
ViT-Calibrator: Decision Stream Calibration for Vision Transformer

Lin Chen1, Zhijie Jia1, Tian Qiu1, Lechao Cheng2, †,
Jie Lei3, Zunlei Feng1, Mingli Song1

1Zhejiang University, 2Zhejiang Lab, 3Zhejiang University of Technology
{lin chen,tqiu,zunleifeng,brooksong}@zju.edu.cn,

zhijiejia1998@outlook.com, chenglc@zhejianglab.com, jasonlei@zjut.edu.cn

Abstract

A surge of interest has emerged in utilizing Transform-
ers in diverse vision tasks owing to its formidable perfor-
mance. However, existing approaches primarily focus on
optimizing internal model architecture designs that often
entail significant trial and error with high burdens. In this
work, we propose a new paradigm dubbed Decision Stream
Calibration that boosts the performance of general Vision
Transformers. To achieve this, we shed light on the infor-
mation propagation mechanism in the learning procedure
by exploring the correlation between different tokens and
the relevance coefficient of multiple dimensions. Upon fur-
ther analysis, it was discovered that 1) the final decision
is associated with tokens of foreground targets, while to-
ken features of foreground target will be transmitted into
the next layer as much as possible, and the useless token
features of background area will be eliminated gradually in
the forward propagation. 2) Each category is solely associ-
ated with specific sparse dimensions in the tokens. Based
on the discoveries mentioned above, we designed a two-
stage calibration scheme, namely ViT-Calibrator, including
token propagation calibration stage and dimension prop-
agation calibration stage. Extensive experiments on com-
monly used datasets show that the proposed approach can
achieve promising results. The source codes are given in
the supplements.

1. Introduction
Image classification is an important research area in

computer vision that involves quantitatively analyzing digi-
tal images and categorizing them into different classes. The
associated approaches have been widely applied in prac-
tical scenarios such as medical image diagnosis [21], se-
curity monitoring [31], and autonomous driving [5]. The
remarkable performance of deep neural networks has pro-
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pelled them to the forefront of image classification, where
they are now regarded as a mainstream approach. As
an indispensable part of deep neural networks, Convolu-
tional Neural Networks (CNNs) have exhibited exceptional
processing capabilities for translation invariance and local
structures [29], leading to outstanding classification per-
formance. The emergence of Transformers has recently
opened up new possibilities for visual feature learning. The
self-attention mechanism in Transformer models captures
global semantic information [38], allowing Transformers to
be more proficient in handling long sequential data. Conse-
quently, deep models based on Transformers have achieved
comparable or even superior performance to CNNs in com-
puter vision, as demonstrated by [17, 32, 36, 41]. Although
the Transformer model demonstrates satisfactory classifica-
tion performance, its opaque internal transformations and
learning processes impede a profound understanding and
analysis of its internal mechanisms, making it challenging
to improve its performance through modification and ad-
justment.

Currently, there have been some model diagnosis works,
mainly focusing on traditional model repair and detec-
tion [27]. The latest work [20] on optimizing deep mod-
els exploit gradient constraint strategies to diagnose and
repair convolutional neural network models. In addition,
some works [3, 30] apply interpretable decision tree meth-
ods to approximate deep learning models for analysis and
detection. Furthermore, Other works, such as, visualiza-
tion techniques [25] have also explored to explain and di-
agnose [24, 44] the predictions of deep learning models to
boost the performance. Despite these related works for opti-
mizing deep learning models, there are no effective methods
yet for diagnosing and repairing Transformer models based
on the attention mechanism.

In this work, we introduce a novel Decision Stream Cal-
ibration paradigm that boosts performance by explicating
the information propagation mechanism based on the corre-
lation among tokens and the relevance coefficient across di-
mensions. We have derived two insightful discoveries from
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empirical experiments, one of which is derived from the bi-
ological neural feedback principle [14], and we incorporate
this idea by developing a dynamic feedback loop mecha-
nism that enables the interaction between high-level and
shallow-level semantic information. While the remaining
one manifests, that specific sparse dimensions of the deep
features of the Transformer are highly correlated with the
target category. In contrast, other irrelevant dimensions can
negatively affect classification performance. Consequently,
we devise a two-stage information propagation mechanism
to address the defects at both the token and dimension lev-
els.

Specifically, we first introduce an elaborated network
with a feedback module, as illustrated in Figure 3 (Token
Feedback Stage). Inside the module, we define a feedback
input layer capable of capturing and providing more perti-
nent semantic information for various categories. Besides,
we also present a shallow network that extracts basic visual
information as the target layer of the feedback mechanism.
Next, the output features of the feedback layer and the tar-
get layer are harmonized. The proportion of deep feature
feedback to the shallow network is determined by measur-
ing the similarity between the deep and shallow networks.
Moreover, the feedback mechanism selectively feeds back
advantageous deep features to the shallow network using
the similarity measure. To provide feedback on deep se-
mantics, fusion tuning is performed for both attention and
token features in the feedback mechanism.

