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Abstract

Exploiting cognates for transfer learning in
under-resourced languages is an exciting oppor-
tunity for language understanding tasks, includ-
ing unsupervised machine translation, named
entity recognition and information retrieval.
Previous approaches mainly focused on su-
pervised cognate detection tasks based on or-
thographic, phonetic or state-of-the-art contex-
tual language models, which under-perform for
most under-resourced languages. This paper
proposes a novel language-agnostic weakly-
supervised deep cognate detection framework
for under-resourced languages using morpho-
logical knowledge from closely related lan-
guages. We train an encoder to gain morpho-
logical knowledge of a language and transfer
the knowledge to perform unsupervised and
weakly-supervised cognate detection tasks with
and without the pivot language for the closely-
related languages. While unsupervised, it over-
comes the need for hand-crafted annotation of
cognates. We performed experiments on differ-
ent published cognate detection datasets across
language families and observed not only sig-
nificant improvement over the state-of-the-art
but also our method outperformed the state-
of-the-art supervised and unsupervised meth-
ods. Our model can be extended to a wide
range of languages from any language family
as it overcomes the requirement of the anno-
tation of the cognate pairs for training. The
code and dataset building scripts can be found
at https://github.com/koustavagoswami/
Weakly_supervised-Cognate_Detection

1 Introduction

Cognates are etymologically related word pairs
across languages (Crystal, 2011). However, cog-
nates are defined in much broader terms in many
different fields, including natural language process-
ing (NLP) or psycholinguistics (Labat and Lefever,
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2019). In these areas, word pairs with similar mean-
ings and spelling are also considered as cognates.
In the recent development of automatic machine
translation (AMT), automatic cognate detection
is found to be very effective for similar language
translation (Kondrak, 2005; Kondrak et al., 2003).
Moreover, it helps to efficiently perform cross-
lingual information retrieval (Makin et al., 2007;
Meng et al., 2001) from different sources. Very
often, words that have similar spelling are recog-
nised as cognates (Example: the Latin and the En-
glish word pair “cultūra” and “culture”). Neverthe-
less, there are word pairs which are false friends
or partial cognates (Kanojia et al., 2020b). Par-
tial cognates are similar words across languages
but carry different meanings in different contexts
(Kanojia et al., 2019b), thus making automatic cog-
nate detection hard and challenging. Identifying
these cognates requires extensive linguistic knowl-
edge across languages, which is quite hard and
expensive to annotate. While cross-lingual auto-
matic cognate detection systems exist, they have
primarily been supervised methods requiring la-
belled data or language-specific linguistic rules.
For under-resourced languages, finding annotators
or linguists is a challenging task. This highlights
the need for an efficient unsupervised language-
agnostic cognate detection framework. We show
that our weakly-supervised and unsupervised ap-
proaches can better exploit the available data than
existing supervised methods and thus produce bet-
ter results for under-resourced languages. The
method transfers the morphological knowledge of
a shared encoder in the unsupervised cognate de-
tection framework into a Siamese network setting,
where the framework simultaneously learns word
representation and cluster assignments in a self-
learning setup.

Supervised cognate detection frameworks un-
derstand the relationship between word pairs by
concentrating on their phonetic or lexical similar-
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ities based on their annotated positive or negative
labels (Jäger et al., 2017; Rama, 2016). Recently,
researchers tried to exploit contextual multilingual
word embedding techniques to identify cognates
which produced better results than only concen-
trating on phonetic transcriptions (Kanojia et al.,
2020a). Although such methods had good results,
annotating labels is quite expensive and tedious for
many under-resourced languages. Moreover, pro-
ducing multilingual contextual word embeddings
is challenging for these languages due to the need
for more data sources on the web. Merlo and Ro-
driguez (2019a) highlighted that based on bilingual
lexicon matching between two known languages,
the similarity score produced by contextual word
embeddings could differentiate between true or
false cognate pairs. Though this technique is label
independent, the framework depends on the bilin-
gual lexicon availability of the known language
pairs.

