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Abstract

We study online reinforcement learning in linear Markov decision processes with adversarial losses

and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two

algorithms that achieve improved regret performance compared to existing approaches. The first algorithm,

although computationally inefficient, ensures a regret of Õ(
√
K), where K is the number of episodes. This

is the first result with the optimal K dependence in the considered setting. The second algorithm, which is

based on the policy optimization framework, guarantees a regret of Õ(K3/4) and is computationally efficient.

Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by

Kong et al. [2023] with Õ(K4/5 + poly(1/λmin)) regret, for some problem-dependent constant λmin that

can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with

Õ(K6/7) regret.

1 Introduction

We study finite-horizon online reinforcement learning in a large state space with adversarial losses amd bandit

feedback. We assume the linear Markov decision process (MDP) structure: every state-action pair is equiped

with a known feature representation, and both the transitions and the losses can be represented as a linear

function of the feature. This problem has received significant attention recently, with fairly complete results

when the agent has access to a simulator to query transitions of the MDP [Dai et al., 2023]. In the much harder

simulator-free setting, the pioneering work of Luo et al. [2021] showed that no-regret (K14/15 regret) is possible,

where K is the number of episodes. Several followup works have successively improved the K dependence

[Dai et al., 2023, Sherman et al., 2023b, Kong et al., 2023], with the state-of-the-art being Kong et al. [2023]’s

K4/5+poly(1/λmin) regret through a computationally inefficient algorithm, and Sherman et al. [2023b]’s K6/7

regret through a computationally efficient algorithm. Still, there remain significant gaps between the current

upper bounds and the
√
K lower bound. In this work, we push the frontiers both on the information theoretical

limits and the achievable bounds under computational constraints: 1) we present the first (computationally

inefficient) algorithm that provably obtains Õ(
√
K) regret, showing that this is the minimax K dependence

(Section 3); 2) we obtain Õ(K3/4) regret with a polynomial-time algorithm (Section 4). Below, we briefly

describe the elements in our approaches.

Inefficient
√
K algorithm. We convert the linear MDP problem to a linear bandit problem by mapping each

policy to a single dH-dimensional feature vector, where d is the ambient dimension of the linear MDP and H

*The authors are listed in alphabetical order.
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is the horizon length. The challenge is that this conversion depends on the transition of the MDP, which is not

available to the learner. Therefore, the learner has to estimate the feature of every policy during the learning pro-

cess. Previous work in this direction [Kong et al., 2023] faced obstacles in controlling the estimation error and

was only able to show aK4/5+poly(1/λmin) regret bound assuming there exists an exploratory policy inducing a

covariance matrix � λminI . We addressed the obstacles through 1) state space discretization (Section 3.2), and

2) model-free estimation for the occupancy measure of policies over the discretized state space (Section 3.3).

These allow us to emulate the success in the tabular case [Jin et al., 2020a] and obtain the tight
√
K regret.

Efficient K3/4 algorithm. The efficient algorithm is based on the policy optimization framework [Luo et al.,

2021]. Different from previous works that all use exponential weights, we use Follow-the-Regularized-Leader

(FTRL) with log-determinant (logdet) barrier regularizer to perform policy updates, which has the benefit of

keeping the algorithm more stable [Zimmert and Lattimore, 2022, Liu et al., 2023a]. We carefully combine

logdet-FTRL with existing algorithmic/analysis techniques to further improve the regret bound. These include

1) an initial exploration phase to control the transition estimation error [Sherman et al., 2023a], 2) optimistic

least-square policy evaluation in bonus construction [Sherman et al., 2023b], 3) dilated bonus construction

[Luo et al., 2021], and 4) a tighter concentration bound for covariance matrix estimation [Liu et al., 2023a].

1.1 Related Work

In this subsection, we review prior works on adversarial MDPs and policy optimization.

Learning in Adversarial MDPs. Adversarial MDPs refer to a class of MDP problems where the transition is

fixed while the loss function changes over time. Learning adversarial tabular MDPs under bandit feedback and

unknown transition has been extensively studied [Rosenberg and Mansour, 2019, Jin et al., 2020a, Lee et al.,

2020, Jin et al., 2021, Shani et al., 2020, Chen and Luo, 2021, Luo et al., 2021, Dai et al., 2022, Dann et al.,

2023a]. In this line of work, not only
√
K regret bounds have been shown, several data-dependent bounds

are also established. For adversarial MDPs with a large state space which necessitates the use of function ap-

proximation,
√
K bounds have only been shown under simpler cases such as 1) full-information loss feedback

[Cai et al., 2020, He et al., 2022, Sherman et al., 2023a], and 2) known transition or access to generative models

/ simulators [Neu and Olkhovskaya, 2021, Dai et al., 2023, Foster et al., 2022]. Therefore, to our knowledge,

we provide the first
√
K regret for adversarial MDPs with large state spaces under bandit feedback and un-

known transitions.1 For linear MDPs, a series of recent work has made significant progress in improving the

regret bound: Luo et al. [2021], Dai et al. [2023], Sherman et al. [2023b] proposed efficient (polynomial-time)

algorithms with K14/15, K8/9, and K6/7 regret, respectively, and Kong et al. [2023] proposed an inefficient algo-

rithm with K4/5 +poly(1/λmin) regret. Our
√
K regret through an inefficient algorithm and K3/4 regret through

an efficient algorithm further push the frontiers.