In the second phase, the anticipated class assignment
vector for particular layer categorization tokens is utilized
as a singular relevance gauge, reflecting the extent of inter-
relation between the target category and the corresponding
dimension. For all training samples of the same category,
we aggregate these relevance metrics in the dimensions of
the transformer-specific classification tokens, which serve
as the criteria for calibrating erroneous samples. Subse-
quently, a distillation technique is employed to reformulate
and constrain the flawed association between specific di-
mensions and target categories.

Therefore, our contribution is to propose a Decision
Stream Calibration framework called ViT-Calibrator. We
provide two new perspectives for optimizing the Trans-
former model: token feedback and dimension constraints.
Experiments show that the proposed method can effectively
calibrate wrong feature stream in the forward propagation
and further improve the performance of the Transformer
model. Apart from this, the ViT-Calibrator is based on the
original network and only requires fine-tuning, avoiding the
huge time cost of retraining the Transformer.

2. Related Work

2.1. Transformer-based Classification

Inspired by the tremendous success of Transformer in
natural language processing [16, 35], it has also been widely
used in computer vision. To enhance the model’s receptive
field and global dependency, ViT [17] was first proposed
for image classification, and it outperformed many tradi-
tional convolutional neural networks. Afterward, various
models based on ViT were proposed for image classifica-
tion. Some works enhanced the Transformer with the spa-
tial inductive bias of CNN. Hugo Touvron et al. [36] pro-
posed a model Deit based on knowledge distillation, data
augmentation, and small-batch training to address the poor
performance of ViT on small datasets. ConVit [18] com-
bined CNN and Transformer to improve computational ef-
ficiency and classification performance through an adap-
tive feature importance weighting mechanism. Chun-Fu
Richard Chen et al. [10] proposed a Transformer model
CPVT with a variable receptive field and variable precision
and designed a more flexible local and global information
interaction mechanism. Zihang Dai et al. [13] designed a
lightweight visual Transformer network CoAtNet based on
multi-resolution input and grouped convolution, achieving
efficient multi-resolution feature extraction and information
interaction.

In addition to convolution, many researchers have pro-
posed a local attention mechanism to focus on adjacent el-
ements and enhance local feature extraction dynamically.
One representative method is Swin Transformer [32]. Swin
used a moving window along the spatial dimension to
model global and boundary features. On the other hand,
ViT ignored fine-grained features and brought high com-
putational costs due to the fixed-resolution pillar structure
used throughout the Transformer layer. Li Yuan et al. [41]
proposed a model T2T-ViT that introduced the paradigm of
hierarchical Transformers and used overlapping unfold op-
erations for downsampling. However, this operation brings
heavy memory and computational costs. Therefore, Wen-
hai Wang et al. [39] used non-overlapping patch partition-
ing to reduce feature size in model PVT. In general, increas-
ing the depth of the model can enhance its learning ability.
Hugo Touvron et al. [37] proposed a cross-scale attention
mechanism, Cait, that simultaneously considers global and
local information to improve performance in image classifi-
cation tasks. Daquan Zho et al. [47] aggregates cross-head
attention maps and increases cross-layer feature diversity in
model DeepViT by regenerating new attention maps using
linear layers . Additionally, some other research attempts to
design various self-supervised learning schemes [2, 8] for
ViT in a generative and discriminative manner.



2.2. Model Diagnosis

The operational mechanism of machine learning models
is often very complex and lacks interpretability and trans-
parency, which makes it difficult for researchers to debug
the models. In order to help researchers debug and an-
alyze models, some model interpretation techniques have
been developed to improve their comprehensibility and re-
liability. Cadamuro et al. [7] proposed a machine learn-
ing model debugging method based on optimization tech-
niques, which can be used to identify training items that
are most likely to cause model bias. In addition, there are
works [6, 25, 28] devoted to interactive visualization anal-
ysis, supporting users in visually inspecting predictions of
black box machine learning models to understand the inter-
nal logic of the model’s predictions. The above works fo-
cus on analyzing and debugging traditional machine learn-
ing models, which require human-machine interaction and
cannot fully explain model problems.

For deep models, Bastani et al. [3] proposed a method of
using symbolic regression to explain deep learning models,
and Jose Gustavo S Paiva et al. [34] proposed an incremen-
tal visualization data classification method to debug and im-
prove models as training data increases. In addition, using
interpretable random forests [30] to approximate black box
models is also a deep model interpretation method, and de-
bugging black box models by checking interpretable mod-
els. Model-independent explanation and diagnostic meth-
ods [44] are also a way to use visualization analysis technol-
ogy to support the explanation, debugging, and comparison
of machine learning models interactively. Recently, Feng et
al. [20] proposed a gradient-constrained convolutional neu-
ral network model optimization method that uses gradient
constraints to optimize convolutional neural networks auto-
matically. Unlike the above methods, we focus on automat-
ically processing Transformer models based on diagnostic
results.

