
MuseChat: A Conversational Music Recommendation System for Videos

Zhikang Dong *

Stony Brook University
zhikang.dong.1@stonybrook.edu

Bin Chen
Bytedance.com

chen.bin@bytedance.com

Xiulong Liu *

University of Washington
xl1995@uw.edu

Paweł Polak
Stony Brook University

pawel.polak@stonybrook.edu

Peng Zhang †

Bytedance.com
zhang.peng@bytedance.com

Abstract

We introduce MuseChat, an innovative dialog-based mu-
sic recommendation system. This unique platform not only
offers interactive user engagement but also suggests music
tailored for input videos, so that users can refine and per-
sonalize their music selections. In contrast, previous sys-
tems predominantly emphasized content compatibility, often
overlooking the nuances of users’ individual preferences.
For example, all the datasets only provide basic music-
video pairings or such pairings with textual music descrip-
tions. To address this gap, our research offers three contri-
butions. First, we devise a conversation-synthesis method
that simulates a two-turn interaction between a user and a
recommendation system, which leverages pre-trained music
tags and artist information. In this interaction, users sub-
mit a video to the system, which then suggests a suitable
music piece with a rationale. Afterwards, users commu-
nicate their musical preferences, and the system presents
a refined music recommendation with reasoning. Second,
we introduce a multi-modal recommendation engine that
matches music either by aligning it with visual cues from
the video or by harmonizing visual information, feedback
from previously recommended music, and the user’s textual
input. Third, we bridge music representations and textual
data with a Large Language Model(Vicuna-7B). This align-
ment equips MuseChat to deliver music recommendations
and their underlying reasoning in a manner resembling hu-
man communication. Our evaluations show that MuseChat
surpasses existing state-of-the-art models in music retrieval
tasks and pioneers the integration of the recommendation
process within a natural language framework.

*These authors contributed equally.
†Corresponding author

1. Introduction

Music serves as a complementary modality within
videos, enriching the viewer’s experience and aiding in con-
tent comprehension. Thus, choosing the right music for
a video is crucial. Current music recommendation sys-
tems effectively curate lists of tracks that harmonize with a
video’s content. For instance, they might select scary music
for a horror movie or high-energy tracks for a dance video.
While this focus on content compatibility is important, we
argue that user preferences are equally essential. For exam-
ple, individuals born in the ’80s may prefer synth-pop for
a nostalgia-themed video, whereas teenagers might lean to-
ward contemporary pop. Both genres fall under the ’pop’
category, but the choice between them can significantly im-
pact user engagement.

The challenge of personalized recommendation remains
relevant, as many systems leverage user profiles and activity
data to generate recommendations. However, we identify
two key limitations: (1) the inability to consistently meet
user preferences, and (2) the cold-start problem for new
users without prior data. Current music recommendation
systems aim to provide lists of songs based on user history,
but these may not always align with user needs for specific
videos. This not only hampers user experience but also un-
derscores the complexity of predicting preferences, which
may deviate due to factors like user’s recent trends. To mit-
igate these limitations, we propose incorporating a feedback
mechanism. This would allow the system to adjust its rec-
ommendations according to user feedback, making them
more aligned with changing preferences. For new users
without historical data, a cold-start scenario arises, leading
to recommendations to be content-driven once again.

In this study, we introduce MuseChat, a comprehensive
conversational music recommendation system. As Figure
1 shows, it composes of music recommendation module
and sentence generation module, so that a user can upload
a video and receive a recommended music. More impor-
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Figure 1. The MuseChat model consists of two main components: the Music Recommendation Module and the Sentence Generator
Module. The Music Recommendation Module can operate in two modes: it can either process just the video input, as illustrated by the
first turn in the left-hand chatbox, or use a composite of the video, the user’s prompt, and previously suggested music, as shown by the
second turn. The Sentence Generator Module takes the music embeddings and titles identified by the Music Recommendation Module
as its inputs. Whenever a new music recommendation is generated, this module incorporates the corresponding music title, enabling the
creation of natural language recommendations.

tantly, MuseChat enables users to interact with the system
in a conversational manner. At each dialog turn, users can
refine these recommendations by specifying criteria such as
mood, genre, instruments, theme, and artist details in natu-
ral language, until they identify their desired track. Another
standout feature of MuseChat is its explainability. Machine
learning models usually work in a black-box fashion, lack-
ing of interpretability on how the inner systems work and
thus lower the confidence on the predictions. To tackle this,
we adapt sentence generator module to MuseChat, which
provides reasons for its recommendations. It not only clar-
ifies the selection to users but also assists them in crafting
their personal narratives with the music.

