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Abstract

The vulnerability of deep neural networks to adversarial
samples has been a major impediment to their broad appli-
cations, despite their success in various fields. Recently,
some works suggested that adversarially-trained models
emphasize the importance of low-frequency information to
achieve higher robustness. While several attempts have
been made to leverage this frequency characteristic, they
have all faced the issue that applying low-pass filters di-
rectly to input images leads to irreversible loss of discrim-
inative information and poor generalizability to datasets
with distinct frequency features. This paper presents a plug-
and-play module called the Frequency Preference Control
Module that adaptively reconfigures the low- and high-
frequency components of intermediate feature representa-
tions, providing better utilization of frequency in robust
learning. Empirical studies show that our proposed mod-
ule can be easily incorporated into any adversarial train-
ing framework, further improving model robustness across
different architectures and datasets. Additionally, experi-
ments were conducted to examine how the frequency bias of
robust models impacts the adversarial training process and
its final robustness, revealing interesting insights.

1. Introduction

As deep learning methods are making a splash in various
fields, their security and robustness are drawing more and
more attention from both academia and industry. DNNs for
image classification have been proven to be easily fooled
by adversarial examples, with imperceptible perturbations
added to natural images. The vulnerability is also uncov-
ered in many other safety-critical fields like medical diag-
nosis [10] and autonomous driving [8]]. Adversarial training
is regarded as a trustworthy approach for producing robust
models, and considerable subsequent effort has been done
to increase its efficiency [28, [33] and efficacy [40, 41]. De-
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spite continuously advanced robust learning methods, the
relationship between some intrinsic characteristics of the
model structure, such as frequency characteristics, and the
robustness it exhibits seems to be rarely discussed.

The emergence of vision transformers (ViTs) revealed a
novel architecture that performs on par or even better than
convolutional networks (CNNs) in many vision tasks. As
more and more in-depth work unfolds, some of ViT’s fun-
damentals and characteristics are exposed. Several recent
works try to improve the performance of ViTs with a fre-
quency lens. [29] proposed naturally trained ViTs are more
robust to adversarial attack, especially for high-frequency
perturbations. It is also noticed that ViTs reduce high-
frequency signals while CNNs amplify them [25]. [31] suc-
cessfully enhances ViT performance by deliberately retain-
ing high-frequency information. The complementarity of
CNNs and ViTs exhibited in the frequency domain is an in-
triguing starting point for studying and further improving
the robustness of the model. But the relations between ro-
bustness and the frequency bias of models have not been
fully studied and utilized in the context of robust learning.

Research [[11] has suggested that deep neural networks,
when trained on image classification data sets, tend to ex-
hibit bias towards texture information, which is the high-
frequency element present in images. By contrast, mod-
els that are adversarially trained primarily emphasize the
importance of low-frequency information, leading to im-
proved robustness [42]]. To delve further into this phe-
nomenon, several studies have experimented with adjusting
the constraints placed on either low or high-frequency sig-
nals in the loss regularization term [2]], or incorporating per-
turbations of variable frequencies during adversarial train-
ing [23]. There are also several attempts [43| [16] aimed
at exploiting the above mentioned frequency properties to
build more robust models. However, they have primarily
been limited to applying low-pass filtering directly to clean
or adversarial inputs. Regrettably, this methodology is as-
sociated with an irreversible loss of high-frequency infor-
mation within the image and thus causes a marked decrease
in accuracy across clean samples (e.g., 4-5% clean accuracy



drop compared to standard AT methods) [16]]. Furthermore,
it is imperative to adapt the parameters of the low-pass fil-
ter to better suit different datasets that embody distinct fre-
quency characteristics.