2.3. Model Interpretability in Computer Vision

The interpretability of computer vision typically refers
to explaining why a model makes specific predictions and
which features are crucial in predictions, usually by gen-
erating a heatmap that describes the correlation between
image locations and prediction results. Currently, there
are various interpretability methods, including perturbation-
based [22, 23], backpropagation-based [43], saliency map-
based [12, 42, 45, 46], and Shapley value-based meth-
ods [11, 33]. Among these, LRP [3] is an outstanding inter-
pretability model that recursively allocates relevance from
deep layers to earlier ones while ensuring the total sum of
relevance across all layers remains constant.

The interpretability research of Transformer models
mainly focuses on attention mechanisms. Abnar et al. [1]
proposed a method that combines attention scores across

layers. However, it cannot distinguish the positive and neg-
ative contributions to decision-making, leading to the accu-
mulation of cross-layer relevance scores. To address this
issue, Chefer et al. [9] proposed a new method for infor-
mation propagation within Transformer model components
based on LRP attribution, which comprehensively under-
stands the decision-making and inference processes within
the model. Those model interpretability can be only used
to analyze some failure cases or understand the decision-
making mechanism. Those methods can’t be used to diag-
nose and treat the deep model automatically.

3. Decision Stream Mechanism of ViT
Discovery 1. The final decision is associated with tokens
of foreground targets, while the token features of the fore-
ground target will be transmitted into the next layer as much
as possible, and the useless token features of the back-
ground area will be eliminated gradually in the forward
propagation.

Figure 1: Visualization results of similarity across different
layers, where S(l, l′) represents the correlation calculation
between the output of layer l and the output of layer l′.

In this section, we analyzed the different contributions
of deep-level tokens to the final classification results. For
an input image I , the output of the (l − 1)-th layer is de-
noted as {xl−11 , xl−12 , ..., xl−1N , xl−1cls }, and the l-th layer of
the Transformer encoder module is denoted as B(l), where
N denotes the total number of spatial tokens. Therefore, the
output of the l-th layer can be calculated as follows:

xl = Bl(xl−1).

When l is the final layer, the predicted category yc is de-
termined by yc = f(xl), where f represents the fully con-
nected layer.

Since deep features contain more semantic information,
the output feature xL of the final layer is directly related to
the classification result. Therefore, we calculate the corre-
lation matrix between xL and the shallow output feature xl

to indicate the correlation between different tokens and the
classification result:

S(L, l) =
(xLi )

Txli
||xLi || ||xli||

,



where i represents the index of tokens between different
layers. Based on the similarity of tokens between shallow
and deep layers, we found that tokens have different propa-
gation relationships for different layers.

Figure 1(a) shows the cross-layer similarity between the
output token of the last layer and the shallow token in
Deit [36] on a correctly classified image from the ImageNet
dataset. We can observe that there is a combination of fore-
ground and background information during the propagation
of image information. As the information is transmitted to
deeper layers, there is an even greater emphasis on fore-
ground information, which is most relevant to the image cat-
egory in terms of semantics. Figure 1(b) shows the similar
relationship of tokens between neighboring layers. As can
be seen in the figure, there are different transmission mecha-
nisms for image information in different layers. For shallow
layers, image information may focus on background infor-
mation in neighboring layers, which is related to the fact
that shallow layers are primarily responsible for processing
basic image information. As the number of layers increases,
the proportion of foreground information transmitted by the
image gradually increases, and the background information
is gradually filtered out, resulting in a reduction of infor-
mation that interferes with the classification decision. For
correctly predicted images, foreground tokens have a more
significant impact on the classification results, and the fore-
ground token feature will be transmitted into the following
layers as much as possible.

Discovery 2. Each category is only related to a specific di-
mension in the CLS token, and irrelevant dimensions inter-
fere with the model’s prediction results.
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(b)
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Figure 2: (a) The original classification accuracy and the ac-
curacy after removing dimensions unrelated to the category
of Deit on ImageNet. (b) Statistical correlations of different
dimensions with the last layer’s CLS token for 10 classes
on ImageNet.

In this paragraph, we use the relevance propagation tech-

nique LRP [3] to attribute the vision Transformer classifi-
cation results. We assume that the relevance of the actual
predicted output of the final layer classifier is Rfinal. In the
propagation mechanism, the total sum of relevance coeffi-
cients across layers must be equal. Therefore, the following
conditions are satisfied:

Rfinal =

V (l+1)∑
e=1

R(l+1)
e =

V (l)∑
e=1

R(l)
e = · · · =

V (1)∑
e=1

R(1)
e ,

where e represents the index of the corresponding vector di-
mension, and l represents different layers. Under the condi-
tion of satisfying the equal sum of relevance, the relevance
propagation between the neurons in two consecutive layers
is given as follows:

V (l)∑
e′

R
(l,l+1)
e′←e = R(l+1)

e ,

V (l+1)∑
e

R
(l,l+1)
e′←e = R

(l)
e′ .