Constructing a conversational music recommendation
system presents three core challenges. (1) Dataset: ex-
isting datasets such as [1, 2, 4, 27, 35, 37] primarily com-
prise music-video pairs, music-text pairs, or music-text-

video triplets. These do not align well with MuseChat’s in-
tended use-case for two main reasons: First, current datasets
only include single-turn interactions, lacking the multi-turn
dialogues that are crucial for more interactive and dynamic
recommendation systems. Second, these datasets omit ex-
planations for the recommendations, a key feature for en-
hancing user understanding and trust. (2) Joint Multi-
modality Learning: The task of creating a joint embed-
ding space for video, music, and text is complex. Each of
these modalities has its unique sequential features, making
it a challenge to combine them into a unified representa-
tion. In this paper, we introduce a new methodology that
effectively integrates spatiotemporal information from these
diverse modalities, leading to a more holistic representa-
tion. (3) Prediction Reasoning: While current research on
multi-modality Large Language Models (MLLMs) exhibit
capabilities to process and understand diverse modalities,
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such as video and audio, a significant gap exists. Specif-
ically, none of these models are purpose-built for the nu-
anced task of music interpretation and recommendation.

In order to address these challenges, we make the follow-
ing contributions: (1) We introduce a novel dataset tailored
for dialogue-driven music recommendations and reasoning
within the context of videos. The data contains 98,206 quar-
tets: a video, original music, candidate music and a two-
turn conversation. This setup mimics the user’s interaction
with recommendation systems. It starts with uploading a
video, receiving an initial music recommendation, and then
accommodating a user’s textual prompt to finalize the mu-
sic selection; (2) We present a cutting-edge tri-modal archi-
tecture designed for music-video matching, enhanced with
textual input. This model not only processes the previously
recommended music and video content but also integrates
user-provided textual prompts to fine-tune its music recom-
mendations; (3) We equip our model with a unique feature:
the ability to articulate the reasoning behind its music rec-
ommendations. By harnessing the capabilities of LLMs,
we craft a sentence generator module. Drawing on mu-
sic representation from an upstream module, this genera-
tor deeply understands musical features and subsequently
produces coherent reasoning outputs, guaranteeing a har-
monious alignment between music and textual descriptors.

2. Related Work
Automatic music tagging. Music tags efficiently sum-

marize songs by providing descriptive keywords that cover
various elements such as emotion, genre, and theme. Nu-
merous studies have ventured into the domain of automatic
music tagging, as evidenced by works such as [7, 8, 29,
30, 38, 50]. Specifically, [49] employed a model that uses
shallow convolutional layers to extract acoustic features,
which are then processed by stacked self-attention layers
in a semi-supervised setting. Similarly, [58] introduced
S3T, a self-supervised pre-training method based on the
Swin Transformer [32] architecture, further optimized by
a music-specific data augmentation process.

Music description in free-form natural language. De-
scribing music in free-form natural language has also
gained research attention [24, 25, 33, 50]. For instance, [13]
proposed a universal retrieval system, benchmarked to han-
dle both tag- and sentence-level inputs. This system demon-
strated adaptability across nine different music classifica-
tion tasks. Moreover, [34] launched ”Song Describer”, an
open-source tool aimed at crowdsourcing text descriptions
of music tracks. This initiative resulted in the creation of a
public audio-caption dataset for the music domain.

Music recommendation for video. The task of music
recommendation based on video attributes has received at-
tention in previous studies [39,42,53,54]. While some work
has focused on creating joint embeddings of music and free-

form natural language [25, 33], other studies have exam-
ined the relationship between video, everyday audio sounds
(excluding music), and language [20, 51]. [35] introduced
a method that enables users to guide music recommenda-
tions using a single text description summarizing both mu-
sic and video attributes. However, their approach neither
incorporates user feedback nor adapts its recommendations
based on such feedback or prior recommendation results.
Our work with MuseChat aims to address these limitations.

