of partial client participation, can achieve state-of-the-art convergence rates without

resorting to any stronger assumption, e.g., bounded data heterogeneity or impractical algorithmic structures

such as large batchsize.
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5 Experiments

Experimental settings. We conducted an evaluation of our proposed methods using a three-layer fully

connected neural network trained on the CIFAR-10 dataset. To generate non-iid data for the clients, we

sample label ratios from the Dirichlet distribution (Hsu et al., 2019) with a parameter of 0.5 for the full

participation setting and 0.2 for the partial participation setting. Our experimental setup involves N = 10

clients and K = 32 local updates. The weight decay is set as 10−4. The global learning rate is fixed

as γ = ηK for all the algorithms, and we performe a grid search for the local learning rate η in values

{0.005, 0.01, 0.05, 0.1, 0.5}. Similarly, we search for the momentum parameter β in values {0.1, 0.2, 0.5, 0.8}.

Experimental results. Our experiments can be categorized into three parts.

Firstly, we compare the performance of FedAvg-M and SCAFFOLD-M with their momentumless

counterparts, namely the vanilla FedAvg and SCAFFOLD, under full client participation. The results are

presented in Figure 1(a), where it can be observed that incorporating momentum significantly accelerates

the convergence of both FedAvg and SCAFFOLD.

Secondly, we compare three momentum-based variance-reduced methods: CE-LSGD, FedAvg-M-VR,

and SCAFFOLD-M-VR, under the condition of full client participation. The comparison is illustrated in

Figure 1(b). It is evident that our proposed methods outperform CE-LSGD with substantial margins.

Lastly, we investigate the partial participation setting with S = 1 and compare the performance of

SCAFFOLD-M and SCAFFOLD-M-VR with vanilla SCAFFOLD. The results are presented in Figure

1(c). Once again, we observe that the introduction of momentum leads to significant improvements even

when only a few clients participate in each round of training.
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(a) Acceleration of momentum
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(b) Comparison of VR methods
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Figure 1: Test loss versus the number of communication rounds
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6 Conclusion

This paper proposes momentum variants of FedAvg and SCAFFOLD under various client participa-

tion situations and smoothness properties. All of our momentum variants only make simple and practical

modifications to FedAvg and SCAFFOLD yet obtain state-of-the-art performance among their peers, par-

ticularly when data heterogeneity is severe or gradient noise is trivial. In particular, FedAvg-M converges

without relying on bounded data heterogeneity and can adopt constant local learning rates, giving the first

neat convergence guarantee for FedAvg-type methods; SCAFFOLD-M is the first FL method that out-

performs SCAFFOLD unconditionally. Experiments are conducted in the paper to support our theoretical

findings.
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Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical Programming,

pp. 1–49, 2020.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A Preliminaries of proofs

Let F0 = ∅ and Fr,k
i := σ({xr,j

i }0≤j≤k ∪ Fr) and Fr+1 := σ(∪iFr,K
i ) for all r ≥ 0 where σ(·) indicates

the σ-algebra. Let Er[·] := E[·|Fr] be the expectation, conditioned on the filtration Fr, with respect to

the random variables {Sr, {ξr,ki }1≤i≤N,0≤k<K} in the r-th iteration. We also use E[·] to denote the global

expectation over all randomness in algorithms. Through out the proofs, we use
∑
i

to represent the sum

over i ∈ {1, . . . , N}, while
∑
i∈Sr

denotes the sum over i ∈ Sr. Similarly, we use
∑
k

to represent the sum over

k ∈ {0, . . . ,K − 1}. For all r ≥ 0, we define the following auxiliary variables to facilitate proofs:

Er := E[∥∇f(xr)− gr+1∥2],

Ur :=
1

NK

∑
i

∑
k

E[∥xr,k
i − xr∥]2,

ζr,ki := E[xr,k+1
i − xr,k

i |Fr,k
i ],

Ξr :=
1

N

N∑
i=1

E[∥ζr,0i ∥2],

Vr :=
1

N

N∑
i=1

E[∥cri −∇fi(x
r−1)∥2].

We remark that quantity Vr is only used in the analysis of SCAFFOLD-based algorithms. Throughout the

appendix, we let ∆ := f(x0) − f∗, G0 :=
1

N

∑
i

∥∇fi(x
0)∥2, x−1 := x0 and E−1 := E[∥∇f(x0) − g0∥2]. We

will use the following fundamental lemmas for all our algorithms.

Lemma A.1. Under Assumption 1, if γL ≤ 1

24
, the following inequality holds for all r ≥ 0:

E[f(xr+1)] ≤ E[f(xr)]− 11γ

24
E[∥∇f(xr)∥2] + 13γ

24
Er.

Proof. Since f is L-smooth, we have

f(xr+1)] ≤f(xr) + ⟨∇f(xr), xr+1 − xr⟩+ L

2
∥xr+1 − xr∥2

=f(xr)− γ∥∇f(xr)∥2 + γ⟨∇f(xr), gr+1⟩+ Lγ2

2
∥gr+1∥2.

Since xr+1 = xr − γgr+1, using Young’s inequality, we further have

f(xr+1)

≤f(xr)− γ

2
∥∇f(xr)∥2 + γ

2
∥∇f(xr)− gr+1∥2 + Lγ2(∥∇f(xr)∥2 + ∥∇f(xr)− gr+1∥2)

≤f(xr)− 11γ

24
∥∇f(xr)∥2 + 13γ

24
∥∇f(xr)− gr+1∥2,

where the last inequality holds due to γL ≤ 1

24
. Taking the global expectation completes the proof.

To handle local updates and client sampling, we will also use the following technical lemmas.
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Lemma A.2 (AM-GM inequality). Let {v1, · · · , vτ} be τ vectors in Rd. Then the following are true:

1. ∥vi + vj∥2 ≤ (1 + a)∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 for any a > 0,

2.

∥∥∥∥∥
τ∑

i=1

vi

∥∥∥∥∥
2

≤ τ

τ∑
i=1

∥vi∥2.