Policy Optimization with Exploration. Policy optimization has been regarded as sample inefficient due

to its local search nature. Recently, efforts to alleviate this issue have incorporated exploration bonus in pol-

icy updates [Agarwal et al., 2020, Shani et al., 2020, Zanette et al., 2021, Luo et al., 2021, Dai et al., 2023,

Sherman et al., 2023b, Zhong and Zhang, 2023, Liu et al., 2023b, Sherman et al., 2023a]. In the case of linear

MDPs with a fixed loss function, the state-of-the-art result is by Sherman et al. [2023a], who provide a com-

putationally efficient policy optimization algorithm with a tight
√
K regret. In the case of linear MDPs with

adversarial losses, the best existing regret bound is K6/7 by Sherman et al. [2023b], while we improve it to

1Although Zhao et al. [2022] provided a
√

K regret bound for linear mixture MDPs with bandit feedback and unknown transition,

the polynomial dependence on the number of states prohibits its application to MDPs with large state spaces.
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K3/4 in this paper. Beyond theoretical advancement, exploration in policy optimization has also showcased its

potential in addressing real-world challenges, as evidenced by empirical studies [Burda et al., 2018, Pan et al.,

2019].

2 Preliminaries

No-Regret Learning in MDPs. An (episodic) MDP is specified by a tupleM = (S,A, P ) where S is the state

space (possibly infinite), A is the action space (assumed to be finite with size A = |A|), P : S ×A → ∆(S) is

the transition kernal. The state space is assumed to be layered, i.e., S = S1∪S2∪· · ·∪SH where Sh∩Sh′ = ∅

for any 1 ≤ h < h′ ≤ H , and transition is only possible from one layer to the next, that is, P (s′ | s, a) 6= 0
only when s ∈ Sh and s′ ∈ Sh+1. Without loss of generality, we assume S1 = {s1}.
We consider a process where the learner interact with the MDP for K episodes, each time with a different

loss function. Before the game starts, an adversary arbitrarily chooses the loss functions for all episodes (ℓk :
S × A → [0, 1])Kk=1, and does not reveal them to the learner. For each episode k ∈ [K], the learner starts at

state sk,1 = s1; for each step h ∈ [H] within episode k, after observing the state sk,h ∈ Sh, the learner chooses

an action a ∈ A, suffers and observes the loss ℓk(sk,h, ak,h), and transits to a new state sk,h+1 sampled from

the transition P (· | sk,h, ak,h).
A policy π is a mapping from S to ∆(A). The state-value function (or V-function in short) V π(s; ℓ) is the

cumulative loss starting from state s, following policy π and under loss function ℓ. This is formally defined as

the following for s ∈ Sh:

V π(s; ℓ) , E

[
H∑

h′=h

ℓ(sh′ , ah′)

∣∣∣∣∣ sh = s, ah′ ∼ π(· | sh′), sh′+1 ∼ P (· | sh′ , ah′), ∀h′ ≥ h
]
.

The action-value function (a.k.a. Q-function), on the other hand, is the expected loss suffered by a policy π
starting from a given state-action pair (s, a). Formally, we define for all (s, a) ∈ S ×A:

Qπ(s, a; ℓ) = ℓ(s, a) + I[s /∈ SH ] · Es′∼P (·|s,a)
[
V π(s′; ℓ)

]
. (1)

Let πk be the policy used by the learner in episode k. The learner aims to minimize the regret with respect to

the best fixed policy, defined as

Definition 1 (Regret). RK , E

[∑K
k=1 V

πk(s1; ℓk)
]
−minπ

∑K
k=1 V

π(s1; ℓk).

Occupancy measures. For a policy π and a state s, we define µπ(s) to be the probability of visiting state s
within an episode when following π, which can be written as µπ(s) = V π(s1; δs) with δs(s

′, a′) = I{s′ = s}.
Further define µπ(s, a) = µπ(s)π(a|s). By definition, we have V π(s1; ℓ) =

∑
s∈S

∑
a∈A µ

π(s, a)ℓ(s, a).2

2.1 Linear MDP

Linear MDP is formally defined as follows.

2For readability, throughout the paper, we use summation over states instead of integration. Technically, all our results hold for case

of continuous and infinite state space.
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Definition 2 (Linear MDP). In a linear MDP, each state-action pair (s, a) is associated with a known feature

φ(s, a) ∈ R
d with ‖φ(s, a)‖2 ≤ 1. There exists a mapping ψ : S → R

d such that the transition can be expressed

as

P (s′ | s, a) = 〈φ(s, a), ψ(s′)〉, ∀(s, a, s′) ∈
H−1⋃

h=1

Sh ×A× Sh+1. (2)

Here, ψ is unrevealed to the learner. Moreover, for any episode k ∈ [K] and any layer h ∈ [H], there exists a

(hidden) vector θk,h ∈ R
d such that

ℓk(s, a) = 〈φ(s, a), θk,h〉, ∀(s, a) ∈ Sh ×A. (3)

Following previous work, we assume ‖∑s∈Sh
|ψ(s)|‖2 ≤

√
d (the absolute value | · | over a vector is element-

wise) and ‖θk,h‖2 ≤
√
d for all k, h, π.