In order to solve the aforementioned problems and to
adopt a new perspective to study the frequency character-
istics of robust models, we propose a plug-and-play mod-
ule called Frequency Preference Control Module (FPCM) to
reconfigure the low-frequency and high-frequency compo-
nents of the intermediate features learned within the model,
which can be simply cooperated with any adversarial train-
ing framework and further boost model’s robustness. While
previous methods require special tuning of their introduced
hyperparameters to adapt to datasets with various frequency
characteristics, our module can be co-optimized with the
model in adversarial training with no need for any fine-
grained hyperparameter adjustments, which also allows it
to adapt and then utilize frequency features exhibited in
different stages (i.e., layers) of a model. Our empirical
study reveals that our approach demonstrates adaptability
across different model architectures and datasets and con-
tinuously drives robust accuracy improvement. Moreover,
with FPCM, we can pioneer the study of the frequency char-
acteristics of intermediate-level feature representations and
take a closer look at how the frequency bias of a robust
model would impact its robustness.

In a nutshell, our contribution can be folded into follow-
ing aspects:

1. We proposed the Frequency Preference Control Mod-
ule that can be effortlessly incorporated into any AT
approach and further improve the model robustness.

2. Leveraging our proposed module, we show how the
frequency of feature representation would impact the
final robustness and adversarial training process.

2. Related Work
2.1. Adversarial Attack

Szegedy et al. [30] found the vulnerability of DNNs
against adversarial examples and proposed L-BGFS based
attack. Subsequently, Goodfellow et al. [12] argued that
the main reason for the vulnerability of neural networks
to adversarial perturbations is their linear nature, and used
Fast Sign Gradient Method (FGSM) to generate adversarial
examples efficiently. Kurakin et al. [21] extended FGSM
to a more effective iteration-based attack as Basic Itera-
tive Method (BIM). Subsequently, by adding random ini-
tialization and extending to more iterative steps, Madry et
al. [22]] propose PGD as a universal first-order adversary.
Boundary-based attack DeepFool [24] and optimization-
based attacks like C&W [4]].

In addition to the thriving white-box attack methods
based on the assumption of model transparency, researchers
are also especially interested in black-box attacks, where
the structure and parameters of the DNN are unknown
to the attackers. (i.e., only a few queries or training data
are available). There are two types of black-box attacks:
query-based and transfer-based. To produce adversarial in-
stances, query-based algorithms estimate the gradient in-
formation via queries [3} [17, [1]. While transfer-based at-
tacks [9, 135, 127] employ white-box attacks on a local sur-
rogate model to produce transferable adversarial perturba-
tions.

AutoAttack [6] is a combination of four complementary
attack methods (i.e., APGD-CE, APGD-DLR, FAB [3]], and
Square Attack [[1], which has become a very popular adver-
sarial robustness benchmark today.

2.2. Adversarial Training as a Defense

Adpversarial training is one of the notable defense meth-
ods as an empirical defense, which is also adopted in this
paper to build robust models. And its basic idea can be ex-
pressed as a min-max optimization problem:
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where the fy is a DNN parameterized by 6, X stands for
the training dataset and ¢ represents the loss function. And
perturbations § are bounded into the e-ball.

To solve the inner maximization problem, projected
gradient descent (PGD) [22] is a prevailing and effective
method to generate perturbations. Many promising methods
then sprang up. Some of them provide more efficient loss
function designs [39, 32], some methods design stronger
regularization methods [34, 26], and some focus on solv-
ing the problem of the excessive computational overhead of
adversarial training 28 33]].

2.3. Frequency Analysis of ViTs and CNNs

In engineering applications, the vast majority of Fourier
transform applications use the discrete Fourier transform
(DFT), where the Fourier transform takes a discrete form
in both the time and frequency domains. Applying DFT
to a flattened image signal x is equal to left multiplying
a DFT matrix, the rows of which are the Fourier basis
fk’ — [627[]'(/6—1)-07 - e27rj(k—1)-(n—l)]/\/ﬁ € R™, where
k represents the kth row of the DFT matrix and j represents
the imaginary unit. The Fast Fourier Transform (FFT) is
usually used in practical applications to efficiently compute
the DFT.