Lemma A.3 (Karimireddy et al. (2020b)). Suppose {X1, · · · , Xτ} ⊂ Rd be random variables that are

potentially dependent. If their marginal means and variances satisfy E[Xi] = µi and E[∥Xi − µi∥2] ≤ σ2,

then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov way such that E[Xi|Xi−1, · · ·X1] = µi and E[∥Xi − µi∥2] ≤ σ2, i.e., the

variables {Xi − µi} form a martingale. Then the following tighter bound holds:

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2.

Lemma A.4. Given vectors v1, · · · , vN ∈ Rd and v̄ =
1

N

N∑
i=1

vi, if we sample S ⊂ {1, · · · , N} uniformly

randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = ∥v̄∥2 + N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2.

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ Sr, we prove this lemma as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

vi1{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥vi∥21{i ∈ S}+ 2
∑
i<j

v⊤i vj1{i, j ∈ S}


=

1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

v⊤i vj

=
1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

−
N∑
i=1

∥vi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi∥2 +
N(S − 1)

S(N − 1)
∥v∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v∥2 + ∥v∥2.
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In the following subsections, we present complete proofs of our main results. For FedAvg-M and

SCAFFOLD-M, our proofs only rely on Assumption 1 and 3, while for FedAvg-M-VR and SCAFFOLD-

M-VR, our proofs rely on Assumption 2 and 3.

B FedAvg with momentm

B.1 FedAvg-M

Lemma B.1. If γL ≤ β

6
, the following holds for r ≥ 1:

Er ≤
(
1− 8β

9

)
Er−1 +

4γ2L2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK
+ 4βL2Ur.

Additionally, it holds for r = 0 that

E0 ≤ (1− β)E−1 +
2β2σ2

NK
+ 4βL2U0.

Proof. For r ≥ 1,

Er = E[∥∇f(xr)− gr+1∥2]

= E

∥∥∥∥∥(1− β)(∇f(xr)− gr) + β

(
∇f(xr)− 1

NK

∑
i

∑
k

∇F (xr,k
i ; ξr,ki )

)∥∥∥∥∥
2


= E
[
∥(1− β)(∇f(xr)− gr)∥2

]
+ β2E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )

∥∥∥∥∥∥
2


+ 2βE

〈(1− β)(∇f(xr)− gr),∇f(xr)− 1

NK

∑
i, k

∇f(xr,k
i )

〉 .

Note that {∇F (xr,k
i ; ξr,ki )}0≤k<K are sequentially correlated. Applying the AM-GM inequality and Lemma

A.3, we have

Er ≤
(
1 +

β

2

)
E[∥(1− β)(∇f(xr)− gr)∥2] + 2βL2Ur + 2β2

(
σ2

NK
+ L2Ur

)
.

Using the AM-GM inequality again and Assumption 1, we have

Er ≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

2

)
Er−1 +

(
1 +

2

β

)
L2E[∥xr − xr−1∥2]

]
+

2β2σ2

NK
+ 4βL2Ur

≤ (1− β)Er−1 +
2

β
L2E[∥xr − xr−1∥2] + 2β2σ2

NK
+ 4βL2Ur

≤
(
1− 8β

9

)
Er−1 + 4

γ2L2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK
+ 4βL2Ur,

where we plug in ∥xr−xr−1∥2 ≤ 2γ2(∥∇f(xr−1)∥2+∥gr−∇f(xr−1)∥2) and use γL ≤ β

6
in the last inequality.

Similarly, for r = 0,

E0 ≤
(
1 +

β

2

)
E[∥(1− β)(∇f(x0)− g0)∥2] + 2βL2U0 + 2β2

(
σ2

NK
+ L2U0

)
≤ (1− β)E−1 +

2β2σ2

NK
+ 4βL2U0.
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Lemma B.2. If ηLK ≤ 1

β
, the following holds for r ≥ 0:

Ur ≤ 2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2).

Proof. Recall that ζr,ki := E[xr,k+1
i − xr,k

i |Fr,k
i ] = −η

(
(1− β)gr + β∇fi(x

r,k
i )
)
. Then we have

E[∥ζr,ji − ζr,j−1
i ∥2] ≤ η2L2β2E[∥xr,j

i − xr,j−1
i ∥2]

≤ η2L2β2(η2β2σ2 + E[∥ζr,j−1
i ∥2).

For any 1 ≤ j ≤ k − 1 ≤ K − 2, using ηL ≤ 1

βK
≤ 1

β(k + 1)
, we have

E[∥ζr,ji ∥2] ≤
(
1 +

1

k

)
E[∥ζr,j−1

i ∥2] + (1 + k)E[∥ζr,ji − ζr,j−1
i ∥2]

≤
(
1 +

2

k

)
E[∥ζr,j−1

i ∥2] + (k + 1)L2η4β4σ2

≤ e2E[∥ζr,0i ∥2] + 4k2L2η4β4σ2,

where the last inequality holds by unrolling the recursive bound and using

(
1 +

2

k

)k

≤ e2. By Lemma A.3,

it holds that for k ≥ 2,

E[∥xr,k
i − xr∥2] ≤ 2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2kη2β2σ2

≤ 2k

k−1∑
j=0

E[∥ζr,ki ∥2] + 2kη2β2σ2

≤ 2e2k2E[∥ζr,0i ∥2] + 2kη2β2σ2(1 + 4k3L2η2β2).

This is also valid for k = 0, 1. Summing up over i and k finishes the proof.

Lemma B.3. If 288e(ηKL)2((1− β)2 + e(βγLR)2) ≤ 1, then it holds for r ≥ 0 that

R−1∑
r=0

Ξr ≤ 1

72eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 2η2β2eRG0.

Proof. Note that ζr,0i = −η((1− β)gr + β∇fi(x
r)),

1

N

N∑
i=1

∥ζr,0i ∥2 ≤ 2η2

(
(1− β)2∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

)
.