We also define misspecifeid linear MDPs, which is used in Section 3.

Definition 3 (Misspecified Linear MDP). A ζ-misspecified linear MDP follows all the assumptions in Definition 2

except that Eq. (2) and Eq. (3) are respectively modified to

‖P (· | s, a)− 〈φ(s, a), ψ(·)〉‖1 ≤ ζ and |ℓk(s, a)− 〈φ(s, a), θk,h〉| ≤ ζ. (4)

3 Rate-Optimal Algorithm

The aim of this section is to show that there is no statistical barrier to obtaining
√
K regret for linear MDPs with

bandit feedback and adversarial losses. The proposed algorithm is computationally inefficient and it remains an

open question if the same can be achieved with an efficient algorithm.

3.1 Solution Ideas

Observe that the expected loss of policy π in episode k can be written as
∑

s∈S
∑

a∈A µ
π(s, a)ℓk(s, a) =∑H

h=1

∑
s∈Sh

∑
a∈A µ

π(s, a)φ(s, a)⊤θk,h. This can be further written as 〈φπ, θk〉, where

φπ = (φπ1 , . . . , φ
π
H), θk = (θk,1, . . . , θk,H), with φπh =

∑

s∈Sh

∑

a∈A
µπ(s, a)φ(s, a).

In other words, the adversarial linear MDP problem can be viewed as an adversarial linear bandit problem

with (φπ)π∈Π as the underlying action set. Therefore, if computation is not an issue (i.e., if we are allowed to

run linear bandits over an exponentially large action set), the only additional challenge in linear MDPs is that

(φπ)π∈Π is not known in advance and the learner must learn the transition to estimate them. This viewpoint has

been taken by Kong et al. [2023] to design computationally inefficient algorithms with improved regret bounds.

To estimate (φπ)π∈Π, Kong et al. [2023] use an initial pure exploration phase to estimate φπ up to an accuracy

of ǫ for all π, and then run a ǫ-misspecified linear bandit algorithm over policies in the second phase. Their

approach gives K4/5 + poly(1/λmin) regret.

A natural idea to improve the regret bound is to estimate (φπ)π∈Π on the fly instead of in a separate initial phase.

That is, we directly start a linear bandit algorithm. Then during the learning process, for policies that are more

often used by the learner, their φπ estimation will become more and more accurate, and for others, larger error

4



is allowed. Intuitively, this better balances exploitation and exploration because the learner will not spend too

much efforts in estimating φπ for bad policies. However, there are technical difficulties in doing so. Recall that

φπh =
∑

s∈Sh

∑
a∈A µ

π(s)π(a|s)φ(s, a). To estimate this, the learner needs to first estimate µπ. A natural es-

timator µ̂π would be defined recursively as µ̂π(s′) =
∑

s∈Sh

∑
a∈A µ̂

π(s)π(a|s)P̂ (s′|s, a) for s′ ∈ Sh+1, with

the transition estimator P̂ obtained from linear regression: P̂ (s′|s, a) = φ(s, a)⊤
(
Λ−1
h

∑
(s̃,ã,s̃′)∈Dh

φ(s̃, ã)I{s̃′ = s′}
)

whereDh consists of historical data of the form (s, a, s′) ∈ Sh×A×Sh+1 and Λh = I+
∑

(s,a,s′)∈Dh
φ(s, a)φ(s, a)⊤.

This is the exact idea of Kong et al. [2023]. Notice that the µ̂π obtained in this way may not be valid, i.e., they

may not satisfy µ̂π(·) ∈ ∆(S). Their approach suffers from the issue that it is difficult to control the magnitude

of µ̂π(s) when the amount of data in Dh is still small. This is why they use an initial phase to explore all

directions in the feature space and control the error ‖φ̂πh − φπh‖ uniformly for all policies.

However, “on-the-fly estimation” without the initial phase has been proven to work in the tabular case [Jin et al.,

2020a] to get a
√
K regret. The key difference between the tabular case and the linear case is that the transition

estimator P̂ in the tabular case is always a valid transition (i.e., P̂ (·|s, a) ∈ ∆(S)), and thus the induced

occupancy measure estimator µ̂π is also always valid. This avoids the aforementioned technical difficulty.

With this observation, we propose to incorporate the constraint that µ̂π be a valid occupancy measure when

dealing with linear MDPs. To find such a µ̂π, we search over the space of valid occupancy measures and pick

one that is consistent with the past data. This is different from the approach of Kong et al. [2023], where P̂ is

obtained via linear regression over the past data first, and then µ̂π is derived from it, which can fail to be valid.

Since the state space and policy space can both be infinite, in order to get a runnable algorithm for finding

µ̂π(s), we discretize both the state space and the policy space. These are described in the next subsection.

3.2 The Discretization Procedures

Discretization of the state space. For linear MDPs, we can assume that a state s is uniquely defined by its

action feature setAs = {φ(s, a) | a ∈ A}. If there are distinct states with identical feature sets, we can collapse

them into a single state by combining their ψ(s).