Conversational recommendation system. Conversa-
tional Recommender Systems (CRS) have gained research
attention for their ability to support task-oriented, multi-turn
dialogues with users [10, 15, 26, 52]. These systems can
capture the user’s detailed and current preferences, provide
explanations for suggested items, and process user feedback
on recommendations. The emergence of LLMs has substan-
tially enhanced the capabilities of CRS, particularly in un-
derstanding and generating natural language. [48] proposed
an interactive evaluation approach that balances the focus
between matching ground truth and maintaining interactiv-
ity. [14] developed an LLM-driven user simulator to gen-
erate synthetic dialogues, addressing the lack of conversa-
tional data. Their RecLLM, built on LaMDA [43], demon-
strates versatility and fluency in recommending YouTube
videos. [17] introduced Chat-Rec, a paradigm that inte-
grates LLMs into recommender systems by transforming
user profiles and historical data into prompts. This en-
hances both the interactivity and explainability of the rec-
ommendations and also offers solutions for cold-start sce-
narios. [22] redefined the recommendation challenge as a
conditional ranking task. They found that, with specific
prompting approaches, LLMs can achieve competitive zero-
shot ranking abilities compared to traditional models. How-
ever, they also noted challenges related to LLMs’ under-
standing of sequential interactions and their susceptibility
to biases, which can be mitigated through tailored prompt-
ing and bootstrapping techniques.

Multi-modalities and Large language models. The
rapid evolution of LLMs has been a game-changer in the
landscape of artificial intelligence, becoming a focal point
in contemporary research. Originating from transformer
architectures [46], these models are trained on extensive
corpora, containing billions of words [12, 41]. Notewor-
thy models like OpenAI’s GPT-3 [5], Meta’s LLaMA [45],
and Google’s LaMDA [43] have set benchmarks for tex-
tual generation that closely resembles human articulation.
The recent advances in LLMs extend beyond text to multi-
modal inputs. These models are proficient at synthesizing
and interpreting information across different data types. For
instance, [62] introduced MiniGPT-4, which incorporates a
visual encoder into a large language model. This has led
to the model’s ability to generate narratives inspired by im-
ages. Other notable works include [55], which can inter-
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pret video content to generate informed textual responses,
and [31], which demonstrated how to encode answer candi-
dates into GPT-3 prompts, enabling external knowledge in-
tegration. Similarly, [19] developed a question-generation
module that, when paired with a vision-language model,
produced synthetic question-answer sets. The healthcare
sector has also benefited from these advancements. [47, 59]
used pre-trained models to interpret medical images and
texts, generating concise medical reports. [61] introduced
SkinGPT-4, a specialized model trained on a large dataset of
skin conditions, serving as a conversational diagnostic tool.
While the computational cost of training large models posed
challenges for smaller research groups, recent innovations
like fine-tuning adapters [11, 16, 23, 56] have democratized
access. These adaptations enable smaller research teams to
customize LLMs for niche applications.

3. Dataset
We are simulating a two-turn dialog to create one data

sample: in the first turn only video is provided and a can-
didate music will be recommended by an underlying mu-
sic recommendation system; In the second turn, based on
the recommended music, user prompts changes in natural
language to the target music, along with video and the rec-
ommended music, the system will output another one that
matches the video most. The overall process of data gener-
ation is illustrated in Figure 2.

YouTube-8M dataset. We construct our conversational
music recommendation dataset based on the YouTube8M
dataset [1]. It is a large-scale video collection contain-
ing millions of YouTube video IDs and associated labels
spread across thousands of classes, including genres like
music, sports, and documentaries etc. It serves as an in-
valuable dataset for video understanding and especially for
fields like music recognition and categorization within the
broader spectrum of video research. We begin by filtering
out videos tagged with “music video” and removing any
unavailable videos. This process results in a dataset com-
prising 98,206 music videos. From each video, we extract
a 120-second clip, focusing on the central segment. We
then randomly allocate 88,000 of these music videos to our
training set and the remaining 10,206 videos to our testing
set. Each video and its corresponding music are set as the
ground truth, namely video and target music as above.