We define R(l,l+1)
e′←e as the portion of relevance that flows

from e-th neuron to e′-th neuron. Then, we apply the LRP
[3] to calculate the relevance of Transformer.

As described in discovery 1, the output of layer l, de-
noted as xl = {xl1, xl2, ..., xlN , xlcls}, is a collection of d-
dimensional feature vectors, where N denotes the total
number of spatial tokens. Using the same attribution tech-
nique, assuming the relevance coefficient of the target pre-
diction output is Rc, and the relevance coefficient of the
d-th dimension of the n-th token output of layer l is (Rl

n)d,
satisfying certain conditions:

N∑
n=0

D∑
d=0

(Rl
n)d = Rfinal,

where n represents the token index, and N represents the
total number of tokens output by a particular layer. There-
fore, (Rl

cls)d can represent the correlation between the tar-
get category and a specific dimension of the CLS token in
a particular layer.

Figure 2(b) shows the statistical correlation between all
dimensions of the last layer CLS of Deit [36] and the cate-
gories on 10 classes of the ImageNet dataset. For each cat-
egory, we computed the sum

∑100
1 Rl

cls of the correlation
coefficients of the CLS dimensions for 100 images whose
prediction confidence was higher than 0.90. We can observe
that each category only correlates with sparse and specific
dimensions (bright colors), while most dimensions are not
correlated (dark colors). For different high-confidence im-
ages in each category, they maintain consistent dimension



Figure 3: The framework of Vision Transformer Calibrator is composed of token calibration and dimension calibration,
which can calibrate the incorrect feature stream from token-level and dimension-level of the class token, respectively.

correlations for that specific category. Figure 2(a) shows the
change in accuracy when only relevant dimensions for each
class are retained, and other dimensions are set to 0, com-
pared to the original accuracy. We can see that the accuracy
significantly increases, indicating that irrelevant dimensions
greatly interfere with the classification performance. Mean-
while, the dimensional consistency of the deep network is
more regular than that of the shallow network.

4. Vision Transformer Calibrator
Based on the two discoveries mentioned above, we

propose a two-stage optimization method for Transformer
models to calibrate Transformer classification decision
stream. In the first stage of diagnosis and treatment, ac-
cording to discovery 1, the foreground features of the image
contribute more to the final classification result. Therefore,
we assign greater weights to dominant features by compar-
ing the similarities between tokens. Then we use deep fea-
tures to guide shallow features and implement the fusion of
deep and shallow features through a feedback module. In
the second calibration stage, we accumulate the correlation
between deep-dimensional features and the predicted cate-
gory (discovery 2), and based on this, we use a distillation
scheme to retain more dominant features while constrain-
ing interfering features for the predicted category. The two-
stage calibration is described in the following sections.

4.1. Token-level Decision Stream Calibration

Inspired by discovery 1, we guide shallow features with
deep advantageous features. As shown in Figure 3, we as-
sume that the set of output vectors of the l-th layer of the

Transformer block is xl = {xl1, xl2, ..., xlN , xlcls}, denoted as
xl for shallow layers and xL for deep layers.

For the first feedback mode, we first project the feature
xli of i-th token in the l-th layer and the deep feature xLj of j-
th token in the L-th layer into the same semantic subspace.
Because the feature vectors of different layers are actually
in different vector spaces, additional vector alignment op-
erations are required, and linear projection is used here for
alignment. Finally, the projected vectors are interacted with
each other to obtain the feedback offset of the self-attention
connection:

aij = (Uxli)
T (V xLj ),

where U and V are weight matrices used for vector align-
ment, and aij represents the semantic similarity of feature
vectors between layers after projection into the same space,
T denotes matrix transposition.

For the second feedback mode, the deep feature vector is
projected nonlinearly by a Multi-Layer Perception (MLP)
module onto the semantic space where the L-th layer vector
is located to obtain i-th bias bi for the projected feature xLi
as follows:

bi =MLP (xLi ).

In addition, to incorporate more advantageous features,
we assign different attention weights to tokens by using
inter-layer similarity to generate weight matrices corre-
sponding to different tokens. For the deep layer output fea-
tures, denoted as xL, and the corresponding shallow layer
features, denoted as xl. Then, the similarity wi between i-



th token xli in l-th layer and i-th token xLi in L-th layer is
calculated as follows:

wi = (xli)
TxLi .

After obtaining the correlation wi between the deep and
shallow layer corresponding tokens, we normalize it and
then multiply it with the feedback bias to obtain the final
feedback result bi = bi · wi.