In order to approximate an infinite-state linear MDP as a finite-state MDP, we perform discretization for the

entire feature space B
d(1). To decide the discretization resolution, assume that φ(s, a) is the true feature

and φ′(s, a) is its approximation, and ‖φ(s, a) − φ′(s, a)‖2 ≤ ǫ for all s, a. Then we have ‖P (·|s, a) −
〈φ′(s, a), ψ(·)〉‖1 = ‖〈φ(s, a) − φ′(s, a), ψ(·)〉‖1 ≤

∑
s′ ‖φ(s, a) − φ′(s, a)‖2‖ψ(s′)‖2 ≤ ǫ

∑
s′ ‖ψ(s′)‖2 ≤

ǫ
∑d

i=1

∑
s′ |ψi(s′)| ≤ ǫ

√
d‖∑s′ |ψ(s′)|‖2 ≤ ǫd and |ℓk(s, a)−〈φ′(s, a), θk,h〉| = |〈φ′(s, a)−φ(s, a), θk,h〉| ≤

‖φ′(s, a) − φ(s, a)‖2‖θk,h‖2 ≤ ǫ
√
d by Definition 2. Thus, the MDP with φ′(s, a) as the underlying feature

is a misspecified linear MDP with misspecification error ζ = ǫd by Definition 3. It turns out that it suffices to

set ǫ = 1
K and make the misspecification error ζ = d

K . The number of states after the discretization is upper

bounded by (size of ǫ-net of the feature space)A = (1/ǫ)O(dHA) = KO(dHA).

There is a caveat when working with this discretized state space. Since the true feature space Φ = {φ(s, a) : s ∈
S, a ∈ A} may not cover the entire B

d(1), the state space construction above (i.e., by discretizing the whole

B
d(1)) may produce states that do not really exist. In fact, there is no problem viewing these non-existing states

as part of the state space because their ψ(s) can be set to zero, making them unreachable under the linear MDP

assumption. The only thing we have to be careful about is that the assumptions Eq. (2), Eq. (3), Eq. (4), and

their implications, such as−ζ ≤ 〈φ,ψ(s′)〉 ≤ 1+ζ and |〈φ, θk,h〉| ≤ 1+ζ , are only guaranteed for φ in the true

feature space Φ, but not for the whole feature space B
d(1). To avoid ambiguity, we use notation S to denote

the set of discretized states from the true MDP, and use X to denote the set of discretized states constructed

from the entire B
d(1). Apparently, S ⊆ X . We clarify that, 1) the learner knows X , but does not know S
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before interacting with the environment, 2) the misspecified linear MDP assumption Eq. (4) is only guaranteed

for φ(s, a) with s ∈ S , 3) X \ S are unreachable states and their ψ(s) are set to zero. We use (Xh)h∈[H] to

denote partitions of X on different layers.

Discretization of the policy space. We consider a discretization of the policy space for Algorithm 2. The

policy class is the set of linear policies defined as

Π =

{
πθ : θ ∈ ΘH , πθ(s) = argmin

a∈A
φ(s, a)⊤θh for s ∈ Xh

}
(5)

where Θ is an 1-net of Bd(K). The next lemma shows that this policy set contains a near optimal one. See

Appendix A.1 for the proof.

Lemma 4. For any policy π : X → ∆(A) and any sequence of losses (θk,h)h∈[H],k∈[K], there exists a policy

π′ ∈ Π such that
∑K

k=1

∑H
h=1

∑
s∈Sh

∑
a∈A(µ

π′

(s, a)− µπ(s, a))φ(s, a)⊤θk,h ≤
√
dH2 .

3.3 Estimating µ
π(s)

With the state space discretized, we are now faced with a finite state problem. To estimate µπ, a potential way

is to find a transition estimation (P̂ (s′|s, a))s,a,s′ which is consistent with the historical data and satisfies the

constraint that the µ̂π induced by P̂ is a valid occupancy measure. The issue of this is that since P (s′|s, a) ≈
φ(s, a)⊤ψ(s′), this method requires us to estimate ψ(s′) for all s′, whose complexity will scale with |S| because

ψ(s′) for different s′ are unrelated. Indeed, as noted by previous works [Foster et al., 2023], the linear MDP

model does not allow efficient model-based estimation.

Inspired by previous model-free approaches for linear MDPs [Jin et al., 2020b], instead of estimating ψ(s′),
we will directly estimate

∑
s′ ψ(s

′)f(s′) for a class of functions f that is rich enough for our purpose (i.e., to

estimate (φπ)π∈Π well). This class of functions turns out can be chosen as
⋃
π∈ΠFπ where Fπ = Fπ1 ∪ Fπ2

and

Fπ1 =

{
f : X → [−1, 1]

∣∣∣∣ f(s) =
∑

a∈A
π(a|s) clip

[
φ(s, a)⊤θ

]
for some θ ∈ B

d(
√
d)

}
,

Fπ2 =

{
f : X → [−1, 1]

∣∣∣∣ f(s) =
∑

a∈A
π(a|s)‖φ(s, a)‖Γ for some Γ with 0 � Γ � I

}
, (6)

where we define clip[a] = max(min(a, 1),−1). Given historical data (Dh)Hh=1 which consists of (s, a, s′)
tuples, our way of obtaining µ̂π is summarized in Algorithm 1. In Algorithm 1, Eq. (7) sets the constraint that

µ̂π is a valid occupancy measure, Eq. (9) requires that ξ̂h,f approximates ξ⋆h,f =
∑

s′∈Sh+1
ψ(s′)f(s′) well on

the historical data (Dh)Hh=1, and Eq. (8) relates µ̂π with ξ̂h,f according to their definitions. In the following

Lemma 5, we show that Eq. (7)-Eq. (9) is feasible with high probability. Then in Lemma 6, we show the key

property that µ̂π is close to µπ when evaluated on any f ∈ Fπ . The proofs of Lemma 5 and Lemma 6 can be

found in Appendix A.2. Below, we define µ̂π(s, a) := µ̂π(s)π(a|s).