Recent work [31} 25] studied and revealed the low-pass
characteristic of basic ViT blocks. ViT tends to reduce
high-frequency signals in the feature map and thus almost
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Figure 1. The structure of FPCM

only the DC component is preserved with the model go-
ing deeper. Additionally, MSAs spatially smoothen fea-
ture maps with self-attention weights, acting like a natu-
ral denoising module for better generalization and robust-
ness. With rigid theoretical analysis, Wang et al. try
to avoid over-smoothing by giving higher weights to high-
frequency signals in deep ViTs. On the contrary, convolu-
tional networks go the opposite way in terms of frequency
characteristics and amplify high-frequency signals. As per
the aforementioned findings and the underlying connection
between Vit’s low-frequency characteristics and its robust-
ness, it is promising to supplement the low-frequency fea-
tures that convolutional networks are missing.

3. Methodology
3.1. Frequency Preference Control Module (FPCM)

We first introduce the proposed FPCM (shown in Fig[T)),
which reconfigures low- and high-frequency components in
features. Given an input x, we transform it into a frequency
domain via DFT. We then suppress the high-frequency sig-
nal with an exponential low-pass filter, followed by the
iDFT transformation to restore spatial domain features.

Formally, denote = € REXHXW a5 the input feature, and
F € CHWXC a5 its frequency representation. We have:
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where H and W represent the height and width of the input
feature respectively, and 7 is the imaginary unit. In practice,
the transformation from the discrete spatial domain to fre-
quency domain can be done by FFT with an optimized com-
putational complexity of O(HWlog(HW)). Subsequently,

the filtered frequency representation F is formulated by:

F(u,v) = F(u,v)H(u,v)

where H(u,v) denotes a low-pass filter in frequency do-
main. In our work, we mainly study the Gaussian low-pass
filter (GLPF), which is a common choice in the field of im-
age processing, causing no ringing effect:

D(u,v)\2 D(u,v) \2
H(u,v) = e~ (500" = o~ Gmwis)

where D(u, v) represents the distance from the pixel (u, v)
to the centre of the two-dimensional spectrum, and Dy is
the cutoff frequency. For any feature map with height H
and width W, the total sequence length of the correspond-
ing Fourier spectrum would be HW. Correspondingly, We
set 3 as a hyper-parameter controlling the cut-off frequency.
Having obtained the filtered frequency, we then apply the
Fourier inverse transform to restore the feature map with
only the low-frequency components &, and derive the fi-
nal re-weighted low-frequency features from the element-
wise production of & and the inter-channel weights a € R¢
learned from the original input:

a = 0.5* sigmoid(WrXz) +0.5

by default, we push the value interval of « to [0.5,1] to
make the model focus more on the low-frequency features,
inspired mainly by previous studies on robust learning fre-
quency characteristics and success attempts [23]. Overall,
the FPCM can be formulated as the weighted summation of
low-frequency and high-frequency features:

FPCM(z)=at+ (1 —-a)(z—2)

we also studied FPCM with fixed weights «, where our
method will become completely parameter-free. The design
of FPCM follows the following principles:

* Efficiency: the extra parameter and computational
overhead it introduces are marginal compared to stan-
dard DNNs

* Differentiability: FFT and the subsequent low-pass
filtering are essentially linear transformations that do
not mask the gradient, which allows joint optimization
with DNNs.

e Adaptability: learnable weights capture the inter-
channel frequency characteristics and bring the possi-
bility of adapting the frequency differences of the out-
put feature maps between different stages (layers) of a
model, various models, and datasets.
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Figure 2. Detailed architecture for our model altered from ResNet18.
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Figure 3. Frobenius norm of the every layers’ output high-
frequency signals. Convolutional layers increase high-frequency
components in feature maps. The vertical grey dashed line repre-
sents the last layer at every stage.

3.2. Harmonizing FPCM with Regular CNNs

In light of prior research demonstrating that convolu-
tional layers typically increase feature map variance, with
the variance tending to increase with depth and peaking at
the ends of each stage, our investigation focuses on ana-
lyzing the feature map frequency characteristics of both a
vanilla ResNet18 model and an adversarially trained one.
We present the results in Fig[3] which illustrate that high-
frequency feature components tend to aggregate as the
model goes deeper. The learned high-frequency features
of each stage peak at the stage’s final layer, as indicated
by a greater quantity of high-frequency components at the
layer marked by the dashed line when compared to the pre-
vious layer. Our findings also demonstrate that, in compar-
ison to the vanilla model, the adversarially trained model
prioritizes low-frequency features, with an overall reduc-
tion in the number of high-frequency components, consis-
tent with the findings outlined in [16] regarding the smooth-
ing of convolutional kernels by adversarial training. Based
on these observations, we hypothesize that incorporating
FPCMs closer to the end of each stage can effectively re-
duce high-frequency signals and further enhance model ro-
bustness. To this end, we present an overview of our meta-
model in Fig[2] utilizing the ResNetl8 architecture as an
example. We insert FPCM ”painlessly” without destroying

the original model architecture, which also works for other
kinds of models like WideResNets.