Music-Video Pretrained (MVP) model. We employ a
Music-Video Pretrained (MVP) model to be the recommen-
dation system, which share the similar model strucutre as
MuLan [25] model. Except the MVP model utilizes the
pretrained CLIP Image encoder [40] for video feature ex-
traction and the pretrained Audio Spectrogram Transformer
(AST) [18] for music feature extraction.1 This model is

1The pretrained weights used are clip-vit-large-patch14 for the CLIP
Image encoder and MIT/ast-finetuned-audioset-10-10-0.4593 for the AST.

trained on our proprietary dataset consisting of millions of
music-video pairs. To recommend a music from a given
music pool with the input video, MVP simply takes both
candidate music and video as input and outputs a similar-
ity score. Music from the pool will then be ranked in the
order of decreased similarity. Specifically, we restrict the
candidate pool to be 2000 for training and 500 for testing
(original music is excluded in both setting), instead of us-
ing the whole music pool, for the purpose of not being af-
fected by low quality music. It should be noted that the
MVP model here is not intended to identify the track that
most similar to the original; rather, we are interested in a
track that represents a noticeable divergence, serving as a
prior recommendation with which the user may not be fully
satisfied.

Prompt Constructor. Given a triplet consisting of a
video, its original music track, and a recommended candi-
date music track, our aim is to construct a two-turn conver-
sation. Specifically, during each user turn, a prompt should
be provided to bridge the original music and the current
recommended candidate music. During the bot’s turn, de-
scriptions about the returned music (e.g., the recommended
candidate music in the first turn, and the original music in
the second turn) are essential. To achieve this, we utilize
the method introduced by [38] to assign tags to each music
track. This tagging leverages two separate systems: one
from the MagnaTagATune dataset [21] and another from
the Million Song dataset [3]. Both systems have a 50-tag
vocabulary, and using dual sources enhances the tagging
robustness. Alongside music tags, we also collect meta-
data for every music video. Metadata encompasses title and
video description from the YouTube website. However, it’s
important to note that not every music video in our dataset
is labeled as an official music video by YouTube. Conse-
quently, while every video possesses a title and descrip-
tion, supplementary details like official artist names, album
specifics, and release dates are available for only around
30,000 tracks. With the music tags and metadata of the
original and candidate music in hand, we manually craft a
two-turn conversation between a user and a music recom-
mendation system. To expand our dataset, we use above
human-curated conversations as a template but provide dif-
ferent original-candidate music pair information along with
respective metadata to guide GPT-3.5 to generate conversa-
tions case by case but in a similar manner. The full template
prompt can be found in supplementary materials. While
many music tracks may lack comprehensive metadata like
official artist name, release date, or album title, such infor-
mation could potentially be obtained from the video title
or the YouTube description. GPT-3.5, with its capability
to parse these sources, can extract this valuable informa-
tion, which significantly elevates the quality of the simu-
lated conversations. Each entry in our dataset, therefore,
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Figure 2. The generation pipeline for Conversational Music Recommendation Dataset.

consists of a video v, original target music track mt, can-
didate music track mc and simulated conversation text t.
More specifically, we denote ti as the sequence order of
each conversational turn: t1 and t3 are from users, while t2
and t4 are from recommendation system.

4. Approach
We propose an approach to address this task on this

dataset, setting as a new baseline performance. As showed
in Figure 1, there are two main modules involved in the sys-
tem: music recommendation and sentence generator. We
illustrate them below.

4.1. Music Recommendation

The objective of music recommendation module is to se-
lect the most relevant music from a music pool, using a va-
riety of inputs such as video, music and text. Each training
sample is defined as a quartet (v,mc,mt, t3), where v is
the video, mc denotes the candidate music track, mt is the
target original music track and t3 is the text of user’s pref-
erences. As illustrated in Figure 3, our focus is to enhance
the model’s ability to transition the recommendation from a
previous track mc to target music track mt. To accomplish
this, each training sample is transformed into base features:
xv = gv(v) for visual inputs, xt3 = gt(t3) for text inputs,
xmt = gmt(mt) and xmc = gmc(mc) for audio inputs.
It’s crucial to note that gv and gt are frozen during train-
ing, while gmt and gmcare subject to fine-tuning. Since
these features come from different backbone models, we
use a trainable linear projection layer to map them into a
common embedding space. This results in xt3 ∈ Rnt×d,
and xmc ∈ Rnm×d. Given the aim to align the target mu-
sic track mt with the overall video content, we average the
sequence dimension of each xv to yield xv̄ ∈ R1×d. To
summarize the target music, we use the first cls token from
xmt , resulting in xmcls

t ∈ R1×d.
To better capture the information from audio and text, we

apply Transformer [46] encoder to both of them, denoted
fT
mc

and fT
t respectively, to capture long-range dependen-

cies and complex relationships in the sequence data. This
yields:

x̃t3 = fT
t

(
xt3

)
,

x̃mc = fT
mc

(xmc) ,
(1)