Using Young’s inequality, we have for any q > 0 that

E[∥∇fi(x
r)∥2] ≤ (1 + q)E[∥∇fi(x

r−1)∥2] + (1 + q−1)L2E[∥xr − xr−1∥2]

≤ (1 + q)E[∥∇fi(x
r−1)∥2] + 2(1 + q−1)γ2L2(Er−1 + E[∥∇f(xr−1)∥2])

≤ (1 + q)rE[∥∇fi(x
0)∥2] + 2

q
γ2L2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2)(1 + q)r−j .
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By letting q =
1

r
, we have

E[∥∇fi(x
r)∥2] ≤ eE[∥∇fi(x

0)∥2] + 2e(r + 1)γ2L2
r−1∑
j=0

(Ej + E[∥∇f(xj)∥2). (B.1)

Note that this inequality is valid for r = 0. Therefore, using (B.1), we have

R−1∑
r=0

Ξr ≤
R−1∑
r=0

2η2E

[
(1− β)2∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

]

≤
R−1∑
r=0

2η2

(
2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2]) + β2 1

N

N∑
i=1

E[∥∇fi(x
r)∥2]

)

≤
R−1∑
r=0

4η2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2])

+ 2η2β2
R−1∑
r=0

 e

N

N∑
i=1

E[∥∇fi(x
0)∥2] + 2e(r + 1)(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])


≤ 4η2(1− β)2

R−1∑
r=0

(Er−1 + E[∥∇f(xr−1)∥2])

+ 2η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(Er + E[∥∇f(xr)∥2])

)
.

Rearranging the equation and applying upper bound of η completes the proof.

Theorem B.4. Under Assumption 1 and 3, if we take g0 = 0, β = min

{
1,

√
NKL∆

σ2R

}
, γ = min

{
1

24L
,
β

6L

}
,

and ηKL ≲ min

{
1,

1

βγLR
,

(
L∆

G0β3R

)1/2

,
1

(βN)1/2
,

1

(β3NK)1/4

}
, then FedAvg-M converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

NKR
+

L∆

R
.

Proof. Combining Lemma B.1 and B.2, we have

Er ≤
(
1− 8β

9

)
Er−1 + 4

(γL)2

β
E[∥∇f(xr−1)∥2] + 2β2σ2

NK

+ 4βL2
(
2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2

)
.

and

E0 ≤ (1− β)E−1 +
2β2σ2

NK
+ 4βL2

(
2eK2Ξ0 +Kη2β2σ2(1 + 2K3L2η2β2)

)
.
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Summing over r from 0 to R− 1 and applying Lemma B.3, we have

R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er + 4
(γL)2

β

R−2∑
r=0

E[∥∇f(xr)∥2] + 2
β2σ2

NK
R

+ 4βL2

(
2eK2

R−1∑
r=0

Ξr +RKη2β2σ2(1 + 2K3L2η2β2)

)

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
(
4
(γL)2

β
+

β

9

) R−2∑
r=−1

E[∥∇f(xr)∥2] + 16β3(eηKL)2RG0

+
2β2σ2

NK
R+ 4β3(ηKL)2

(
1

K
+ 2(ηKLβ)2

)
σ2R

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
2β

9

R−2∑
r=−1

E[∥∇f(xr)∥2] + 16β3(eηKL)2RG0 +
4β2σ2

NK
R.

Here in the last inequality we apply

4β(ηKL)2
(

1

K
+ 2(ηKLβ)2

)
≤ 2

NK
and γL ≤ β

6
.

Therefore,
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E[

R−2∑
r=−1

∥∇f(xr)∥2] + 144

7
(eβηKL)2G0R+

36βσ2

7NK
R.

Combining this inequality with Lemma A.1, we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

78

7
(eβηKL)2G0R+

39βσ2

14NK
R.

Finally, noticing that g0 = 0 implies E−1 ≤ 2L(f(x0)− f∗) = 2L∆, we obtain

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+ (βηKL)2G0 +

βσ2

NK

≲
L∆

R
+

L∆

βR
+

βσ2

NK
+ (βηKL)2G0

≲
L∆

R
+

√
L∆σ2

NKR
.

B.2 FedAvg-M-VR

B.2.1 Algorithm

When each local loss function is further assumed to be sample-wise smooth (i.e., Assumption 2), we can

replace the local descent direction in Algorithm 1 with a variance-reduced momentum direction

gr,ki = ∇F (xr,k
i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki ))
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to further enhance convergence, leading to FedAvg-M-VR, as presented in Algorithm 3. Here, the variable

xr−1 is the last-iterate global model maintained in the server. Same as FedAvg-M, turning off the variance-

reduced momentum of FedAvg-M-VR, i.e., setting β = 1, recovers FedAvg. FedAvg-M-VR shares the

same algorithmic structure and uplink communication workload as FedAvg.

Algorithm 3 FedAvg-M-VR: FedAvg with variance-reduced momentum

Require: initial model x−1 = x0 and gradient estimate g0, local learning rate η, global learning rate γ,

momentum β

for r = 0, · · · , R− 1 do

for each client i ∈ {1, . . . , N} in parallel do

Initial local model xr,0
i = xr

for k = 0, · · · ,K − 1 do

Compute direction gr,ki = ∇F (xr,k
i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki ))

Update local model xr,k+1
i = xr,k

i − ηgr,ki

end for

end for

Aggregate local updates gr+1 =
1

ηNK

N∑
i=1

(
xr − xr,K

i

)
Update global model global xr+1 = xr − γgr+1

end for

B.2.2 Convergence analysis

Lemma B.5. If γL ≤
√

βNK

54
, the following holds for r ≥ 1:

Er ≤ (1− 8β

9
)Er−1 +

4

β
L2Ur +

3β2σ2

NK
+

6(γL)2

NK
E[∥∇f(xr−1)∥2.

Also for r = 0, it holds that

E0 ≤ (1− β)E−1 +
4

β
L2Ur +

3β2σ2

NK
.
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Proof.