To alleviate the above challenges, in this paper,
we propose a language-agnostic weakly-supervised
cognate detection framework based on Siamese
architecture with an iterative clustering approach
(Xie et al., 2016) during back-propagation. Our en-
coder design is inspired by Goswami et al. (2020),
where they learn the n-gram character features of a
sentence with attention. We introduce a positional
encoder on n-gram features, which, in combina-
tion with the attention mechanism, learns sub-word
representations of a word. We also depict the per-
formance of our morphological knowledge-based
weakly-supervised framework. This variant gives a
better understanding of the grammar and structural
analysis of the words of a language. Thus, trans-
ferring this knowledge with the help of a shared
encoder to closely-related languages enhances the
understanding of structural and grammatical relat-
edness between cross-lingual word pairs. More-
over, our word encoding method helps to produce
better supervised cognate detection results, which
outperform the state-of-the-art supervised results
on various language pairs. In this paper, we have
presented a complete set up of results for super-
vised, weakly-supervised and unsupervised setups.

The extensive experiments (in Section 6) on
three different cognate detection datasets across
language families have showcased the efficacy of
our weakly-supervised and supervised cognate de-
tection framework. For example, on six differ-
ent Indian language pairs, our weakly-supervised

model (with morphological knowledge) has outper-
formed the state-of-the-art supervised model pro-
posed by Kanojia et al. (2020a) by an average of
9 points of F -score whereas, for Celtic language
pairs, it outperformed by 8.6 points of F -score.
At the same time, our supervised framework has
produced a state-of-the-art performance by outper-
forming the existing supervised model by an aver-
age of 16 points of F -score. Thus, our model is
robust across diverse language families for the su-
pervised and weakly-supervised cognate detection
task. Interestingly, our experiments show that on
Indian language pairs like Hindi-Punjabi and Hindi-
Marathi, an encoder with morphological knowl-
edge of the Hindi language performed better than
an encoder with morphological knowledge of their
ancestral language, Sanskrit by an average of 1.5
points of F -score. However, the performance of
the weakly-supervised framework for the language
pair Marathi-Bengali has improved by 2 points of
F -score.

In a nutshell, our contributions are:

• (i) a language-agnostic weakly-supervised
cognate detection framework without the need
for labels,

• (ii) efficiently transferring morphological
knowledge of a low-resourced language to
closely-related under-resourced languages
with or without the need for the pivot language
for better cognate detection,

• (iii) introduction of positional embedding
along with attention to different n-grams of a
word for better understanding of word struc-
tures,

• (iv) robustness in weakly-supervised and su-
pervised cognate detection for low-resource
languages across three different datasets of dif-
ferent language families, outperforming state-
of-the-art supervised approaches.

2 Related Work

Algorithms for automatic cognate detection (ACD)
are mostly based on phonetic or orthographic sim-
ilarity measures and often language-dependent or
supervised approaches. Covington (1996) devel-
oped an algorithm to align historical-comparative
languages by their phonetic similarity. Kondrak
(2000) released a novel algorithm for aligning pho-
netically similar sequences. Similarity-based al-



gorithms follow these works to identify cognates
between a language pair of different families. The
orthographic similarity-based works calculate dis-
tances or string similarities between word pairs and
define similarity scores to identify cognates (Mul-
loni and Pekar, 2006; Melamed, 1999; Jäger et al.,
2017). Rama (2016) has released a convolution-
based model that also considers phonetic similarity-
based scores into account to detect cognates for
word pairs. Some researchers have also taken
parallel datasets into account to identify cognates.
Distance measurement based scores have become
the feature set to identify cognates in these cases
(Mann and Yarowsky, 2001; Tiedemann, 1999).
Kanojia et al. (2019a) performed a cognate detec-
tion task on Indian languages, which includes a
large amount of manual intervention during iden-
tification. Kanojia et al. (2019b) introduced a
character sequence-based recurrent neural network
for identifying cognates between Indian language
pairs.

The influence of classical machine learning
and dynamic programming-based approaches de-
fines automatic cognate detection tasks as semi-
supervised approaches. Hauer and Kondrak (2011)
trained a linear SVM based on word similarity and
language-pair features to detect cognates. Phonetic
alignment based SVM models performed quite effi-
ciently on different language families while detect-
ing cognates (Jäger et al., 2017). Some researchers
designed orthographic substring similarity mea-
sures based SVM models (Ciobanu and Dinu, 2014,
2015).