Lemma 5. With probability at least 1− δ
K , Eq. (7)-Eq. (9) is feasible for all π ∈ Π.
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Algorithm 1 EstOM(π, (Dh)Hh=1) (Estimate Occupancy Measure)

Input: target policy π, historical data (Dh)Hh=1 where Dh consists of tuples (s, a, s′) ∈ Sh × A × Sh+1 with

s′ ∼ P (·|s, a).
Find (µ̂π(s))s∈X ⊂ [0, 1] and (ξ̂h,f )h∈[H],f∈Fπ ⊂ B

d(
√
d) that satisfy the following for all h ∈ [H] and all

f ∈ Fπ (recall the definition of Fπ in Eq. (6), and ζ in Section 3.2).

∑

s∈Xh

µ̂π(s) = 1, (7)

∣∣∣∣∣
∑

s′∈Xh+1

µ̂π(s′)f(s′)−
∑

s∈Xh

∑

a∈A
µ̂π(s)π(a|s) clip

[
φ(s, a)⊤ξ̂h,f

] ∣∣∣∣∣ ≤ ζ (8)

∑

(s,a,s′)∈Dh

(
f(s′)− φ(s, a)⊤ξ̂h,f

)2 − min
ξ∈Bd(

√
d)

∑

(s,a,s′)∈Dh

(
f(s′)− φ(s, a)⊤ξ

)2
≤ 16d

5

2 log
18d

3

2K

δ
(9)

Output: (µ̂π(s))s∈X (if Eq. (7)-Eq. (9) is not feasible, output any solution that satisfies Eq. (7)).

Lemma 6. Let (µ̂π(s))s∈X be the output of Algorithm 1. Then with probability at least 1− δ
K , for any π ∈ Π

and all f ∈ Fπ ,

∣∣∣
∑

s∈Xh
(µ̂π(s)− µπ(s))f(s)

∣∣∣ is upper bounded by

10d
5

4

√

log
18d

3

2K

δ
×
∑

h′<h

min




∑

s∈Xh′

∑

a∈A
µπ(s, a)‖φ(s, a)‖Λ−1

h′
,
∑

s∈Xh′

∑

a∈A
µ̂π(s, a)‖φ(s, a)‖Λ−1

h′



+ 2ζH

where Λh := I +
∑

(s,a,s′)∈Dh
φ(s, a)φ(s, a)⊤.

3.4 Algorithm: Exponential Weights

From Section 3.3, we know how to obtain the estimation for (µπ)π∈Π. Now we can use them to construct

estimators of (φπ)π∈Π via φ̂πh =
∑

s∈Xh

∑
a∈A µ̂

π(s)π(a|s)φ(s, a), and run a linear bandit algorithm viewing

(φ̂π)π∈Π as actions. The algorithm is presented in Algorithm 2. At the beginning of each episode k, we call

EstOM (Algorithm 1) for all policies with the data up to episode k − 1 (Line 5). This returns the occupancy

measure estimator µ̂πk for all π, which we can use to construct the feature estimator φ̂πk . Then we use the standard

exponential weight together with John’s exploration to update the distribution over policies. To deal with the

bias induced by the estimation error of φ̂πk , we incorporate a bonus term bπk in the update. Similar ideas have

also been used in, e.g., Luo et al. [2021], Sherman et al. [2023b], Dai et al. [2023], Kong et al. [2023], Liu et al.

[2023a]. We defer the regret analysis of this algorithm to Appendix A.3, and only state the final guarantee in

the next theorem.

Theorem 7. The regret of Algorithm 2 is bounded by RK ≤ Õ(
√
d7H7K).
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Algorithm 2 Exponential Weights

1: Let Π be the policy set defined in Eq. (5). Let γ = min
{
d2H

1

2K− 1

2 , 12
}

, η = γ
2dH .

2: For all h ∈ [H], D1,h ← ∅, Λ1,h ← I .

3: for k = 1, 2, . . . do

4: For all π ∈ Π, let µ̂πk = EstOM(π, (Dk,h)Hh=1) (call Algorithm 1).

5: Define φ̂πk,h =
∑

s∈Xh

∑
a∈A µ̂

π(s)π(a|s)φ(s, a) and φ̂πk = (φ̂πk,1, . . . , φ̂
π
k,H).

6: Compute qk ∈ ∆(Π) as qk(π) ∝ exp
(
−η∑k−1

i=1

(
φ̂π

⊤

i θ̂i − bπi
))

.

7: Let q′k = (1− γ)qk + γJk where Jk ∈ ∆(Π) is John’s exploration over {φ̂πk}π∈Π.