Er = E


∥∥∥∥∥∥ 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki ) + (1− β)

gr − 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

−∇f(xr)

∥∥∥∥∥∥
2


=E

[∥∥∥∥∥(1− β)(gr −∇f(xr−1)) +
1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr)

+ (1− β)

∇f(xr−1)− 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

∥∥∥∥∥
2]

=(1− β)2Er−1 + 2E

〈(1− β)(gr −∇f(xr−1)),
1

NK

∑
i, k

∇fi(x
r,k
i )−∇f(xr)

〉
︸ ︷︷ ︸

Λ1

+ E

∥∥∥∥∥∥ 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr) + (1− β)

∇f(xr−1)− 1

NK

∑
i, k

∇F (xr−1; ξr,ki )

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Λ2

.

By the AM-GM inequality and Assumption 2, we have

Λ1 ≤ β(1− β)2Er−1 +
1

β
L2Ur.

By Assumption 2,

Λ2 = E

[∥∥∥∥∥ 1

NK

∑
i, k

(
∇F (xr,k

i ; ξr,ki )−∇F (xr; ξr,ki )
)
+ β

 1

NK

∑
i, k

∇F (xr; ξr,ki )−∇f(xr)


+ (1− β)

 1

NK

∑
i, k

(
∇F (xr; ξr,ki )−∇F (xr−1; ξr,ki )

)
−∇f(xr) +∇f(xr−1)

∥∥∥∥∥
2]

≤ 3L2Ur + 3
β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2.

Therefore, for r ≥ 1,

Er ≤ (1− β)Er−1 +
4

β
L2Ur +

3β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2]

≤ (1− 8β

9
)Er−1 +

4

β
L2Ur +

3β2σ2

NK
+

6(γL)2

NK
E[∥∇f(xr−1)∥2].

The last inequality is derived by ∥xr − xr−1∥2 ≤ 2γ2(∥∇f(xr−1)∥2 + ∥gr −∇f(xr−1)∥2) and γL ≤
√

βNK

54
.

Similarly, for r = 0, we can obtain

E0 ≤ (1− β)E−1 +
4

β
L2U0 +

3β2σ2

NK
.

Lemma B.6. If ηKL ≤ 1

4e
, the following holds:

Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.
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Proof. Note that ζr,ki = −η(∇fi(x
r,k
i ) + (1− β)(gr −∇fi(x

r−1)). Then we have

E[∥ζr,ji − ζr,j−1
i ∥2] ≤ η2L2E[∥xr,j

i − xr,j−1
i ∥2]

= η2L2
(
E[∥ζr,j−1

i ∥2] + E[Var[xr,j
i − xr,j−1

i |Fr,j−1
i ]]

)
.

Here we use bias-variance decomposition and notation Var[·|·] stands for the conditional variance. Since

E[Var[xr,j
i − xr,j−1

i |Fr,j−1
i ]]

=η2E
[∥∥∥∇F (xr,j−1

i ; ξr,j−1
i )−∇fi(x

r,j−1
i )− (1− β)

(
∇F (xr−1; ξr,j−1

i )−∇fi(x
r−1)

)∥∥∥2]
≤η2

(
2β2σ2 + 2(1− β)2L2E[∥xr−1 − xr,j−1

i ∥2
)
,

then

E[∥ζr,ji − ζr,j−1
i ∥2]

≤ η2L2
(
E[∥ζr,j−1

i ∥2 + 2β2η2σ2 + 2η2(1− β)2L2E[∥xr−1 − xr,j−1
i ∥2]

)
≤ η2L2

(
E[∥ζr,j−1

i ∥2] + 2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j−1
i ∥2]

)
.

Therefore for any 1 ≤ j ≤ k − 1 ≤ K − 2,

E∥ζr,ji ∥2 ≤(1 +
1

k
)E[∥ζr,j−1

i ∥2 + (1 + k)E[∥ζr,ji − ζr,j−1
i ∥2]

≤
(
1 +

2

k

)
E∥ζr,j−1

i ∥2 + (k + 1)η2L2
(
2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j−1

i ∥2]
)

≤e2E∥ζr,0i ∥2 + 8k2L2η4(2β2σ2 + 4L2E[∥xr − xr−1∥2]) + 4e2k(ηL)4
j−1∑
j′=0

E[∥xr,j′

i − xr∥2].

(B.2)

Here the second inequality is by ηL ≤ 1

K
≤ 1

k + 1
. The last inequality is derived by unrolling the recursive

bound and using

(
1 +

2

k

)k

≤ e2. By Lemma A.3, it holds that

E[∥xr,k
i − xr∥2] ≤2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2

k−1∑
j=0

E[Var[xr,j+1
i − xr,j

i |Fr,j
i ]]

≤2k

k−1∑
j=0

E[∥ζr,ji ∥2] + 2

k−1∑
j=0

(
2β2η2σ2 + 4η2L2E[∥xr−1 − xr∥2 + ∥xr − xr,j

i ∥2]
)
. (B.3)

Summing up (B.3) over k = 0, . . . ,K − 1, using (B.2) and 8(ηL)2K + 8e2(ηKL)4 ≤ 1

2
due to the condition

on η, we have

1

2K

K−1∑
k=0

E[∥xr,k
i − xr∥2 ≤ 2eK2E[∥ζr,0i ∥2] + (8(ηK)4L2 + 4η2K)

(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.

This implies

Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.
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Lemma B.7. If γL ≤ 1

24
and 288e(ηKL)2

(
289

72
(1− β)2 + 8e(γβLR)2

)
≤ β2, then the following holds:

R−1∑
r=0

Ξr ≤ β2

288eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 4η2β2eRG0.

Proof. Recall that ζr,0i = −η((1− β)(gr −∇fi(x
r−1)) +∇fi(x

r)). Consequently, we have

∥ζr,0i ∥2 ≤ 2η2
(
(1− β)2∥gr∥2 + ∥∇fi(x

r)− (1− β)∇fi(x
r−1)∥2

)
≤ 2η2(1− β)2(1 + 2(γL)2)∥gr∥2 + 4η2β2∥∇fi(x

r)∥2

≤ 289

144
η2(1− β)2∥gr∥2 + 4η2β2∥∇fi(x

r)∥2.