We combine the above two feedback modes and ap-
ply them to the Transformer network. We set a dynamic
feedback adjustment coefficient to control the output of the
feedback information. Based on the correlation matrix A
(A[i, j] = aij) obtained from feedback mode one, we ex-
tract the score A[cls, cls] corresponding to the CLS to-
ken as the basis for dynamic adjustment, representing the
global similarity between the input and output layers. For
all l ∈ {0, 1, 2, ..., L}, we calculate the selection score sl

for dynamic feedback in the l-th layer:

sl =
expAl[cls, cls]∑L

l=0 expA
l′ [cls, cls]

.

we use sl as the dynamic feedback layer selection coeffi-
cient for the l-th layer. The larger sl is, the more feedback
of high-level semantic information is required for the l-th
layer. Then, we apply sl to the two feedback modes and
adjust the corresponding layer feedback:

x̃i
l+1 =

N∑
j=1

exp (hlij + slAl[i, j])∑N
k=1 exp (h

l
ik + slAl[i, k])

· (xlj + slblj),

hlij = (Kl
i)

TQl
j ,

where Kl
i represents the key feature of the self-attention

layer, and Ql
j represents the query feature of the self-

attention layer. We use x̃i
l+1 to denote the feature vector

after feedback.

4.2. Dimension-level Decision Stream Calibration

Inspired by discovery 2, we accumulated the correlation
(Rl

cls)d between the dimension of each CLS token layer
and the target class. To reduce the interference of misclas-
sified features, we used mean statistics to accumulate this
correlation, calculated as follows:

R
l

cls =
1

J

J∑
j=1

Rl
cls.

For each class, J samples are used to calculate the av-
erage correlation distribution R

l

cls, which can explain the
relationship between the target class and the dimension of
each CLS token layer. We partitioned different dimensions

based on this correlation and filtered out the dimensions that
significantly contributed to specific classes. For a specific
class, we generated a mask for high-contribution dimen-
sions, which was calculated as follows:

masklcls =

{
1, R

l

cls > v

0, R
l

cls < v
,

where v is an adjustable threshold. Based on the mask, we
can identify the important dimensions for a specific class.
Then, we used a self-distillation method as shown in Figure
3, where the teacher model was used to guide the student
model in fine-tuning by removing the interfering features
using the mask. The total training loss L composed of the
normal cross-entropy loss LCE and distillation loss LMSE

is calculated as follows:

L = LCE(f(Z
L
student), Y )+λLMSE(Z

l
student, Z

l
teacher),

where λ denotes the balance parameter, Y denotes the
ground truth label, f denotes the following softmax and
MLP function, ZL

student denotes the predicted latent rep-
resentation of student model at the L-th layer, Zl

student

and Zl
teacher denote the predicted latent representations of

student model and teacher model at the l-th layer (l ∈
{0, 1, 2, ..., L}), respectively. The latent representation
Zl
teacher of teacher model is obtained by multiplying the

original representation of the teacher model at a specific
layer with a category-aware mask, that is, Zl

teacher =

Zoriginal
teacher �masklcls, where � denotes the point-wise mul-

tiplication.

5. Experiments
In the experiment, the adopted classifiers, datasets, and

experiment settings are listed as follows.
Classifier. The selected 4 classifiers cover mainstream

classification network architectures, which are listed as fol-
lows: ViT [17], Deit [36], Flexivit [4], Eva [19].

Dataset. The datasets we adopted contain CIFAR-
100 [26] and ImageNet [15].

Experiment setting.
For the parameter settings in the token calibration stage,

we chose the third layer as the starting output layer for feed-
back and the final layer as the feedback input layer, with
a total of three feedback layers. For the parameter set-
tings in the dimension calibration stage, we used the mean
correlation of J images as the threshold selection criterion
for the selection threshold v corresponding to specific cat-
egory dimensions. In the baseline setting, for the Ima-
geNet dataset [15], we used the pre-training weights pub-
licly available in the timm library [40]. In the experimental
setup, we fixed the random seed to ensure the stability of the



Backbone Baseline +Token +Dim +All

ViT-T 87.44 88.01(+0.57) 88.12(+0.68) 88.20(+0.76)

ViT-S 90.24 90.50(+0.26) 90.55(+0.31) 90.59(+0.35)

Deit-T 84.32 85.10(+0.78) 84.81(+0.49) 85.24(+0.92)

Deit-S 87.41 87.54(+0.13) 87.67(+0.26) 87.62(+0.21)

Flexivit-S 89.66 89.74(+0.08) 89.79(+0.13) 89.85(+0.09)

Flexivit-B 91.51 91.38(-0.13) 91.72(+0.21) 91.67(+0.16)

Eva-L 95.88 95.54(-0.34) 95.70(-0.18) 95.29(-0.59)

Table 1: The base and improved accuracy of 7 classifiers on
CIFAR-10 dataset.
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Figure 4: The accuracy and increased accuracy of each cat-
egory with two stage calibration on the ImageNet dataset.

experiment. More experimental details and source codes are
provided in the supplements.