8: Sample πk ∼ q′k, execute πk, and obtain trajectory (sk,1, ak,1, ℓk,1, . . . , sk,H , ak,H , ℓk,H).

9: Define for Cbonus = 10d
5

4H

√
log 18d

3
2K
δ ,

Mk =
∑

π∈Π
q′k(π)φ̂

π
k (φ̂

π
k )

⊤, θ̂k =M−1
k φ̂πkk Lk, where Lk =

H∑

h=1

ℓk,h,

bπk = Cbonus

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂πk(s, a)‖φ(s, a)‖Λ−1

k,h
+ η‖φ̂πk‖2M−1

k

.

10: For all h ∈ [H],

Dk+1,h ← Dk,h ∪ {(sk,h, ak,h, sk,h+1)}, Λk+1,h ← Λk,h + φ(sk,h, ak,h)φ(sk,h, ak,h)
⊤

11: end for

4 Computationally Efficient Policy Optimization Algorithm

In Algorithm 2, we convert the linear MDP problem to a linear bandit problem. It is generally hard to ensure

computational efficiency in this paradigm due to the non-linear mapping of policy to occupancy measure and

the exponential size of the policy space. A promising alternative is to use the policy optimization framework

[Luo et al., 2021, Dai et al., 2023, Sherman et al., 2023b], which allows to run a Follow-the-Regularized-Leader

(FTRL) algorithm over the locally available state-action feature set. An algorithm of this type needs to over-

come several hurdles: 1) The algorithm needs to construct loss estimates with carefully controlled bias, which

is difficult because the learner does not know the feature covariance matrix under the current policy (required

in the constructing a standard unbiased loss estimator), and has to estimate it. 2) The algorithm needs to in-

ject bonus to ensure sufficient exploration. These bonus terms not only need to compensate the uncertainty in

transitions, but also the bias induced in loss estimates mentioned in the previous item. The bonus itself needs

to be estimated and induces more bias due to the estimation error. 3) Since policy optimization behaves like

a layered bandit over bandit algorithm, the algorithm needs to construct bonus terms accumulated over layers.

Specifically, the bonus in earlier layers need to additionally compensate the bias of the bonus terms in later lay-

ers, as mentioned in the previous item. 4) The algorithm needs to ensure that the magnitudes of loss estimates

and bonuses are small enough for the FTRL-based algorithm.

These challenges are fully exposed in the adversarial loss, bandit feedback, unknown transition setting, because

in this case the loss estimators usually have larger magnitudes and necessitate larger bonuses. This make

achieving near-optimal bounds difficult, and the current best regret is Õ(K6/7) by Sherman et al. [2023b]. We

successfully improve it to Õ(K3/4) by several improved design choices, which we describe in the following.
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Algorithm 3 Logdet FTRL with initial exploration

1: Parameters: η = 1
3328

√
dH2

K− 1

4 , γ = 5d log
(
6dHK4

)
K− 1

2 , β =
√
dK− 1

4 , α = HK
3

4 , τ = K
1

2 ,

δ = K−3, ρ = H− 1

2d−
1

4K− 1

4 , ǫcov = K− 1

4 .

2: Define: Ĉov(s, p) = Ea∼p

[
φ(s, a)φ(s, a)⊤ φ(s, a)

φ(s, a)⊤ 1

]

3: Run Algorithm 5 with parameters δ, ρ, ǫcov, which ends within K0 = Õ(d 3

2H2K
3

4 + d4H4K
1

4 ) episodes

with high probability. Receive outputs (D0,h)
H
h=1 and (Zh)Hh=1.

4: for j = 1, . . . , ⌈(K −K0)/(2τ)⌉ do

5: For s ∈ Sh, define

H̃̃H̃Hj(s) = argmin
HHH∈Hs

{〈
HHH,

j−1∑

i=1

LLLi,h
〉

+
F (HHH)

η

}
, whereLLLi,h =

1

2τ

∑

k∈Ti

(
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h

)

where Hs =
{
Ĉov(s, p) : p ∈ ∆(A)

}
and F (HHH) = − log det (HHH).

6: Let π̃j(·|s) be such that H̃̃H̃Hj(s) = Ĉov(s, π̃j(·|s)).
7: Let Tj = {(j − 1)τ +K0 + 1, · · · , (j + 1)τ +K0}. Execute πk = π̃j for the 2τ episodes k ∈ Tj , and

collect (sk,h, ak,h, ℓk,h)h∈[H],k∈Tj .