Another thread of research for cognate detection
recently involved multilingual contextual knowl-
edge injection methods. Merlo and Rodriguez
(2019b) explored the effect of cross-lingual fea-
tures on bilingual lexicon building, which was
later implemented in Indian language cognate de-
tection methods. Kanojia et al. (2020a) injected
cross-lingual semantic features for cognate detec-
tion tasks using newly trained language models,
which showed better results than state-of-the-art
methods. Recently, Kanojia et al. (2021) proposed
incorporating gaze features in context aware cog-
nate detection tasks, which improved results for
Hindi-Marathi language pairs. These methods may
produce better results; however, the main disad-
vantages lie in training these models as they are
data-hungry models. Thus, incorporating manu-
ally annotated gaze features and newly generated

Figure 1: Weakly-supervised Cognate Detection Frame-
work with Morphology Learner and Unsupervised Cog-
nate Detector. For training, we pass monolingual word-
pairs into morphology learners (coloured in green) and
bilingual cognate candidates (coloured in blue) into un-
supervised cognate detector.

cross-lingual contextual embeddings becomes an
impossible solution for many under-resourced lan-
guages.

3 Cognate Detection Framework

In this section, we describe the components
and working of the proposed Language Agnostic
Weakly-supervised Cognate Detection Architecture
Using Morphological Knowledge, trained using an
unsupervised loss function and iterative clustering
method. The iterative clustering process enhances
the understanding of word representation and clus-
ter assignment.

Figure 1 depicts the shared word encoder based
framework. It consists of two parts - (i) a Mor-
phology Learner, which gathers the morphological
knowledge of a language and (ii) an Unsupervised
Cognate Detector, which uses the morphological
knowledge learnt using a shared word encoder to
cluster the cognates between word pairs.

3.1 Word Encoder
The word encoder consists of an n-gram character-
level CNN and a positional embedding layer, fol-
lowed by a self-attention layer.

Character Encoding. The character level CNN
layer generates word representation on n-gram
(n ∈ {2,3,4,5,6}) characters, which helps to under-
stand the representation of words on different sub-
word levels (Goswami et al., 2020). A word’s dif-
ferent sub-word level representations are achieved
using a 1-dimensional CNN (Zhang et al., 2015).
The characters of a word are fed as input sequence
S = [w1, w2, ..., wm] to the 1-dimensional CNN,



where m is the number of characters present in the
word and wi is a character in the word. Consider-
ing the 1-dimensional CNN as a feature extractor,
it slides over characters to create a window vector
wj with consecutive character vectors, as denoted
in Equation 1.

wj = [xj , xj+1, ....., xj+k−1] (1)

where k is the size of the feature extractor filter and
xi ∈ Rd is the d-dimensional character embedding
of the i-th character, where character vocabulary
size is n. Thus this k-sized filters create the feature
map s (s ∈ Rm−k+1) from the window vector wj

according to Equation 2,

sj = a(wj ·m+ bj) (2)

where the vector m is a filter for convolution op-
eration, bj is the bias for the j-th position and a
is the non-linear function. Thus the new feature
representation of the word F (F ∈ R(m−k+1)×n)
will be expressed as F = [s1, s2, ..., sn], where n
is the number of filters and m is the total input size.
Observe the different filter size k ∈ {2,3,4,5,6},
representing the word’s n-gram features, further
represented as Fk.

Positional Encoding of Features. While get-
ting n-gram features of the word representation,
the character sequence order carries a significant
role in word construction. We try to learn the dif-
ferent n-gram positions in a word with the help of
our new introduction of positional encoding. The
Transformer architecture (Vaswani et al., 2017) en-
forces the trainable positional embeddings on the
input word pieces to understand the position of
the words in a sentence. In our input words, the
same character can appear in multiple positions,
which makes positional embedding on each charac-
ter irrelevant. Rather, our approach to learning the
n-gram sequence in a word helps to understand the
grammatical and morphological differences from
the structural perspective of a word. Following the
learning process of the positional embedding of
transformer architecture, we encode the trainable
positional encoding of different n-gram features.