Using the AM-GM inequality, we can obtain that for any q > 0,

E[∥∇fi(x
r)∥2] ≤ (1 + q)E[∥∇fi(x

r−1)∥2] + (1 + q−1)L2E∥xr − xr−1∥2

≤ (1 + q)E[∥∇fi(x
r−1)∥2] + 2(1 + q−1)(γL)2(Er−1 + E[∥∇f(xr−1)∥2])

≤ (1 + q)rE[∥∇fi(x
0)∥2] + 2

q
(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])(1 + q)r−j .

Taking q =
1

r
in the inequality above, we have

E[∥∇fi(x
r)∥2] ≤ eE[∥∇fi(x

0)∥2] + 2e(r + 1)(γL)2
r−1∑
j=0

(Ej + E[∥∇f(xj)∥2]).

This inequality holds as well trivially for r = 0. Therefore, we have

R−1∑
r=0

Ξr ≤
R−1∑
r=0

E

[
289

144
η2(1− β)2∥gr∥2 + 4η2β2 1

N

N∑
i=1

∥∇fi(x
r)∥2

]

≤
R−1∑
r=0

289

72
η2(1− β)2(Er−1 + E[∥∇f(xr−1)∥2])

+ 4η2β2
R−1∑
r=0

 e

N

N∑
i=1

E[∥∇fi(x
0)∥2] + 2e(r + 1)(γL)2

r−1∑
j=0

(Ej + E[∥∇f(xj)∥2])


≤ 289

72
η2(1− β)2

R−1∑
r=0

(Er−1 + E[∥∇f(xr−1)∥2])

4η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(Er + E[∥∇f(xr)∥2])

)

≤ β2

288eK2L2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2]) + 4η2β2eRG0.

Here the last inequality is due to the upper bound of η.

Theorem B.8. Under Assumption 2 and 3, if we take g0 =
1

NB

N∑
i=1

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼ Di and
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set β = min

{
1,

(
NKL2∆2

σ4R2

)1/3
}
, γ = min

{
1

24L
,

√
βNK

54L2

}
, B =

⌈
K

Rβ2

⌉
, and

ηKL ≲ min

{(
L∆

G0γLR

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4
}
,

then FedAvg-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

NKR

)2/3

+
L∆

R
.

Proof. Combining Lemma B.5 and B.6, we have

Er ≤ (1− 8β

9
)Er−1 +

(6γL)2

NK
E[∥∇f(xr−1)∥2] + 3β2σ2

NK

+
4

β
L2
(
4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)(β2σ2 + 2L2E[∥xr − xr−1∥2])

)
E0 ≤ (1− β)E−1 +

3β2σ2

NK
+

4

β
L2
(
4eK2Ξ0 + 8(ηK)2(2(ηKL)2 +K−1))β2σ2

)
Summing over r from 0 to R− 1 and applying Lemma B.7, we get

R−1∑
r=0

Er ≤ (1− 8β

9
)

R−2∑
r=−1

Er +
6(γL)2

NK
E

[
R−2∑
r=0

∥∇f(xr)∥2
]
+

3β2σ2

NK
R

+
4

β
L2

(
4eK2

R−1∑
r=0

Ξr + 8(ηK)2(2(ηKL)2 +
1

K
)

(
Rβ2σ2 + 2L2

R−1∑
r=0

E[∥xr − xr−1∥2]

))

≤ (1− 7β

9
)

R−2∑
r=−1

Er +
(
6(γL)2

NK
+

β

9

)
E[

R−2∑
r=−1

∥∇f(xr)∥2] + 64β(eηKL)2RG0

+
3β2σ2

NK
R+ 32β(ηKL)2

(
1

K
+ 2(ηKL)2

)
σ2R

≤ (1− 7β

9
)

R−2∑
r=−1

Er +
2β

9
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+ 64β(eηKL)2RG0 +

4β2σ2

NK
R.

Here in the second inequality we apply
32β(ηKL)2(

1

K
+ 2(ηKL)2) ≤ β2

NK
,

128(ηKL)2

β
(
1

K
+ 2(ηKL)2)(γL)2 ≤ β

18
,

γL ≤
√

βNK

54
.

Therefore, we obtain

R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

576

7
(eηKL)2G0R+

36βσ2

7NK
R.

Combining this inequality with Lemma A.1, we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

312

7
(eηKL)2G0R+

39βσ2

14NK
R.
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Finally, noticing that g0 =
1

NB0

∑
i

B∑
b=1

∇F (x0; ξbi ) implies E−1 ≤ σ2

NB0
≤ β2σ2R

NK
, we reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+ (ηKL)2G0 +

βσ2

NK

≲
L∆

γLR
+

βσ2

NK

≲
L∆

R
+

L∆√
βNKR

+
βσ2

NK

≲
L∆

R
+

(
L∆σ

NKR

)2/3

C SCAFFOLD with momentum

C.1 SCAFFOLD-M

Lemma C.1. If γL ≤ β

12
, the following holds for r ≥ 1:

Er ≤
(
1− 8β

9

)
Er−1 +

16

β
(γL)2E[∥∇f(xr−1)∥2] + 4β2σ2

SK
+ 10βL2Ur + 6β2 N − S

S(N − 1)
Vr.

In addition,

E0 ≤ (1− β)E−1 +
4β2σ2

SK
+ 8βL2U0 + 4β2 N − S

S(N − 1)
V0.

Proof. Note that
1

N

N∑
i=1

cri = cr holds for any r ≥ 0. Using Lemma A.4, we have

Er = E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

gr,ki

∥∥∥∥∥∥
2
+

N − S

S(N − 1)

1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

gr,ki − 1

NK

∑
j,k

gr,kj

∥∥∥∥∥∥
2


= E


1− β)(∇f(xr)− gr) + β

 1

NK

∑
i, k

∇F (xr,k
i ; ξr,ki )−∇f(xr)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Λ1

+
β2(N − S)

S(N − 1)

1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )− 1

NK

∑
j,k

∇F (xr,k
j ; ξr,kj )− (cri − cr)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Λ2

.