8: Let Tj,1 and Tj,2 be the first τ and the last τ episodes in Tj , respectively. For all k ∈ Tj and h ∈ [H],
define

Ck,h =

{
{(sk′,h, ak′,h, sk′,h+1)}k′∈Tj,2 if k ∈ Tj,1
{(sk′,h, ak′,h, sk′,h+1)}k′∈Tj,1 if k ∈ Tj,2

(10)

Σ̂k,h = γI + 1
τ

∑
(s,a,s′)∈Ck,h φ(s, a)φ(s, a)

⊤ (11)

q̂k,h = Σ̂−1
k,hφ(sk,h, ak,h)

∑H
t=h ℓk,t (12)

Γ̂̂Γ̂Γk,h =

[
0 1

2 q̂k,h
1
2 (q̂k,h)

⊤ 0

]
(13)

Dk,h = Dk−1,h ∪ {(sk,h, ak,h, sk,h+1)} (14)

(B̂̂B̂Bk,h)
H
h=1 = OBME

(
(Dk,h)Hh=1, (Σ̂k,h)

H
h=1, (Zh)Hh=1

)
(15)

(OBME is presented in Algorithm 4)

9: end for

Our algorithm (Algorithm 3) starts with an initial pure exploration phase that lasts for K0 = Õ(K 3

4 ) episodes

(Line 3), which is crucial in controlling the magnitude of the bonus estimate (will be explained later). In the

remaining K −K0 episodes, episodes are divided into ⌈(K −K0)/(2τ)⌉ epochs (indexed by j), such that in

each epoch j, a fixed policy π̃j is executed for 2τ episodes, and policies are updated only at the end of each

epoch. The goal of dividing episodes into epochs is to let the learner collect sufficient samples and create ac-

curate enough loss estimators for each update. Different from previous work [Luo et al., 2021, Dai et al., 2023,

Sherman et al., 2023b] that use exponential weights, we use the Follow-the-Regularized-Leader (FTRL) frame-

work with logdet-barrier as the regularizer for policy updates. Logdet has been recently shown in adversarial

linear (contextual) bandit to lead to a more stable update and can handle larger magnitude of the loss estimator

bias [Zimmert and Lattimore, 2022, Liu et al., 2023a]. It has similar benefits in our case as well.
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Algorithm 4 OBME
(
(Dk,h)Hh=1, (Σ̂k,h)

H
h=1, (Zh)Hh=1

)
(Optimistic Bonus Matrix Estimation)

1: Parameters β, α, γ, ρ are the same as those in Algorithm 3.

2: for h = H, . . . , 1 do

3: Bmax
h = 4H

(
1 + 1

H

)2(H−h+1)
(
β
γ + αρ2

)

4: Λk,h = I +
∑

(s,a,s′)∈Dk,h
φ(s, a)φ(s, a)⊤

5: Set ŵk,h =
(
1 + 1

H

)
Λ−1
k,h

∑
(s,a,s′)∈Dk,h

φ(s, a)Ŵk(s
′)I{s′ ∈ Zh+1} (if h = H , set ŵk,h = 0)

6: Define B̂̂B̂Bk,h =

[
βΣ̂−1

k,h + αΛ−1
k,h

1
2ŵk,h

1
2ŵ

⊤
k,h 0

]

7: For s ∈ Sh, define B̂k(s, a) = β‖φ(s, a)‖2
Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

+ φ(s, a)⊤ŵk,h

8: For s ∈ Sh, define Ŵk(s) = 〈πk(·|s), B̂+
k (s, ·)〉 where B̂+

k (s, a) = max
{
B̂k(s, a), 0

}

9: end for

10: return (B̂̂B̂Bk,h)h∈[H]

Specifically, with logdet-FTRL, the optimization of the policy on state s is over the space of lifted covariance

matrixHs =
{
Ĉov(s, p) : p ∈ ∆(A)

}
⊂ R

(d+1)×(d+1), where Ĉov(s, p) = Ea∼p

[
φ(s, a)φ(s, a)⊤ φ(s, a)

φ(s, a)⊤ 1

]
.

In epoch j, for state s, the FTRL outputs a matrix H̃̃H̃Hj(s) ∈ Hs (Line 5), and the policy π̃j(·|s) is chosen such

that H̃̃H̃Hj(s) = Ĉov(s, π̃j(·|s)) (Line 6). This policy is then executed for 2τ episodes (Line 7). Then the learner

uses the collected samples to construct loss estimators for all episodes k ∈ Tj (the q̂k,h in Eq. (12)), where

Tj is the set of episodes in epoch j. This follows the standard loss estimator construction for linear bandits,

except that in our case, the covariance matrix is unknown and also needs to be estimated using samples (the

Σ̂k,h in Eq. (11)). The validity of q̂k,h relies on the independence between Σ̂k,h and the loss obtained in episode

k. To achieve this, we divide the set Tj into two equal parts Tj,1 and Tj,2 (Line 8). Then we use samples

from Tj,2 to estimate the covariance matrix when constructing the loss estimator in episode k ∈ Tj,1, and vice

versa (Eq. (10)-Eq. (12)). In Eq. (13), we further lift the loss estimator q̂k,h to Γ̂̂Γ̂Γk,h ∈ R
(d+1)×(d+1) to be fed

to FTRL. Finally, besides feeding the loss Γ̂̂Γ̂Γk,h, we also need to feed the bonus B̂̂B̂Bk,h required for sufficient

exploration in policy optimization and to compensate the loss estimator bias coming from the estimation error

of Σ̂k,h. This is explained in the next subsection.