3.3. Frequency Principle of Deep Learning

Recently, Xu et al. [36] studied the F-principle of deep
learning both empirically and theoretically, revealing that
DNNs first model the low-frequency features in data. The
F-Principle is a salient and intuitive notion, as it aligns with
the principles governing human visual perception. Specifi-
cally, when humans encounter unfamiliar stimuli, they tend
to process and retain coarse, high-level information about
its shape and structure prior to encoding more detailed fea-
tures. Empirically, the weight loss landscape is a widely
used indicator to characterize the standard generalization
gap in a standard training scenario. For robustness learning,
it is also indicated in previous work that a flatter loss land-
scape leads to higher test robustness as long as the training
is sufficient. Also in line with the frequency principle, early
stopping can improve the generalization ability of DNNs in
practice.

Taking these mentioned aspects into consideration, we
endeavor to enhance the concordance between the learning
process of the original model and FPCM by modifying the
cutoff frequency. Intuitively, we adjust the cutoff frequency
linearly as follows:

tx(
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where ¢ is the current model training epoch, 7" represents the
total number of training epochs, and S is the length of the
frequency spectrum. Therefore, in the process, we gradu-
ally decrease the cutoff frequency from S/2 to S/8. The
same setting is used for the perturbations generated dur-
ing training, but the cutoff frequency is fixed to S/8 dur-
ing evaluation. The impetus behind our approach is to ex-
pedite the process of convergence while simultaneously en-
abling the model to attend to information with complete fre-
quency during the initial training phase. However, we aim
to employ more low-frequency signals in the terminal stage,
which we believe is to be beneficial for robust learning.



Method Clean PGD-10 PGD-20 PGD-50 C&W AutoAttack
PGD-AT 85.32 55.17 54.28 53.98 53.38 51.43
TRADES 84.72 56.75 56.10 55.9 53.87 52.30

MART 84.17 58.98 58.56 58.06 54.58 51.10

FAT 87.97 50.31 49.86 48.79 48.65 47.48
GAIRAT 86.30 59.64 58.91 58.74 45.57 40.30
AWP 85.57 58.92 58.13 57.92 56.03 53.90

LBGAT 88.22 56.25 54.66 54.30 54.29 52.23
LAS-AT 86.23 57.64 56.49 56.12 55.73 53.58
Ours-AT 85.97 55.35 54.45 54.24 53.93 51.87

Ours-TRADES 84.63 57.91 57.32 57.26 53.93 52.88
Ours-AWP 85.15 59.76 59.01 58.87 56.73 55.18
Ours-AWP-LAS 88.10 60.97 59.67 59.31 57.38 55.47

Table 1. Test robustness (%) on the CIFAR-10 database using WRN34-10. Number in bold indicates the best.

Method ‘ Clean PGD-10 PGD-20 PGD-50 C&W AutoAttack
PGD-AT 85.13 51.13 50.17 49.82 48.54 47.42
TRADES 84.43 53.71 52.53 52.28 50.81 49.55

FAT 87.72 47.46 46.69 46.33 49.66 43.14
GAIRAT 83.40 55.81 54.76 54.21 38.81 31.25
AWP 82.66 55.64 54.95 54.93 50.92 50.21

LAS-AT 82.40 54.31 53.45 53.10 50.76 4991

Ours-AT 82.90 53.35 52.50 52.29 51.01 49.26
Ours-TRADES 82.12 55.41 54.75 54.71 50.93 49.93
Ours-AWP 82.84 56.49 55.94 55.86 51.81 51.28

Table 2. Test robustness (%) on the CIFAR-10 database using ResNet18. Number in bold indicates the best.