For r ≥ 1, similar to the proof of Lemma B.1, we have

Λ1 ≤ (1− β)Er−1 +
2

β
L2E[∥xr − xr−1∥2] + 2β2σ2

NK
+ 4βL2Ur.
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Besides, by AM-GM inequality and Lemma A.3,

Λ2 ≤ 1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )− cri

∥∥∥∥∥
2


≤ 2σ2

K
+

2

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇fi(x
r,k
i )− cri

∥∥∥∥∥
2


≤ 2σ2

K
+ 6(L2Ur + L2E[∥xr − xr−1∥2] + Vr).

Since E[∥xr − xr−1∥2] ≤ 2γ2(Er−1 +E[∥∇f(xr−1)∥2]) and
(
2

β
+ 6β2 N − S

S(N − 1)

)
2(γL)2 ≤ 16

β
(γL)2 ≤ β

9
, we

have

Er ≤
(
1− 8β

9

)
Er−1 +

16

β
(γL)2E[∥∇f(xr−1)∥2] + 4β2σ2

SK
+ 10βL2Ur + 6β2 N − S

S(N − 1)
Vr.

The case for r = 0 is similar.

Lemma C.2. If γL ≤ 1√
2β

and ηKL ≤ 1

β
, it holds for all r ≥ 1 that

Ur ≤ η2K2
(
8e(Er−1 + 2E[∥∇f(xr−1)∥2] + β2Vr) + β2σ2(K−1 + 2(βηKL)2))

)
.

Proof. Since ζr,ki = E[xr,k+1
i −xr,k

i |Fr,k
i ] = −η(β∇fi(x

r,k
i )+(1−β)gr−β(cri−cr)) and Var[xr,k+1

i −xr,k
i |Fr,k

i ] ≤

β2η2σ2, with exactly the same procedures of Lemma B.2, we have

Ur ≤ 2eK2Ξr +Kη2β2σ2(1 + 2K3L2η2β2).

Additionally, by AM-GM inequality,

Ξr =
η2

N

∑
i

E[∥β∇fi(x
r) + (1− β)gr − β(cri − cr)∥2]

=
η2

N

∑
i

E
[
∥β(∇fi(x

r)−∇fi(x
r−1)) + (1− β)(gr −∇f(xr−1))

−β
(
cri − cr −∇fi(x

r−1) +∇f(xr−1)
)
+∇f(xr−1)∥2

]
≤ 4η2

(
β2L2E[∥xr − xr−1∥2] + (1− β)2Er−1 + β2Vr + E[∥∇f(xr−1)∥2]

)
≤ 4η2(Er−1 + 2E[∥∇f(xr−1)∥2] + β2Vr).

Plug this inequality into the above bound completes the proof.

Lemma C.3. Under the same conditions of Lemma C.2, if βηKL ≤ 1

24K1/4
and ηK ≤ N

5S
γ, then we have

R−1∑
r=0

Vr ≤ 3N

S

(
V0 +

4SR

NK
σ2 +

8N

S
(γL)2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2])

)
.

Proof. Note that

cr+1
i =


cri with probability 1− S

N
1

K

∑
k

∇F (xr,k
i ; ξr,ki ) with probability

S

N
.
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Using Young’s inequality repeatedly, we have

Vr+1 =

(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i ; ξr,ki )−∇fi(x

r)

∥∥∥∥∥
2


≤
(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

(
2σ2

K
+ 2L2Ur

)

≤
(
1− S

N

)
1

N

N∑
i=1

E
[(

1 +
S

2N

)
∥cri −∇fi(x

r−1)∥2 +
(
1 +

2N

S

)
L2∥xr − xr−1∥2

]
+

2S

N

(
σ2

K
+ L2Ur

)
≤
(
1− S

2N

)
Vr +

2N

S
L2E[∥xr − xr−1∥2] + 2Sσ2

NK
+

2S

N
L2Ur.

Here we apply Lemma A.3 to obtain the second inequality. Combining this with Lemma C.2, we get

Vr+1 ≤
(
1− S

2N
+ 16e

S

N
(βηKL)2

)
Vr + 2σ2

(
S

NK
+

2S

N
(βηKL)2(K−1 + 2(βηKL)2)

)
+

(
4N

S
(γL)2 +

32eS

N
(ηKL)2

)
(Er−1 + E[∥∇f(xr−1)∥2])

≤
(
1− S

3N

)
Vr +

4S

NK
σ2 +

8N

S
(γL)2(Er−1 + E[∥∇f(xr−1)∥2]),

where we apply the upper bound of η. Therefore, we finish the proof by summing up over r from 0 to R− 1

and rearranging the inequality.

Theorem C.4. Under Assumption 1 and 3, if we take g0 = 0, c0i =
1

B

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼

Di, c0 =
1

N

N∑
i=1

c0i and set B =

⌈
NK

SR

⌉
, γ =

β

L
, β = min

1,
S

N2/3
,

√
L∆SK

σ2R
,

√
L∆S2

G0N

, ηKL ≲

min

{
1

S1/2
,

1

βK1/4
,
S1/2

N

}
, then SCAFFOLD-M converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2

SKR
+

L∆

R

(
1 +

N2/3

S

)
.

Proof. By Lemma C.1, we can get the following inequality by summing over r from 0 to R− 1 and plugging
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in Lemma C.2 and Lemma C.3

R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er +
16

β
(γL)2

R−2∑
r=0

E[∥∇f(xr)∥2]

+
4β2σ2

SK
R+ 10βL2

R−1∑
r=0

Ur + 6β2 N − S

S(N − 1)

R−1∑
r=0

Vr

≤
(
1− 8β

9
+ 80eβ(ηKL)2

) R−2∑
r=−1

Er + (
16

β
(γL)2 + 160eβ(ηKL)2)

R−2∑
r=0

E[∥∇f(xr)∥2]

+ β2σ2R

(
4

SK
+ 10(ηKL)2(K−1 + 2(βηKL)2)

)
+

+ β2

(
6

N − S

S(N − 1)
+ 80eβ(ηKL)2

)R−1∑
r=0

Vr

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
(
16

β
(γL)2 +

β

9

)R−2∑
r=0

E[∥∇f(xr)∥2] + 80β2σ2

SK
R+

30β2N

S2
V0.