Attention of Features. The new encoded fea-
ture representation Fk produces the ultimate word
embedding, which is achieved by giving weight
to n-grams according to their importance in word
construction. A self-attention mechanism takes the
feature representation as input and produces an out-

put weight vector a for every feature representation
F using the following Equation 3.

a = softmax(tanh(Wh · F T + bh)) (3)

The summation of feature representation F accord-
ing to the weight vectors provided by a generates a
vector representation r of a word by Equation 4

r =
T∑
i=1

ai · Fi (4)

where ai represents the attention weights, and · rep-
resents the element-wise product between elements.
The final vector representation r is the concatena-
tion of different n-grams ∈ {2,3,4,5,6}, which is
represented as r = [r2, r3, r4, r5, r6].

3.2 Morphology learner

We learn the morphological relationship between
two words ri and rj of the same language in a
Siamese setting (details of the morphological train-
ing dataset building with an example are given in
Section 4). The encoded vector representations are
then passed through a fully connected (FC) layer
which gives two vector representations zl ∈ RN×K

and zr ∈ RN×K . The morphological learner model
is then trained to minimize the mean-squared loss
between two word representations such that their
vector space distances reflect their degree of mor-
phological relatedness in Equation 5

1/N

N∑
i=1

(zli − zri)
2 (5)

where N is the mini-batch size.

3.3 Weakly-supervised/Unsupervised Cognate
Detector

The encoder with and without morphological
knowledge for weakly-supervised and unsuper-
vised methodology respectively accepts two word
representations ri and rj from two different lan-
guages as input in a Siamese setting. The encoded
vector representations are then passed through a
fully connected (FC) layer which gives two vector
representations u ∈ RN×K and v ∈ RN×K . We
concatenate the word representations u and v with
their cosine similarity score and pass it through a
sense layer to achieve the combined representation
z ∈ RN×K . It is then passed through a softmax



layer to get the probability distribution of all classes
p ∈ RN×K , as per Equation 6

pij =
exp(zij)∑K
t=1 exp(zik)

(6)

where k is the number of classes. We train the unsu-
pervised model based on the maximum likelihood
clustering loss proposed by Goswami et al. (2020),
where they try to maximize the probability distri-
bution function for each class and at the same time
try to minimize the probability of all the datasets
to be assigned to one class using Equation 7.

Lu =
N∑
i=1

i
max
j=1

pij −
N

max
i=1

i∑
j=1

p2ij (7)

While the unsupervised loss function helps us
to get word embeddings and an initial cluster as-
signment, it is important to improve cluster purity
according to datasets. Xie et al. (2016) proposed a
self learning based deep clustering technique. The
framework learns the clustering based on stochas-
tic gradient descent (SGD) during backpropagation.
We fine-tune our word embedding to learn better
clustering using this iterative clustering technique.
The initial sets of cluster centroids uj

k
j=1 are ob-

tained from the pre-training phase using Equation 7.
In this self training phase, we assign word embed-
dings to initial cluster centroid and then fine-tune
the word embeddings and cluster centroids using
auxiliary target distribution.

The assignment of cluster centroids (uj) and
word embeddings (zi) are calculated based on Stu-
dent’s t-distribution (Maaten and Hinton, 2008) as
per Equation 8

qij =

(
1 + ∥zi − uj∥2

)−1

∑
j′

(
1 +

∥∥zi − uj′
∥∥2)−1 (8)

where qij is the probability of sample i to cluster j
assignment.

We now refine the cluster learning from their
high confidence assignments using auxiliary target
distribution pij (Xie et al., 2016). This helps to
improve cluster purity by putting more emphasis
on data point assignment, as per Equation 9

pij =
q2ij/

∑
i qij∑

j′

(
q2ij/

∑
i qij′

) (9)

where
∑

i qij is the frequency of clusters.

Word1 Word2
nuachtán. nuachtáin
eolas. a eolais.
síceolaí. leis an síceolaí.
Críostaí. Críostaithe.

Table 1: Morphology Learning Dataset for the Irish.