4. Experiment

In this section, we conduct a set of experiments to estab-
lish the efficacy of the proposed approach. Subsequently,
we investigate the effects of parameters such as cutoff fre-
quency and weights for low-frequency features on both
clean and robust accuracy. Further, we undertake an in-
depth analysis of the frequency domain characteristics of
adversarial training, and distinguish our method from other
frequency-based techniques.

4.1. Evaluation Setup

Training We conduct experiments on CIFAR10 & CI-
FAR100 [20] mainly with ResNetl8 [15] and WRN-34-
10 [38]], both of which are the mainstream models for ro-
bustness evaluation. We train ResNet18 for 120 epochs with
the learning rate initialized at 0.01 and reduced to 1e-3 and
le-4 at the 84th (0.7 x 120) and 108th (0.9 x 120) epoch.
For WRN-34-10, the learning rate is initially started at 0.1
and decays to one-tenth and at the 42nd and 54th epoch re-
spectively throughout the 60-epoch training process. The
optimizer is SGD with momentum set to 0.9 and the weight
decay factor of 3.5e-3 and 5e-4 for ResNet18 and WRN-34-

10 respectively. We train and evaluate the baseline coun-
terpart (PGD-AT [22]] and TRADES [39]) of our methods
with the same training and evaluation settings to make a fair
comparison. For the method we built based on AWP [34],
we trained according to the settings proposed in their work,
extending the number of training epochs to 200 for ResNet
and 150 for WRN for performing sufficient training, given
its stronger regularization properties. We also compare our
method (Ours-AT, Ours-TRADES, and Ours-AWP) with
the following baselines: 1) MART [32], 2) FAT [40], 3)
GAIRAT [41]], 4) LBGAT [[7] and 5) LAS-AT [19]

Evaluation We employ several prevailing attack methods to
evaluate the robustness of trained models, including PGD,
C&W ., and AutoAttack. Unless otherwise specified, all
attack methods are performed with perturbation budget e =
8/255 under {,. PGD is equipped with random-start with
attack step size set to o« = 2/255. The total step of C&W is
50. We report the averaged result of 5 independent runs
where clean and robust accuracy are used as the evalua-
tion metrics. We also leverage the Weighted Robust Accu-
racy (W-Robust) [14] to help measure the trade-off between



clean and robust accuracy, it is defined as follows:

Ay =70, Ppoo. [f (%) =yl + 7Dog, Ppoa, [f (2) = 9]

where Ay are the accuracy of a model f on x drawn from
either the clean distribution D,,,; or adversarial distribution
Dggqy. We adopt 7p,. ., = 7p,,, = 0.5 by default, treating
clean and robust accuracy equally for comprehensive eval-
uation.

4.2. Robustness Comparison

Our method is a plug-and-play component with no inter-
ventions in adversarial training. Therefore, it can be easily
combined with other AT methods like TRADES which pro-
vides optimized loss design, and LAS which introduces an
automatic strategy for generating adversaries.
Comparisons on CIFAR-10 dataset. The results on
CIFAR-10 of WRN-34-10 and ResNet18 are listed in Ta-
ble[T] and Table. 2] The three proposed models all exceed
their counterpart baseline models under most of the attack
scenarios. Considering the trade-off between clean accu-
racy and robustness, our method makes notable improve-
ment on robust accuracy with no significant sacrifice of
generalization ability on clean samples. For example, with
WRN-34-10 as the experimented model, we boost the per-
formance under PGD-50 attack by 0.95% and AutoAttack
by 1.28% upon the powerful AWP method. We can fur-
ther push up the robustness under PGD-50 by 0.66% and
under AA by 0.29% with LAS to a generate better strat-
egy for perturbation, which also shows the compatibility
of our method. In terms of our ResNet18 model based on
PGD-AT, we further improve the robustness under PGD-
50 by 2.47%, C&W by 2.47%, and AA by 1.84%. For
both ResNet18 and WRN-34-10, our method based on AWP
achieves the best performance under all attacks.