5.1. Effectiveness of Vision Transformer Calibrator

This section presents the classification performance of
7 mainstream models on 2 datasets. We provide the com-
bined results of two-stage training in Table 1 and Table 2. It
can be seen from the table that Vision Transformer Calibra-
tor improves the accuracy of mainstream visual transformer
classifiers by 1% ∼ 2%. Figure 4 shows the original and
improved classification accuracy of Deit-T [36] on 10 cat-
egories in the ImageNet dataset [15]. Among them, the 10
categories are selected by proportional indexing from the
1000 categories in the ImageNet dataset, and the optimized
Transformer classification performance is further improved.
These validate the effectiveness of the proposed model op-
timization approach.

5.2. Visual Results

We generated a visualization heatmap by comparing the
similarity of corresponding tokens between the deep feed-
back input layer and the shallow feedback output layer. The
higher the similarity, the more features of the correspond-
ing token should be fed back to the shallow layer. Figure 5

Backbone Baseline +Token +Dim +All

ViT-T 75.45 77.03(+1.58) 75.87(+0.42) 77.19(+1.74)

ViT-S 81.40 82.33(+0.93) 81.76(+0.36) 82.43(+1.03)

Deit-T 72.17 73.99(+1.82) 72.44(+0.27) 74.19(+2.02)

Deit-S 79.86 81.01(+1.15) 81.22(+0.21) 81.14(+1.28)

Flexivit-S 82.53 83.16(+0.63) 82.86(+0.33) 83.26(+0.73)

Flexivit-B 84.67 85.43(+0.76) 84.53(-0.17) 85.11(+0.44)

Eva-L 87.94 88.18(+0.24) 84.67(+0.05) 88.13(+0.19 )

Table 2: The base and improved accuracy of 7 classifiers on
ImageNet dataset.

n 1 2 3 4 5

top-1 73.4 73.5 73.7 73.7 73.6

top-5 91.3 91.6 91.9 91.6 91.5

Table 3: Ablation study on the number n of feedback output
layers when the starting feedback output layer is set to 5.

layer 1 3 5 7 9

top-1 72.1 73.0 73.1 72.8 72.4

top-5 91.0 91.3 91.3 91.2 91.1

Table 4: Ablation study on the model output layer index
when the feedback output layer is set to one layer.

shows the visualization results before and after adding token
calibration. By calculating the similarity between the output
of the last layer and that of a shallow layer, we can exam-
ine the image regions the model focuses on. As can be seen
from the figure, after calibration, the visually highlighted
areas focus more on the image’s foreground, demonstrating
that the foreground often contributes more to the classifica-
tion results. Meanwhile, our method assigns greater weight
to foreground information during token calibration, further
improving model performance.

5.3. Ablation Study

In this section, we conduct two-stage ablation studies on
ImageNet using Deit-T [36]. The results of the two-stage
calibration experiments can somewhat improve the model
performance. The two stages act on the token level and
the dimension level, respectively, allowing important tokens
and dimensions to be strengthened.

In the token calibration stage, we conduct ablation ex-
periments on the search for the feedback target layer and
the total number of dynamic feedback layers. For the feed-
back target layer search, we set the total number of feed-
back layers to 1. The data in Table 4 show that the model



Figure 5: Visualization of the similarity between the last layer features and shallow features of the Deit model before and
after calibration for two image examples from ImageNet.

accuracy is lower when the feedback target layer is set to a
shallow layer. It may be because the shallow layers of the
model extract only very basic visual information, and intro-
ducing high-level semantic information may interfere with
the model’s classification performance. When the feedback
target layer is deepened to the middle layer, the model per-
formance improves the most. It may be because the middle
layers of the model extract some semantic information di-
rectly related to classification. At this time, feedback assis-
tance with high-level semantic information can better han-
dle image features. As for the total number of dynamic
feedback layers n, we set the fifth layer as the starting out-
put layer. The data in Table 3 indicates that as the number of
layers increases, the model performance first improves and
then remains basically unchanged. Too many feedback out-
puts cannot significantly improve model performance but
can instead affect model training speed. Therefore, the
model’s total number of feedback output layers should be
set reasonably.

6. Dicussion and Future Work

Our experiments showed that ViT-Calibrator has limited
performance gains for some large-parameter models. For
the token calibrate stage, the performance gain of the model
decreases as the number of heads increases, which may be
because too many heads disrupt the transmission of token
feedback information. For the dimension calibration stage,
the model’s performance is often better on small datasets
than on large ones. Because we optimize the model using
the sparsity associated with dimensions and categories, dis-

tillation can filter out dimensions related to classification
results for datasets with too many image categories, caus-
ing interference features to be filtered out along with some
effective features, resulting in performance degradation.