Dataset Hindi Irish Zulu Sanskrit
Training Dataset. 42200 2579 49696 437675

Table 2: Morphological Training Dataset of Three Pivot
Languages and Sanskrit

The cluster assignment self-learning process is
trained based on KL divergence loss between as-
signments qi and pi, as shown in Equation 10.

L = KL (P ||Q) =
∑
i

∑
j

pij log
pij
qij

(10)

4 Training and Evaluation Dataset

The framework has two parts: (i) Morphology
Learner and (ii) Weakly-supervised/Unsupervised
Cognate Detector.

Morphological training is based on UniMorph
(McCarthy et al., 2020) datasets. As shown in
Table 1, our Siamese network accepts two words as
input. The inputs are the monolingual word pairs of
the pivot language in UniMorph data (as shown in
Figure 1, we train the encoder of the morphological
learner on the Hindi dataset in a supervised manner
and transfer the knowledge to the unsupervised
cognate detector for Marathi-Gujrati word pairs).
Though our model is trained with the supervised
dataset from Unimorph, we do not consider the
annotated morphological class while training the
morphological learner. The statistics of datasets
for three pivot languages and Sanskrit are given in
Table 2.

Cognate Detection Task We have evaluated our
models on three different datasets for the cognate
detection task: Indian, Celtic, and South African
languages. For under-resourced Indian language
pairs, we have followed the work of Kanojia et al.
(2020b). As datasets for South African and Celtic
languages are not easily available, we built the
dataset from an open-source cognate database (Bat-
suren et al., 2019) and also have used the SigTyP
2023 shared task on cognate detection dataset (Rani
et al., 2023). The true cognates are directly taken
from the dataset and false cognate pairs are ran-
domly shuffled word-pairs with a 60-40 split of the



Language-pairs Cognates Non-cognates
Hindi (Hi) - Marathi (Mr) 15726 15983
Hindi (Hi) - Gujrati (Gu) 17021 15057
Hindi (Hi) - Punjabi (Pa) 14097 15166
Hindi (Hi) - Bengali (Ba) 15312 16119
Hindi (Hi) - Tamil (Ta) 3363 4005
Hindi (Hi) - Assamese (As) 3478 4101
Irish (Ga) - Manx (Gv) 335 223
Irish (Ga) - Scottish Gaelic (Gd) 676 450
Zulu (Zu) - Xhosa (Xh) 2236 1490
Zulu (Zu) - Swati (Ss) 14 9

Table 3: Cognate dataset statistics across language-
pairs.

total dataset available in the database for each lan-
guage pair. We experiment with both supervised
and unsupervised learning of these cognate classi-
fiers based on the encoder that was learned in the
previous step. During the training procedure of
the unsupervised cognate detector, no word pair
labels of cognate datasets are considered. The de-
tailed statistics of the cognate datasets for the three
language families can be found in Table 3.

For all of our experiments we have carried out
5-fold stratified cross-validation which has helped
us to get the train and test data randomly.

5 Training Details

We implemented our model using pytorch1. The
learning rate for the Indian, Celtic and South
African datasets was hand-tuned to 1e-4, 2e-3 and
4e-3, respectively, for the morphological training.
At the same time, for the unsupervised cognate de-
tection tasks the learning rates were 1e-2,1e-1,1e-2,
respectively. To stabilize the learning of the model,
we have implemented LambdaLR2 as the learn-
ing rate scheduler. For clustering, we have used
k-means clustering (MacQueen, 1967) with mini-
batch 3.

6 Experimental Evaluation

We evaluated our framework on three different
datasets in three different scenarios: (a) language
pairs with pivot language and its morphological
knowledge, (b) language pairs without the pivot
language but with the shared encoder having mor-
phological knowledge of the pivot language and (c)
the effect of the historical language morphological
knowledge transfer on the language pairs.