Here the coefficients in the last inequality is derived by the following bounds:

160eβ(ηKL)2 + 24(
βγLN

S
)2
(
6

N − S

S(N − 1)
+ 80eβ(ηKL)2

)
≤ β

9
,

10(ηKL)2(K−1 + 2(βηKL)2) + 960eβK−1(ηKL)2 ≤ 4

SK
,

80eβ(ηKL)2 ≤ 4

S
,

which can be guaranteed by 
γL ≲

S3/2

β1/2N
,

ηKL ≲
1

S1/2
.

Therefore,
R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

270βN

7S2
V0 +

720βσ2

7SK
R.

Combining this inequality with Lemma A.1, we obtain

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

585βN

28S2
V0 +

390βσ2

7SK
R.

Finally, noticing that g0 = 0 implies E−1 ≤ 2L∆ and ci =
1

B0

∑
b

∇F (x0; ξbi ) implies V0 ≤ σ2

B0
≤ SRσ2

NK
, we

reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+

βN

S2R
V0 +

βσ2

SK

≲
L∆

βR
+

L∆

S3/2R
Nβ1/2 +

βσ2

SK

≲
L∆

R

(
1 +

N2/3

S

)
+

√
L∆σ2

SKR
.
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C.2 SCAFFOLD-M-VR

C.2.1 Algorithm

When each local loss function is further assumed to be sample-wise smooth (i.e., Assumption 2), we can

replace the local descent direction in Algorithm 2 with a variance-reduced momentum direction

gr,ki = ∇F (xr,k
i ; ξr,ki )− β(cri − cr) + (1− β)(gr −∇F (xr−1; ξr,ki )),

resulting in SCAFFOLD-M-VR, as presented in Algorithm 4. Here, the variable xr−1 is the last-iterate

global model maintained in the server. Same as SCAFFOLD-M, turning off the variance-reduced momen-

tum of SCAFFOLD-M-VR, i.e., setting β = 1, recovers SCAFFOLD.

Algorithm 4 SCAFFOLD-M-VR: SCAFFOLD with variance-reduced momentum

Require: initial model x−1 = x0, gradient estimator g0, control variables {c0i }Ni=1 and c0, local learning rate

η, global learning rate γ, momentum β

for r = 0, · · · , R− 1 do

Uniformly sample clients Sr ⊆ {1, · · · , N} with |Sr| = S

for each client i ∈ Sr in parallel do

Initialize local model xr,0
i = xr

for k = 0, · · · ,K − 1 do

Compute gr,ki = ∇F (xr,k
i ; ξr,ki )− β(cri − cr) + (1− β)(gr −∇F (xr−1; ξr,ki ))

Update local model xr,k+1
i = xr,k

i − ηgr,ki

end for

Update control variable cr+1
i :=

1

K

∑
k

∇F (xr,k
i ; ξr,ki ) (for i /∈ Sr, c

r+1
i = cri )

end for

Aggregate local updates gr+1 =
1

ηSK

∑
i∈Sr

(
xr − xr,K

i

)
Update global model xr+1 = xr − γgr+1

Update control variable cr+1 = cr +
1

N

∑
i∈Sr

(cr+1
i − cri )

end for

C.2.2 Convergence analysis

Lemma C.5. If γL ≤
√

βS

126
, then the following holds for r ≥ 1:

Er ≤ (1− 8β

9
)Er−1 +

14(γL)2

S
E[∥∇f(xr−1)∥2] + 8

β
L2Ur +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2Vr.
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In addition,

E0 ≤ (1− β)E−1 +
8

β
L2U0 +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2V0.

Proof. By Lemma A.3, we have

Er ≤ E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i, k

[
∇F (xr,k

i ; ξr,ki ) + (1− β)(gr −∇F (xr−1; ξr,ki ))
]∥∥∥∥∥∥

2


︸ ︷︷ ︸
Λ1

+
N − S

S(N − 1)

1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

[
∇F (xr,k

i ; ξr,ki )− (1− β)∇F (xr−1; ξr,ki )
]
− βcri

∥∥∥∥∥
2


︸ ︷︷ ︸
Λ2

.

Using the same derivation as Lemma B.5, we can show that

Λ1 ≤ (1− β)Er−1 +
4

β
L2Ur + 3

β2σ2

NK
+ 3(1− β)2

L2

NK
E[∥xr − xr−1∥2].

Additionally, by the AM-GM inequality,

Λ2 ≤ 1

N

N∑
i=1

4E

∥∥∥∥∥ 1

K

∑
k

[
∇F (xr,k

i ; ξr,ki )−∇F (xr; ξr,ki )
]∥∥∥∥∥

2

+ β2

∥∥∥∥∥ 1

K

∑
k

∇F (xr; ξr,ki )−∇fi(x
r)

∥∥∥∥∥
2

+ β2∥∇fi(x
r−1)− cri ∥2

+

∥∥∥∥∥β(∇fi(x
r)−∇fi(x

r−1)) +
1− β

K

∑
k

[
∇F (xr; ξr,ki )−∇F (xr−1; ξr,ki )

]∥∥∥∥∥
2


≤ 4

(
L2Ur +

β2σ2

K
+ β2Vr + L2E[∥xr − xr−1∥2]

)
.

Further notice that for r ≥ 1, it holds that E[∥xr − xr−1∥2 ≤ 2γ2(Er−1 + E[∥∇f(xr−1)∥2]) and

(γL)2(
8(N − S)

S(N − 1)
+

6(1− β)2

NK
) ≤ 14(γL)2

S
≤ β

9
.

Hence we obtain

Er ≤ (1− 8β

9
)Er−1 +

14(γL)2

S
E[∥∇f(xr−1)∥2 + 8

β
L2Ur +

7β2σ2

SK
+

4(N − S)

S(N − 1)
β2Vr.

The case for r = 0 can be established similarly.