In addition, we found that when generating important di-
mensions for specific categories, the classification perfor-
mance can be significantly improved by 10%-20% if we re-
move unimportant dimensions for the category based on the
important dimensions selected from the training set. How-
ever, in practice, the performance of the corrected model
is often much lower. It is because there are still redundant
features in the model correction process, which can signifi-
cantly interfere with the model performance.

The Vit-calibrator we proposed has achieved particular
effectiveness in classification networks, which also provides
a new idea for other tasks. For example, tasks such as seg-
mentation and object detection can be optimized in differ-
ent tasks based on the inspiration from our work, which will
improve the performance of other tasks in the future.

7. Conclusion

In this article, we propose a new paradigm dubbed De-
cision Stream Calibration that boosts the performance of
general Vision Transformers.We shed light on the infor-
mation propagation mechanism in the learning procedure
by exploring the correlation between different tokens and
the relevance coefficient of multiple dimensions. Research
on Transformers typically starts with attention mechanisms;
However, attention mechanisms only reflect one aspect of
the Transformer network. We explore and propose two new



research directions based on Transformers: Token-level
Decision Stream Calibration through token feedback and
Dimension-level Decision Stream Calibration, which in-
crease interpretability while improving model performance.
These can serve as references for future research.
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Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 32–42, 2021.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[39] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568–578, 2021.

[40] Ross Wightman. Pytorch image models
(Timm). https://github.com/rwightman/
pytorch-image-models, 2020.

[41] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 558–567,
2021.

[42] Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages
818–833. Springer, 2014.

[43] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan
Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neu-
ral attention by excitation backprop. International Journal
of Computer Vision, 126(10):1084–1102, 2018.

[44] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S Ebert. Manifold: A model-agnostic framework
for interpretation and diagnosis of machine learning models.
IEEE transactions on visualization and computer graphics,
25(1):364–373, 2018.

[45] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba.
Interpreting deep visual representations via network dissec-
tion. IEEE transactions on pattern analysis and machine
intelligence, 41(9):2131–2145, 2018.

[46] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016.

[47] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


A. Implementation Details
In the experiment, we employ two datasets and seven

models, the detailed specifications of which are provided in
the Table 5. During training, we uniformly utilize AdamW
as the optimizer with a batch size of 128 and adopted a co-
sine learning rate schedule. The specific training settings
for the two datasets are as follows:

CIFAR-100. The CIFAR-100 dataset, a subset of the
Tiny Images dataset, comprises 60000 32x32 color im-
ages. We fine-tune the pre-trained model for 200 epochs
on CIFAR-100 to obtain our baseline. Then we adopt our
calibration approach to refine the model. During the token
calibration stage, we fine-tune the baseline for an additional
100 epochs. We set the index of the input layer of the feed-
back module as the last layer, the number of output layers
for the feedback module as three. For a model with a total
of 12 layers, the index candidate layers for feedback output
are {3, 4, ..., 9}. During the dimension calibration stage, we
fine-tune the model for an additional 100 epochs based on
the token calibration, and in the category-related dimension
filtering step, we select 40% of the dimensions as relevant
dimensions by default.

ImageNet-1K. This dataset is a ubiquitous subset of Im-
ageNet, spanning by 1000 object classes and encompass-
ing 1,281,167 images for training, 50,000 for validation and
100,000 for testing. To build up the baseline, we employ a
pre-trained model from the timm library and perform a two-
stage fine-tuning procedure that involves token and dimen-
sion calibrations. The training parameters remain consis-
tent with those mentioned above, and we reduce the train-
ing duration to 30 epochs per calibration stage to mitigate
the computational overhead.

B. More experimental results
B.1. Dimension-level Decision Stream Calibration

For demonstrating the universality of Discovery 2 that
each category is only related to a specific dimension in
the CLS token, and irrelevant dimensions interfere with the
model’s prediction results, we provide more statistical cor-
relation diagrams from two different perspectives on Ima-
geNet dataset.

Figure 6 illustrates that, for distinct images within a par-
ticular category, the dimensions with high correlation re-
main relatively consistent, while the dimensional correla-
tions vary among different categories. This finding substan-
tiates the efficacy of establishing consistent relevant dimen-
sions for images belonging to a particular category.

Figure 7 illustrates the mean correlation between dimen-
sions and distinct classes in the ImageNet dataset. The
result demonstrates that each class has a unique associa-
tion with specific dimensions, and some dimensions are
sparsely related to specific classes. We validate the general-

ity and universality of the Discovery 2 using two distinct ap-
proaches: internal variations among images of the same cat-
egory and variations among images of different categories.

In our experiment, an important dimension discrimina-
tion threshold is required for model dimension calibration.
Therefore, we investigate the number of dimensions to be
retained for specific categories. We select dimensions as-
sociated with specific categories from the training set and
evaluate their performance on the corresponding test set.
The accuracy is calculated under varying numbers of di-
mensions, and the classification performance is examined
later.