We compare our models with the following su-
pervised state-of-the-art cognate detection frame-

1https://pytorch.org
2https://pytorch.org/docs/stable/optim.html
3https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.MiniBatchKMeans.html

Approaches / Languages Hi-
Mr

Hi-
Gu

Hi-
Pa

Hi-
Bn

Hi-
Ta

Hi-
As

Orthographic Similarity 0.21 0.23 0.21 0.36 0.20 0.34
(Rama, 2016) 0.69 0.67 0.47 0.65 0.53 0.71
(Kanojia et al., 2019b) 0.72 0.76 0.74 0.68 0.53 0.71
XLM-R + FFNN 0.73 0.76 0.73 0.78 0.56 0.71

Proposed Supervised Methods

Proposed-method 0.81 0.79 0.80 0.79 0.69 0.78
Proposed-methodwithknowledge 0.91 0.87 0.88 0.86 0.77 0.82

Proposed Weakly-supervised/Unsupervised methods

Proposed-methodunspv 0.72 0.73 0.74 0.75 0.67 0.69
Proposed-methodwklysupv 0.85 0.84 0.81 0.82 0.74 0.79

Table 4: Results of supervised and weakly-supervised
cognate detection task based on F-Score for Indian lan-
guages. The baseline performances are as reported
in (Kanojia et al., 2020a).

Approaches / Languages Zu-
Ss

Zu-
Xh

Ga-
Gd

Ga-
Gv

Orthographic Similarity 0.21 0.31 0.29 0.22
(Rama, 2016) 0.24 0.61 0.64 0.59
(Kanojia et al., 2019b) 0.23 0.74 0.72 0.61

Proposed Supervised Methods

Proposed-method 0.65 0.76 0.77 0.69
Proposed-methodwithknowledge 0.72 0.87 0.88 0.74

Proposed Weakly-supervised/Unsupervised methods

Proposed-methodunspv 0.69 0.73 0.71 0.62
Proposed-methodwklysupv 0.78 0.79 0.81 0.71

Table 5: Results of supervised and weakly-supervised
cognate detection task based on F-Score for South
African and Celtic languages.

works: (i) CNN based model Siamese CNN based
approach by Rama (2016), (ii) Orthographic sim-
ilarity based approach from Labat and Lefever
(2019), (iii) Recurrent Neural Network based ap-
proach proposed by (Kanojia et al., 2019b), (iv)
Contextual Word Embedding based approach
with XLM-R (Conneau et al., 2020) proposed by
Kanojia et al. (2020a).

6.1 Pivot Language based Cognate Detection

Understanding word representation is the key to
state-of-the-art deep learning frameworks for dif-
ferent cross-lingual cognate detection tasks. Su-
pervised models rely on distributional learning
based on annotated labels. In contrast, weakly-
supervised and unsupervised frameworks should
be able to learn the structural and syntactical rep-
resentations of words to do clustering. We have
evaluated our model on different language families,
including Indo Aryan, Dravidian (Kanojia et al.,
2020b), Celtic and South-African languages.

As shown in Table 4, we have evaluated our

https://pytorch.org
https://pytorch.org/docs/stable/optim.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html


model on six different language pairs. Our base-
line model is based on the orthographic similar-
ity approach. As expected, it does not perform
well (Example: Word pair “Alankar (Ornament)” in
Hindi, and “Alankaaram (Ornament)” in Tamil with
similar word structures classified wrongly). The
character-based CNN method proposed by Rama
(2016) followed by the recurrent network-based so-
lution proposed by Kanojia et al. (2019b) increases
the model efficiency by quite a margin while de-
tecting cognates. The contextual word embedding
XLM-R based baseline model gives the best score
compared to the previous models’ score. This
model is capable of injecting contextual knowledge
of words from a sentence. Our proposed approach
has outperformed all of these baseline frameworks
and achieved state-of-the-art results for supervised
and weakly-supervised frameworks. As the lan-
guage pairs Hindi-Marathi are very closely related,
transferring the learnt Hindi morphological knowl-
edge has increased the model’s efficiency by 18
points of F -score. We observed that our weakly-
supervised framework outperformed the state-of-
the-art supervised baseline system by 13 points of
F -score. It is interesting to note that our super-
vised and unsupervised frameworks achieved state-
of-the-art results by outperforming the baseline sys-
tems by 21 and 18 points of F - score, respectively,
for the language pair Hindi-Tamil. Hindi and Tamil
come from different language families, Indo Aryan
and Dravidian, respectively, significantly boosting
the efficacy of the cognate detection framework.
On average, our supervised and weakly-supervised
system has improved 16.8 and 9 points of F -score,
respectively, on Indian language pairs.