We further develop a fusion method for the audio and
text modalities, where we represent the transformed fea-
tures x̃t3 and x̃mc as sequences:

x̃t3 =
[
x̃t3

cls, x̃
t3
1 , . . . , x̃t3

(nt)

]
,

x̃mc =
[
x̃mc

cls , x̃
mc
1 , . . . , x̃mc

(nm)

]
,

(2)

where cls serves as a summary of the respective sequence,
along with the other elements capturing detailed features.

Then we define our multi-head cross-modality attention
layer as

Attn(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V, (3)

where dk is the dimensionality of key vectors. Q and K, V
are from two different modalities.

After fusing x̃t3 and x̃mc , we have final fusion embed-
dings:

xf = xv̄ +Attn(x̃t3
cls, x̃

mc , x̃mc) + Attn(x̃mc

cls , x̃
t3 , x̃mc)

(4)
During training, we use the Contrastive Multiview Cod-

ing loss function [44], which is a cross-modal variant of
InfoNCE [36] and NT-Xent [6]. For each batch B, we have
ranking loss:

LR = −
B∑
i=1

log h
(
xf
(i),x

mcls
t

(i)

)
∑

j ̸=i h
(
xf
(i),x

mcls
t

(j)

)
+ h

(
xf
(j),x

mcls
t

(i)

)
 ,

(5)
where xf

(i) and x
mcls

t

(i) are i-th fusion vectors and target mu-
sic representations in the batch respectively. h(x,y) =

expx
⊤y/τ is a discriminating function, and τ the temper-

ature hyperparameter, and τ is a trainable hyperparameter.
It is essential to note that larger batch sizes have been found
to be beneficial in contrastive learning [6, 28].
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Figure 3. The music recommendation module incorporates three types of inputs: video, music, and text. For extracting base embeddings
from video and text, we utilize CLIP [40]. Representations from music are extracted using the Audio Spectrogram Transformer (AST) [18].
To align these embeddings in the same dimensional space, we employ a linear projection layer. Subsequently, latent features from candidate
music and text are encoded using Transformer layers. These two modalities are then fused using a multi-head cross-attention layer. The
fused features, rich in contextual information, are combined with video embeddings, resulting in significant improvements.

4.2. Sentence Generator

In the second stage, we build a multi-modal LLM based
on Vicuna-7B [60] by finetuning Llama2-7B [45] weights.
Each training instance consists of a music representation
xmt comes from music recommendation module music en-
coder and the corresponding recommendation reasoning
statement t4 from simulated recommendation system. To
align music representation xmt with text embedding space,
we train linear projection fl to connect representation to Vi-
cuna. To reduce the number of trainable parameters, we
leverage LoRA [23] to finetune the Vicuna’s attention struc-
tures. The structure is illustrated in Figure 4.

LG (y; θ) =

n∏
i=1

pθ
(
yi |

[
fl (x

mt) : xt4
]
; θ
)
, (6)

where yi is the i-th token in the response y, and θ is the
trainable parameters in linear projection layers and LoRA
weights. We only compute the loss from the part of system
responses during the training.

5. Experimental Results
5.1. Implementation Details

For each 120-second music video clip, we divide it into
twelve 10-second segments and capture 5 frames per sec-
ond from each segment. In our training process for the mu-
sic recommendation module, each training sample includes
a 10-second video clip, a corresponding 10-second original
music clip, a 10-second candidate music clip, and a user

Figure 4. Illustration of sentence generator. During training, we
only train the linear projection layers and the additional LoRA
weights while keeping the parameters of Vicuna-7B frozen.