Lemma C.6. If ηKL ≤ 1

4e
, ηK ≤ γN

10S
, and γL ≤ 1

24
, then it holds that

R−1∑
r=0

Vr ≤ 3N

S

(
V0 +

4SR

NK
σ2 +

6N

S
(γL)2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2])

)
.

Proof. Note that ζr,ki = −η(∇fi(x
r,k
i ) + (1− β)(gr −∇fi(x

r−1))− β(cri − cr)), with the same procedures in

Lemma B.6, we have

Ur ≤ 4eK2Ξr + 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
.
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Additionally, by the AM-GM inequality,

Ξr =
η2

N

∑
i

E[∥∇fi(x
r) + (1− β)(gr −∇fi(x

r−1)− β(cri − cr)∥2]

=
η2

N

∑
i

E
[∥∥(∇fi(x

r)−∇fi(x
r−1)) + (1− β)(gr −∇f(xr−1))

−β
(
cri − cr −∇fi(x

r−1) +∇f(xr−1)
)
+∇f(xr−1)

∥∥2]
≤ 4η2E

[
L2∥xr − xr−1∥2 + (1− β)2Er−1 + β2Vr + ∥∇f(xr−1)∥2

]
≤ 8η2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr).

Hence, by applying 32(2(ηKL)2 +K−1)(γL)2 ≤ 96(γL)2 ≤ 2, we obtain

Ur ≤ 32e(ηK)2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr)

+ 8(ηK)2(2(ηKL)2 +K−1)
(
β2σ2 + 2L2E[∥xr − xr−1∥2]

)
≤ 90(ηK)2(Er−1 + E[∥∇f(xr−1)∥2] + β2Vr) + 8(βηK)2(2(ηKL)2 +K−1)σ2.

(C.1)

Also, similar to Lemma C.3, it still holds that

Vr+1 ≤
(
1− S

2N

)
Vr +

2N

S
L2E[∥xr − xr−1∥2 + 2Sσ2

NK
+

2S

N
L2Ur.

Combine this with the upper bound of Ur,

Vr+1 ≤
(
1− S

2N
+

180(βηKL)2S

N

)
Vr +

(
4N(γL)2

S
+

180(ηKL)2S

N

)
(Er−1 + E[∥∇f(xr−1)∥2])

+ σ2

(
2S

NK
+ 8(βηKL)2(2(ηKL)2 +K−1)

)
≤
(
1− S

3N

)
Vr +

6N(γL)2

S
(Er−1 + E[∥∇f(xr−1)∥2]) + 4Sσ2

NK
,

where we apply the upper bound of η in the last inequality. Iterating the above inequality completes the

proof.

Theorem C.7. Under Assumption 2 and 3, if we take c0i =
1

B

B∑
b=1

∇F (x0; ξbi ) with {ξbi }Bb=1
iid∼ Di, g

0 =

c0 =
1

N

N∑
i=1

c0i and set β = min

{
S

N
,

(
KL∆

σ2R

)2/3

S1/3

}
, γ = min

{
1

L
,

√
βS

L

}
, B =

⌈
max

{
SK

NRβ2
,
NK

SR

}⌉
,

ηKL ≲ min

{(
β

S

)1/2

,

(
β

SK

)1/4
}
, then SCAFFOLD-M-VR converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
(

L∆σ

S
√
KR

)2/3

+
L∆

R

(
1 +

N1/2

S

)
.
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Proof. By Lemma C.5, sum over r from 0 to R− 1 and plug (C.1), Lemma C.6 in,

R−1∑
r=0

Er ≤ (1− 8β

9
)

R−2∑
r=−1

Er +
14(γL)2

S

R−2∑
r=0

E[∥∇f(xr)∥2] + 7β2σ2

SK
R

+
8

β
L2

R−1∑
r=0

Ur + 4β2 N − S

S(N − 1)

R−1∑
r=0

Vr

≤ (1− 8β

9
+ 720

(ηKL)2

β
)

R−2∑
r=−1

Er + (
14(γL)2

S
+ 720

(ηKL)2

β
)

R−2∑
r=0

E[∥∇f(xr)∥2]

+ β2σ2R

(
7

SK
+

64(ηKL)2

β
(K−1 + 2(ηKL)2)

)
+ β2

(
4(N − S)

S(N − 1)
+ 720

(ηKL)2

β

)R−1∑
r=0

Vr

≤ (1− 7β

9
)

R−2∑
r=−1

Er + (
14(γL)2

S
+

β

9
)

R−2∑
r=0

E[∥∇f(xr)∥2] + 60
β2σ2

SK
R+ 15

β2N

S2
V0.

Here the coefficients in the last inequality is derived by the following bounds:

720
(ηKL)2

β
+ 18(

βγLN

S
)2
(
4

N − S

S(N − 1)
+ 720

(ηKL)2

β

)
≤ β

9
,

64
(ηKL)2

β
(K−1 + 2(ηKL)2) + 8640

(ηKL)2

βK
≤ 5

SK
,

720
(ηKL)2

β
≤ 1

S
,

which can be guaranteed by 
γL ≲

S3/2

β1/2N
,

ηKL ≲ min{
√

β

S
, (

β

SK
)1/4}.

Therefore, it holds that

R−1∑
r=0

Er ≤ 9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f(xr)∥2
]
+

135βN

7S2
V0 +

540βσ2

7SK
R.

Combining this inequality with Lemma A.1, we get

1

γ
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39

56β
E−1 +

585βN

56S2
V0 +

585βσ2

14SK
R.

Finally, noticing that g0 =
1

NB0

∑
i,b

∇F (x0; ξbi ) implies E−1 ≤ σ2

NB0
≤ β2σ2R

SK
and ci =

1

B0

∑
b

∇F (x0; ξbi )
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implies V0 ≤ σ2

B0
≤ SRσ2

NK
, we reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

βR
+

βN

S2R
V0 +

βσ2

SK

≲
L∆

R
+

L∆

(βS)1/2R
+

L∆

S3/2R
Nβ1/2 +

βσ2

SK

≲
L∆

R

(
1 +

N1/2

S

)
+

(
L∆σ

S
√
KR

)2/3

.
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