Table 5 shows the model performance on South
African and Celtic language pairs. For South
African languages, we have Zulu (zu), Swati (ss)
and Xhosa (xh). Irish (ga), Manx (gv), and Scot-
tish Gaelic (gd) represent the Celtic languages. We
transferred morphological knowledge of Zulu and
Irish to other South African and Celtic languages,
respectively. Our proposed supervised and weakly-
supervised framework outperformed the state-of-
the-art baseline models. We reported poor perfor-
mance of the baseline models for the language pairs
Zulu and Swati. Due to the lack of training data for
Zulu-Swati (only 23 cognate pairs are available),
the models cannot be trained effectively. On the
other hand, our proposed approaches performed
better than the baseline models by a large mar-

Approaches / Languages Mr-
Gu

Pa-
Gu

Mr-
Pa

Mr-
Bn

Gd-
Gv

Orthographic Similarity 0.22 0.26 0.21 0.32 0.19
(Rama, 2016) 0.64 0.65 0.69 0.61 0.49
(Kanojia et al., 2019b) 0.72 0.75 0.77 0.68 0.64

Proposed Supervised Methods

Proposed-method 0.79 0.79 0.78 0.74 0.62
Proposed-methodwithknowledge 0.91 0.88 0.87 0.86 0.75

Proposed Weakly-supervised/Unsupervised methods

Proposed-methodunspv 0.72 0.71 0.74 0.70 0.59
Proposed-methodwklysupv 0.86 0.83 0.84 0.80 0.73

Table 6: Results of supervised and weakly-unsupervised
cognate detection task based on F-Score for Indian and
Celtic languages in the absence of Pivot Languages.

gin and very interestingly, our weakly-supervised
model is better than the supervised model by 6
points of F -score. The relatively complex word
pairs such as “umgqibelo (Saturday)” in Zulu and
“úm-gcibélo (Saturday)” in Swati are correctly iden-
tified as cognate pairs.

These results show that the proposed cognate
detection framework can efficiently detect cog-
nates across language pairs with the morpholog-
ical knowledge of the pivot language. Moreover,
with little training data, both the proposed weakly-
supervised and unsupervised frameworks are an
efficient solution for cognate detection.

6.2 Absence of Pivot Language

We now evaluate the robustness of our transfer
learning approach on the cross-lingual language
pairs in the absence of the pivot language. For In-
dian language pairs, our pivot language is Hindi
(Hi), whereas for the Celtic language pairs, the
pivot language is Irish (Ga). Table 6, shows that
the transfer learning approach is still very effi-
cient when the pivot language is absent. As we
can see, for the language pairs Gd-Gv, without
knowledge transfer in supervised learning, the re-
current neural network approach Kanojia et al.
(2019b) is better than our approach. However,
with the morphological knowledge encoded for
both supervised and weakly-supervised methods,
our model outperforms by 11 and 9 points of F -
score, respectively. On average, our transferred
knowledge-based weakly-supervised method has
outperformed the baseline method by 8.6 points of
F -score. Thus, we can see a steady performance
across all language pairs, showing the stability of
the proposed morphological knowledge transfer
supervised and weakly-supervised framework.



Approaches / Languages Hi-
Mr

Hi-
Pa

Mr-
Bn

Proposed Supervised Methods

With Hindi Knowledge 0.91 0.88 0.86
With Sanskrit Knowledge 0.90 0.86 0.87

Proposed Weakly-supervised methods

With Hindi Knowledge 0.85 0.81 0.80
With Sanskrit Knowledge 0.83 0.80 0.82

Table 7: Results of supervised and weakly-unsupervised
cognate detection task based on F-Score for Indian lan-
guages transferring knowledge from Hindi and Sanskrit.