Table 6 reveals how the model’s average accuracy for
specific categories changes as the percentage of dimensions
retained for the category decreases. The trend indicates an
initial increase in accuracy followed by a decrease. This
implies that as the number of dimensions used to repre-
sent a category decreases, irrelevant dimensions that can
impede category performance are removed, resulting in per-
formance gains. However, it is necessary to keep the num-
ber of dimensions within a reasonable range to avoid losing
information that pertains to the original category, leading
to poor classification performance. In our experiment, we
have determined a threshold of 40% to retain the relevant
dimensions while eliminating the irrelevant ones.

Furthermore, we explore the impact of preserving differ-
ent dimensions on the final classification results. We use
the same dimension preservation strategy for each layer’s
output token in our experiment. Table 7 demonstrates that
removing redundant dimensions significantly enhances the
performance of the model for deep layers. For shallow lay-
ers, the dimension response pattern is not apparent. This is
likely due to the fact that deep networks contain more se-
mantic information than shallow networks.

B.2. Token-level Decision Stream Calibration

Based on Discovery 1 the final decision is associated
with tokens of foreground targets, while the token features
of the foreground target will be transmitted into the next
layer as much as possible, and the useless token features
of the background area will be eliminated gradually in the
forward propagation, we employ a fusion of deep and shal-
low features for Token-level Decision Stream Calibration.
Additionally, we assign different weights to the ratio of
deep features mapped to shallow features for different to-
kens based on cross-layer similarity.

Moreover, we discover some peculiar experimental phe-
nomena and provided partial explanations for them. Fur-
thermore, we present more visualization results to further
support our findings.

Additional experimental phenomena. During our ex-
periment, we observe that fixed patterns are responsible for
certain patches. As shown in Figure 8, we visualize the

https://github.com/huggingface/pytorch-image-models


Backbone Number of Layer Head Numbers Resolution Params(Mb)

ViT-T/16 [17] 12 3 224× 224 5.72
ViT-S/16 [17] 12 6 224× 224 22.05
Deit-T [36] 12 3 224× 224 5.72
Deit-S [36] 12 6 224× 224 22.05
Flexivit-S [4] 12 6 240× 240 22.06
Flexivit-B [4] 12 12 240× 240 86.59
Eva-L [19] 24 16 196× 196 304.14

Table 5: Detailed parameters of the seven models used for the two-stage calibration method.

Figure 6: The four images in the figure respectively represent the relationship between randomly selected four categories in
ImageNet and specific dimensions of response. In each image, the horizontal axis represents the dimension, the vertical axis
represents the total number of images in the current category, and there are 10 images in each category.

Figure 7: Average statistical correlation graphs for different dimensions on ImageNet’s ten categories.

similarity measure between the last layer and the shallow
layer without any preprocessing. We notice that starting
from the sixth layer, the response patterns of the four cor-
ners in the image remain consistent, with their response val-
ues typically being the maximum or minimum among all
tokens. We postulate that there may be two underlying rea-

sons for this phenomenon. Firstly, deeper layers contain
more semantic information, and the four corners contain
less category-related semantic information, thereby result-
ing in dissimilar response patterns from other tokens. Sec-
ondly, the positional encoding learned for the four corners
may differ significantly from other tokens, thereby leading



Percentage 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Accuracy 75.45 81.22 85.19 88.40 91.06 93.14 94.63 95.34 95.61 93.76

Table 6: The impact of retaining dimensions in different proportions on the final classification results.Percentage represents
the proportion of dimensions to be retained, and the values of the remaining dimensions are set to 0.

Layer 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy 39.82 34.41 39.06 39.65 46.87 58.64 65.42 81.26 91.02 93.34 95.32 94.63

Table 7: Filtering the impact of preserving dimensions at 40% on the final classification results by selecting different layers
with preserved dimensions.

Figure 8: Visualization of last layer features and shallow features similarity, including high response patterns of specific
patches.where S(l, l′) represents the correlation calculation between the output of layer l and the output of layer l′.

to distinct responses.
More visualization results. We provide more visual-

ization results in the experiment. As shown in Figure 9,
the original visualization has many noisy regions, making
it difficult to observe the response of each region directly
from the original image. Therefore, we first preprocess the
interlayer correlations by removing the regions with low
responses and retaining more regions with high responses.
We can observe that the high response regions in the image
are more concentrated in areas that have specific semantic
meanings in the image. For example, in the image of the
electric vehicle, the high response regions are mainly con-
centrated on the wheel and seat areas, both of which are
closely related to the final classification. At the same time,
in the shallow layers of the image, the high response re-
gions are combined with some background areas, while in
the deeper layers, they are combined with more semantic in-
formation. In addition, the classification of some categories
may have a strong correlation with the background, which
may be related to the model itself and the data.



Figure 9: Visualize the similarity between deep and shallow layers while removing partially activated responses in the
visualization results.