In order to provide additional evidence of the efficacy
of our proposed methodology, we endeavored to create a
model using WRN-70-16 architecture and compared its per-
formance against state-of-the-art robust models without ad-
ditional training data. The results are presented in Table. 5]
Our approach, build upon AWP, was found to yield greater
robust accuracy under AA. Moreover, the performance en-
hancement yielded by our method is on par or outperforms
that observed with the potent LAS technique. Notably, we
also can build a more robust model based on LAS-AWP.
Comparisons on more complicated datasets. To demon-
strate the generalization ability of our methods, we conduct
experiments on CIFAR-100 which contains more categories
than CIFAR-10 and Imagenette which is of higher resolu-
tion (160*160). The Imagenette dataset is a subset of Ima-
geNet, consisting of ten easily classifiable categories. The
results are given in Table [3] and Table f] Our models all
exceed their baselines in terms of robustness. Specifically,

Method ‘ Clean PGD-20 C&W AA
PGD-AT 86.6 62.5 604 593
Ours-AT 86.5 63.0 61.5  60.5
TRADES 83.7 64.8 62.1 619

Ours-TRADES | 83.5 65.3 628 624

Table 3. Test robustness (%) on the Imagenette database using
ResNet18. Number in bold indicates the best.

Method | Clean PGD-20 C&W  AA

PGD-AT 57.75 27.18 2341 2237
TRADES 56.75 28.05 24.17  22.89
Ours-AT 58.79 28.75 26.60 25.19
Ours-TRADES | 56.89 30.44 2633  25.13

PGD-AT 60.21 30.78 29.50 27.39
TRADES 58.43 29.23 27.05 25.78
Ours-AT 60.22 31.95 30.14 27.81
Ours-TRADES | 57.75 31.88 2793 2698
Table 4. Test robustness (%) on the CIFAR-100 database using
ResNet18 (top column) and WRN-34-10 (bottom column). Num-
ber in bold indicates the best.

Method ‘ Clean  AutoAttack
Gowal et al. [13]] | 85.29 57.20
LAS-AWP [19] 85.66 57.61
Ours-AWP 85.94 57.62
Table 5. Clean and robust accuracy (%) on the CIFAR-10 with
WRN-70-16

on the imagenette database, we improve performance un-
der AA by 1.2% compared to PGD-AT and 0.5% in com-
parison to TRADES. On CIFAR-100 with ResNet18 as the
targeted model, the robustness under PGD-20 and AA in-
creases by 2.39% and 2.24% respectively. All the above
mentioned numbers reveal that our method can be easily
combined with AT frameworks and further improve their
performance steadily across different models and datasets.

4.3. Ablation Studies

We utilize two hyper-parameters that merit further inves-
tigation, where o governs the trade-off between low- and
high-frequency components and (3 regulates the cutoff fre-
quency of the low-pass filter.

4.3.1 Cutoff frequency

Results of various settings for cutoff frequency are listed in
Table. (7, With the weights @ € RC staying learnable, we
first try to set fixed § for the whole training and evaluation
process. A smaller beta equates to less high-frequency in-
formation being retained. It is consistent with the intuition
that the clean accuracy drops with /3 set to be smaller, while
the robust accuracy goes the opposite way. This suggests



Metries | o 1 025 05

Fixed weights
0.75 0.9 1

Learnable
Convld MLP

Clean - 80.01 8125 81.86

82.34 8197 8227 | 81.87 82.83

PGD-20 | - 53.19 53.81 5391 5376 5423 5416 | 54.75 54.10
W-Robust | - 66.60 6753 67.94 68.05 68.10 6822 | 68.31 68.47
Param - 1,360  0.35M

Table 6. Clean and robust accuracy on CIFAR10 dataset of our ResNet18 model with various weights for low-frequency features.

Fixed
0.5 0.25 0.125
Clean 82.12 81.89 82.56 81.15 80.32
PGD-20 54.75 54.85 52.34 55.12 55.34
AA 49.96 49.03 49.08 49.66 50.13
W-Robust | 66.04 65.46 65.82 6541 6523

Table 7. Clean and robust accuracy of our method with the cutoff
frequency factor (3 varying.