6.3 Knowledge of Historical Languages

In this section, we will discuss the effect of transfer-
ring knowledge from the historical language San-
skrit. Sanskrit is the historical ancestor of almost
all the Indo-Aryan languages, thus making it one of
the potential pivot languages to transfer the knowl-
edge for the cognate detection task. We have stud-
ied the model’s efficiency while transferring the
knowledge of Sanskrit to modern languages. In
this experiment, we have taken the Indian language
pairs Hindi-Punjabi, Hindi-Marathi and Marathi-
Bengali. Comparing the results of the models given
in Table 7, we can observe a slight dip in model
efficacy in both supervised and weakly-supervised
frameworks while transferring the knowledge from
Sanskrit compared to transferring the knowledge
from Hindi to the language pairs Hindi-Punjabi and
Hindi-Marathi. However, the performance for the
language pair Marathi-Bengali has improved 1.5
points in F -score on average.

We believe its performance can be attributed to
the closeness and preserving more similarities in
the characteristics of the language pairs Marathi
and Bengali to Sanskrit than Hindi. Sanskrit is
considered a highly agglutinating and morpholog-
ically rich language (Chatterji, 1926); thus, it is
hard to parse it computationally. Though Marathi
and Bengali are not as morphologically complex as
Sanskrit, the languages in this pair are more agglu-
tinating and morphologically richer than Hindi and
Punjabi.

6.4 Statistical Significance

In this work, we hypothesise that transferring mor-
phological knowledge of the pivot language to the
closely-related languages helps to identify cognates
in both supervised and weakly-supervised settings.
To compute the performance of each language-
pairs from Table 4, 5, 6 we run the models on

Figure 2: F-Score for Irish-Manx language pairs trans-
ferring knowledge from different morphological learn-
ers

two different settings and obtain the distribution
of the performance scores: (i) we have run 5-fold
cross-validations two times (which makes a total
of 10 sets of results), and (ii) we kept 1-fold for a
single test set and ran it 10 times for 10 different
sets of results. Two sample t-tests showed that our
results are statistically significant in both the cases
over the baseline models (p < 0.01).

7 Ablation Study

Effect of morphological training datasize. One
of the challenges of morphological knowledge
transfer is the efficient learning of word structure
in the presence of a few morphological training
datasets. As Irish has few training datasets, we
have evaluated the proposed framework on differ-
ent samples of the Irish-Manx dataset (Refer to Sec-
tion 6). We have down-sampled and up-sampled
the morphology training set to 30% compared to
the existing datasets. From Figure 2, we can ob-
serve that the best F -score 0.79 is achieved when
the morphological learner model is trained with
30% more data size than the original size. This
emphasizes our claim of the model’s efficacy even
with a slight increase in the morphological training
datasets, which opens up the opportunity of imple-
menting the weakly-supervised cognate detection
framework on diverse under-resourced languages.

8 Conclusion

This paper proposed a novel language agnostic
weakly-supervised cognate detection framework
based on Siamese architecture. Experiments on
three different datasets consisting of Indian lan-
guages, Celtic languages and South-African lan-
guages showcase the efficacy of our framework
in understanding the structural relations between



cross-lingual words across languages. We also
show that transferring morphological knowledge to
closely-related word pairs with the help of a shared
encoder improves the model’s efficacy in differ-
ent scenarios. Our study on knowledge transfer
from historical languages depicts changes in the
word structures of modern languages. We demon-
strate that our approach outperforms the existing
supervised and semi-supervised frameworks and
establishes state-of-the-art results for the cognate
detection task. We also showcase the stability of
learning morphology on a small number of training
datasets, which opens up the possibility of deploy-
ing the system across language families.

Our future work will design and compare a semi-
supervised framework based on labelled and unla-
belled training sets. We will study whether the
semi-supervised framework improves efficiency
while detecting the cognates.

Limitations

During the evaluation, we have not experimented
with choosing multiple languages as pivot lan-
guages in the same language family. So, the per-
formance of the transfer learning framework may
change depending on the choice of the pivot lan-
guage. Also, during the evaluation, we mostly con-
ducted our experiments on modern language pairs.
Thus, the performance of the framework may differ
for studies of historical linguistic. From the train-
ing perspective, more fine-tuning may improve the
performance of the models but we have compared
the results produced with the settings described in
our work.
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