prompt. To extract video and text features, we use Ope-
nAI’s CLIP model, and for audio features, we employ the
AST model.2 We convert all these basic features into 256-
sized embeddings using a linear projection for each input
type. Following this, we apply four Transformer encoder
layers and a multi-head cross-attention layer, each with 16
heads, to process these embeddings. In the sentence gener-
ator module, we limit the maximum sequence length to 128
and set the temperature hyperparameter at 0.1. The entire

2The pretrained weights used are clip-vit-base-patch32 for the CLIP
Image encoder and MIT/ast-finetuned-audioset-10-10-0.4593 for the AST.
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Model Train Modality Input Modality MR ↓ R@1 ↑ R@5 ↑ R@10 ↑ SR@10 ↑
MVP baseline Video Video 7 20.71 48.89 63.14 63.14
MuseChat (1st turn) Video, Audio&Text Video 5 20.74 48.83 63.10 63.10
MuseChat (2nd turn) Video, Audio&Text Video, Audio&Text 2 32.79 63.92 76.53 82.98

Chance - - 250 0.20 1.00 2.00 2.00

Table 1. Music retrieval results for baseline, multi-turn MuseChat.

model is trained using 16 Nvidia V100 32G GPUs.

5.2. Ranking Evaluation

In our test set, we have a total of 10,206 music tracks. We
randomly divide these into 20 different music pools, with
each pool containing over 500 music tracks. Importantly,
each pool has only one correct music track for each video.
For the track-level testing, we start by calculating embed-
dings for all 12 segments of each 120-second video and mu-
sic track. We then take the average of these 12 embeddings
to create a single representative embedding for each video
and each music track. Using these averaged embeddings,
we evaluate the performance of the music recommendation
module. In the first turn, music is suggested based solely
on video features, as we assume that the user hasn’t pro-
vided any specific requirements at this point. In the second
turn, we include the user’s text prompts and candidate music
along with the video features. This setup allows us to eval-
uate the system’s ability to modify its initial recommenda-
tions based on the new information. For both turns, we rank
music tracks by calculating the cosine similarity between
the features of the music in the pool and the input features.
We then compute various metrics such as Recall@K for K
= 1, 5, 10, and Median Rank. We also measure the “success
rate at 10,” abbreviated as SR@10. This gauges the per-
centage of videos for which the correct music track appears
in the top 10 recommended list within two turns. Finally,
we report the average performance for each of these met-
rics across all test music pools. To assess the effectiveness
of our conversational recommendation system, MuseChat,
we develop a strong baseline model with a two-tower struc-
ture. This baseline model shares the same encoder model as
MuseChat for handling video and the original music track,
but it lacks the ability to handle text data. We train both
the baseline and MuseChat using the same dataset and loss
function. The results are summarized in Table 1. We eval-
uate the performance of different models under various in-
put conditions. Interestingly, MuseChat, trained on fused
features from three different modalities, performs compa-
rably to the baseline when only visual information is given
in the first turn. However, when additional modalities are
introduced in the second turn, we observe an improvement
exceeding 10% across metrics. We do not directly com-

pare our results with those in [35, 42]. The reasons for not
directly comparing our results with those in [42] and [35]
include lack of access to their models and data splits, differ-
ences in data preprocessing, and incompatibility in task re-
quirements—specifically, the model in [35] cannot accom-
modate candidate music as input.

5.3. Reasoning Evaluation

To underscore the importance of training our sentence
generator module with both music embeddings and mu-
sic titles as inputs, we introduce two baseline models for
comparison. The first baseline employs the frozen Vicuna-
7B [60] model, which is based on the Llama2-7B [45] ar-
chitecture. As this model can’t process music embeddings,
we only present it with the recommended music title. The
second baseline utilizes the same architecture as our sen-
tence generator module but takes only music embeddings
as input. We employ various common metrics to evaluate
the performance of these baseline models and our sentence
generator module on simulated conversations. As shown
in Table 2, the Vicuna-7B model performs the worst. This
is largely because it fails to extract the music name and
artist name from the given music video title, thus lack-
ing a comprehensive understanding of the recommended
track. Even when this information is explicitly provided, the
model struggles to grasp the musicality of the given track,
as it was solely trained on text modality. As for the second
baseline, while it successfully captures the musical essence
of the recommended track due to its training on both mu-
sic and text modalities, it still falls short. The model can’t
accurately identify the correct music name and artist name
based solely on audio information. In contrast, our sentence
generator module, which uses both audio information and
music title inputs, outperforms the baselines, demonstrating
the efficacy of our approach.