Linear | Learnable

Stages | Max Min  Mean  Var

stagel | 0.9648 0.5393 0.6879 0.0064
stage2 | 0.9777 0.5354 0.7024 0.0103
stage3 | 0.8047 0.7403 0.7697 0.0001

Table 8. Some statistics about the learned weights « at different
stages of a WRN-34-10 model.

that convolutional networks rely on high-frequency texture
information for better classification performance on clean
samples. In contrast, robust models tend to rely more on
low-frequency signals to achieve greater robustness, which
could partially explain why the clean accuracy of robust
models is generally lower than that of vanilla models. We
also tried with learnable parameters B € RC, initialized as
an all-ones vector, to realize adaptive cutoff frequency for
different channels. The possible explanation for the absence
of progress in contrast to fixed values might be associated
with its redundancy with learnable frequency weights a.
Upon examining the inner numerical values acquired, an in-
triguing phenomenon is revealed whereby the estimated co-
efficient B exhibits a tendency to diminish in deeper stages,
which may indicate that less high frequency is needed in
deeper layers for robust learning. Lastly, our proposed lin-
ear adjustment of the cutoff frequency during training yields
the highest W-Robust.

4.3.2 Re-weighing of low frequency components

The weights balancing between low- and high-frequency
feature components play an important role in robust learn-
ing. Therefore, we conduct experiments with « ranging
from O to 1, as shown in TableJ6] Due to the fact that a ma-
jority of information is in DC components, the model can-
not properly converge with « set to 0. Altering « to a value

greater than 0.5, i.e., prioritizing low-frequency parts, leads
to enhanced accuracy concerning both robustness and clar-
ity, thereby elevating W-Robust by approximately 0.37%-
1.79%. Incorporation with learnable weights elevates the
performance further by 0.39% on W-Robsut. While we use
only one convolutional layer with minimal parameters to
develop relationships among the different channels in our
initial setup, we further study the FPCM regarding more
parameters and non-linear operations (indicated as MLP),
but the improvement is marginal (i.e., +0.03% W-Robust).

We proceeded to examine the learned weights and com-
puted relevant statistics as illustrated in Table8] As per our
previous observation, we noticed that deeper stages gener-
ally had higher weights assigned to low-frequency compo-
nents compared to earlier stages. For instance, the average
o in stage3 was observed to be 0.7697 while it was merely
0.6879 in stagel. It should be highlighted that the weight
value in stage3 did not drop below 0.74 emphasizing the sig-
nificance of low-frequency signals aiding robust learning in
deeper layers. From an alternative perspective, we observe
that robust models aim to counteract the issue highlighted in
Fig. 3l where high-frequency signals gradually accumulate
in CNNs. By analyzing the statistics of various channels
and samples, we have observed that the sample-wise vari-
ance of the learned weights is typically small (i.e., usually
lower than 1le-4). This implies that the FPCM approach has
been tailored to alter the intrinsic frequency characteristics
of the robust model, instead of being data-specific.

4.4. Discussions
4.4.1 Frequency-bias of robust learning

Previous work has proposed that convolutional layers have
high-pass characteristics that cause vanilla ResNet mod-
els to be more sensitive to high-frequency signals and
thus more vulnerable to high-frequency noise. Our experi-
ment in Fig[3] does verify this claim, finding that the high-
frequency signal becomes richer as the network gets deeper.
In this section, we delve deeper into the frequency charac-
teristics of adversarially trained models.

We first study the robustness under noise containing dif-
ferent proportions of high-frequency components, as shown
in Fig. il We still adopt the low-pass filter formulation in-
troduced in Sec.3.1 to conduct this experiment. Therefore,
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Figure 4. The attack success rate (%) of noise with respect to its
frequency. The numbers on the x-axis indicates the cut-off fre-
quency factor 1/0.

a smaller § indicates less high-frequency signal contained
in the perturbation. We measure the accuracy drop with
frequency-based random noise and the perturbed data can
be formulated by: Z,pise = o + F L(F(§) ® H), where
o is the clean data, F(-) and F~*(-) are Fourier transform
and inverse Fourier transform, ¢ is random noise, and H
denotes the filter. For the vanilla model, the slope of the
line graph increases gradually with more high-frequency
components, indicating its vulnerability to high-frequency
noise. While similar patterns can be seen in PGD-AT, PGD-
AT significantly reduces the model vulnerability against
high-frequency noises, which indicates AT models natu-
rally focus more on the low-frequency features in data. Fur-
thermore, by explicitly letting the model focus on the low-
frequency components, we further improve the robustness
of the adversarially trained model to high-frequency noise,
resulting in an overall more robust model. In contrast, the
robustness to very low-frequency signals does not improve
considerably from vanilla to PGD-AT and Ours-AT.

We then take a look at the learning curve of our method
with fixed weights « for low-frequency features. Results
are plotted in Fig[5] With « set to 0.1, the robust accu-
racy is lower than other settings during the whole training
process. The plot of the loss landscape may partially ex-
plain this phenomenon as it is not sufficiently trained on
the training data with impaired low-frequency signals. As
the « continues to rise, the loss curve moves further down,
indicating low-frequency signals can accelerate the robust
learning process. We believe that all of the above phenom-
ena illustrate the dominance of low-frequency features in
robust learning.

4.4.2 Differences & advantages over other frequency-
based methods

Zhang et al. [43] proposed to suppress high-frequency
components in the input image to perform adversarial de-
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Figure 5. Robust accuracy and loss landscape during the training
process. For the first 80 epochs, we only keep the accuracy for
every 10 epoch for simplicity. Here we use 8 = 0.125.

Method | Clean PGD-20 C&W  AA  W-Robust
FR 80.59 59.49 5433  52.06 66.33
FR-SWA | 81.09 60.12 56.14 5435 67.72
Ours 85.15 59.01 56.73 55.18 70.17
Table 9. Clean and robust accuracy of WRN-34-10 on CIFAR-10
dataset. W-Robust is the average of Clean and AA.

fense. Following the idea of applying low-pass filter-
ing (LPF) to the natural and adversarial inputs, Huang et
al. [16] additionally introduce a frequency regularization
(FR) term, which aims at bridging the frequency domain
distance (measured by L) of clean and adversarial data, by
applying DFT on the output logits. They further tried to
smooth the convolutional kernels by leveraging Stochastic
Weight Averaging (SWA) [18]. Bernard et al. [2] also em-
ploys regularization on the frequency of output logits with
original and low-pass filtered images as the input. Orien-
tating real-world super resolution models, Yue et al. [37]
adopts frequency masks to block out high-frequency com-
ponents in input that possibly contain harmful perturbations
in a stochastic manner. Since FR [16]] is the state-of-the-art
method derived from the frequency perspective, we make
further comparison with it in clean and robust accuracy, and
the results are listed in Table. It can be seen that our
method not only has obvious advantages under AA (i.e.,
0.83% accuracy improvement), but retains greater general-
ization on clean data (+4.06%). The significant decrease
in the accuracy of FR on clean samples may be due to its
direct filtering of the input images, which leads to irretriev-
able signal components that are instrumental for the model
to correctly classify clean samples.

In a nutshell, we are the first to focus on the frequency
of intermediate features rather than that of the input clean
data or adversary. Our method enhances the robustness of
models by explicitly modifying the frequency bias of ro-
bust models, as opposed to relying on stronger regulariza-
tion techniques.



5. Conclusion

We proposed the Frequency Preference Control Module
(FPCM) to adaptively reconfigure low- and high-frequency
components in the intermediate feature representations.
Based on our finding that high-frequency signals tend to
aggregate as the model deepens, we designed a heuristic
scheme to insert FPCM after each stage of the regular model
to promote harmonious operation among them. Empirical
studies demonstrate that our method can be easily incorpo-
rated into any adversarial training framework and further
boost its performance with minimal computation overhead.
Furthermore, by leveraging FPCM, we conducted experi-
ments that shed light on the frequency characteristics of ro-
bust models, revealing insights regarding the impact of low-
frequency bias on their robustness.
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