5.4. Qualitative Evaluation

To highlight the versatility and efficacy of our MuseChat
system in the context of conversational music recommen-
dations, we conduct a qualitative evaluation. This evalua-
tion aims to demonstrate the system’s proficiency in com-
prehending, recommending, and generating music that is
relevant to visual content, user preferences, and audio at-
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Trainable Input Modality BertScore (f1) ↑ AB Divergence ↓ L2 Distance ↓ Fisher-Rao Distance ↓
No Music Title 0.9453 3.93 0.382 2.11
Yes Music Embeddings 0.9526 2.68 0.279 2.02
Yes Music Title + Embeddings 0.9676 1.51 0.208 1.47

Table 2. Comparison of semantic similarity between output and simulated conversations using various metrics. BERTScore [57] assesses
token-level similarity, while AB Divergence, L2 Distance, and Fisher-Rao Distance are derived based on InfoLM [9].

Figure 5. An example when MuseChat retrieves target music in the two turns.

tributes. Figure 5 illustrates how MuseChat seamlessly in-
teracts with users, dynamically adjusting its recommenda-
tions based on the video content, user preferences, and con-
textual information about the music. For a more detailed
exploration, additional examples are provided in the sup-
plementary materials.

6. Conclusions

Conventional music recommendation systems primarily
focus on delivering personalized suggestions through im-

plicit methodologies, which may not always capture the true
preferences of users. In this paper, we take one step to-
ward bridging humans and music recommendation system
with more interactions. This paves the way for more accu-
rately tailored recommendation outputs. To achieve this, we
(1) create a new dataset based on the public YouTube-8M
dataset by simulating two-turn dialogues and (2) propose
a baseline model designed to process multi-modal inputs
and reason its outputs using free-form natural language. We
consider this research a foundational step that opens up new
avenues for more holistic, intelligent and responsive recom-
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mendation systems. For future work, LLMs could be fine-
tuned to handle multi-modal inputs, serving as a more gen-
eralized conversational recommendation system that goes
beyond the specific domain of music recommendations.

7. Appendix
7.1. Template Prompt

Figure 6 illustrates the template prompt sent to GPT-3.5
for simulating conversations between a user and a recom-
mendation system. Initially, we establish constrained rules
to guide the content GPT-3.5 generates. We then supply
titles and top 5 music tags from each of two referenced
datasets: the MagnaTagATune (MTT) dataset [21] and the
Million Song Dataset (MSD) [3]. These tags apply to both
example original music and example candidate music. If
metadata like official track names, album names, or artist
names are available, they are also included in the prompt.
Finally, we provide human-written conversation templates
featuring example original and candidate music. During
generation, we input different pairs of original and candi-
date music, guiding GPT-3.5 to create new conversations
based on the provided human-written examples. Figure 7
shows two examples of simulated conversations based on
above prompt.

7.2. Qualitative Results

To demonstrate our model’s efficacy, we offer additional
qualitative results. Figures 8 and 9 showcase MuseChat’s
performance in two-turn conversational music recommen-
dation. In each turn, the music recommendation module
identifies a list of the top 5 most relevant music tracks based
on similarity metrics. To minimize user confusion, the sen-
tence generator module selects only the most relevant track
from this list to generate a recommendation text. We
also present second-turn recommendation examples in Fig-
ures 10 to 13. These examples highlight features that set
our model apart from existing video-music recommenda-
tion systems.

Figure 6. Template prompt
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Figure 7. Two examples of simulated conversations
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Figure 8. Example showing MuseChat’s capability in conversational video-music recommendation.
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Figure 9. Example showing MuseChat’s capability in conversational video-music recommendation.
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Figure 10. Example showing MuseChat’s capability in improving recommendation results by learning user’s preferences, contextual music
and video content.
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Figure 11. Example showing MuseChat’s capability in improving recommendation results by learning user’s preferences, contextual music
and video content.
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Figure 12. Example showing MuseChat’s capability in improving recommendation results by learning user’s preferences, contextual music
and video content.
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Figure 13. Example showing MuseChat’s capability in improving recommendation results by learning user’s preferences, contextual music
and video content.
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