4.1 The Exploration Bonus

Similar to previous work on policy optimization in adversarial linear MDPs [Luo et al., 2021, Dai et al., 2023,

Sherman et al., 2023b], we use exploration bonus to address the bias in the loss estimator q̂k,h and the stability

term coming from the FTRL regret analysis. From a high level, the exploration bonus serves a similar purpose

as “optimism in the face of uncertainty” as commonly used in the non-adversarial case, but now the sources of

uncertainty additionally include the bias and the stability term. From a mathematical analysis perspective, the

exploration bonus creates an effect of change of measure that prevent the regret to depend on the distribution

mismatch coefficient between the optimal policy and the learner’s policy. This perspective is best explained

in Section 3 of Luo et al. [2021]. According to the analysis of Luo et al. [2021], when performing policy

update on state s ∈ Sh, we should incorporate a bonus that is roughly of order Qπk(s, a; bt) where bt(s, a) =
β‖φ(s, a)‖2

Σ̂−1

k,h

.

Our bonus construction further incorporates the improvement from Sherman et al. [2023b] where an optimistic
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least-square policy evaluation (OLSPE) is used to fit the bonus (rather than sampling the bonus as in Luo et al.

[2021]). This creates another term of α‖φ(s, a)‖2
Λ−1

k,h

to be incorporated into the bonus to compensate the

estimation error of future bonuses. Finally, we further adopt a technique developed in Luo et al. [2021] called

dilated bonus to simplify our analysis. Overall, the bonus we use for the policy update on state s ∈ Sh is

defined recursively as

Bk(s, a) ≈
(
β‖φ(s, a)‖2

Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

)
+

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)
]
.

Notice that because of the dilation factor (1 + 1
H ) [Luo et al., 2021], this deviates from a standard Bellman

equation. Recall that we run FTRL in the space of covariance matrix, so we would like to write Bk(s, a) as a

linear function in that space. Fortunately, this is indeed possible because by the linear MDP structure, we can

write the above as

Bk(s, a) ≈
〈[

φ(s, a)φ(s, a)⊤ φ(s, a)
φ(s, a)⊤ 1

]
,

[
βΣ̂−1

k,h + αΛ−1
k,h

1
2wk,h

1
2wk,h 0

]〉
(16)

where wk,h = (1 + 1
H )
∑

s′∈Sh+1
ψ(s′)Ea′∼πk(·|s′)[Bk(s

′, a′)]. The purpose of Algorithm 4 is exactly to in-

ductively find an estimator ŵk,h of wk,h for all h. Then, we can form a bonus matrix as the second matrix in

Eq. (16) (but replacing wk,h by ŵk,h) and feed it to the FTRL algorithm.

There are two technical complications regarding Algorithm 4. First, in order to control the magnitude of ŵk,h,

we have to control the magnitude of α‖φ(s, a)‖2
Λ−1

k,h

. This can be done by adding a pure exploration phase in

the beginning of the algorithm (Line 3 of Algorithm 3) and form a known state space Z ⊂ S . Known states are

well-explored in the initial phase, and the values of ‖φ(s, a)‖2
Λ−1

k,h

on them are sufficiently small (in our case

are of order 1/
√
K). On the other hand, unknown states are hard to be reached by any policy (in our case, their

probability of being reached is ≤ K− 1

4 ) and thus can be ignored in the learning phase. The initial exploration

phase is inspired by Sherman et al. [2023a], who further built their algorithm on Wagenmaker et al. [2022b]’s

reward-free exploration algorithm. We provide the guarantees for the initial exploration phase in Appendix B.

The other is that in order to ensure only positive bonuses are propagated over layers under estimation error of

ŵk,h, we force the bonus-to-go estimation to be non-negative in Line 8. The additional penalty is related to

‖ŵk,h − wk,h‖ and can be well-controlled.

4.2 Regret Guarantee

We defer the analysis of Algorithm 3 to Appendix C, and only state the final regret bound in the following

theorem.

Theorem 8. Algorithm 3 ensures a regret of order RK = Õ(d 3

2H3K
3

4 ).

The improvement in our regret primarily stems from two sources. Firstly, we utilize an improved matrix con-

centration bound from Liu et al. [2023a]. This ensures that using τ = 1
γ episodes (where γ is the parameter in

Eq. (11)) is enough to gather data and build a reliable loss estimator. In contrast, previous works require τ = 1
γ2

[Dai et al., 2023, Sherman et al., 2023b] or τ = 1
γ3 [Luo et al., 2021], thereby consuming excessive episodes

to accumulate data for a single policy and consequently slowing down policy updates. Secondly, in previous

works [Luo et al., 2021, Dai et al., 2023, Sherman et al., 2023b], the usage of exponential weights requires η to

be small compared to the magnitude of both loss estimators and exploration bonus. This prevents them from

choosing the best η in their algorithms. With the help of logdet barrier, in our algorithm, η only needs to be

small compared to the magnitude of the exploration bonus, which is already small given the initial exploration

phase. This gives us more flexibility in choosing η.
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5 Conclusion

In this work, we obtain the first optimal
√
K regret bound for adversarial linear MDPs under bandit feedback

and unknown transitions without the help of simulators or generative models. We also give a new K3/4 regret

bound with an efficient policy optimization algorithm. We hope that the techniques and observations in the work

could be helpful in developing an algorithm that is both statistically optimal and computationally efficient.
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A Omitted Details in Section 3

A.1 Policy Space Discretization

Proof of Lemma 4. Let θ̄h =
∑K

k=1 θk,h and let ℓ̄(s, a) = 〈φ(s, a), θ̄h〉 for s ∈ Sh be the loss function under

the loss vector θ̄. Under this loss function, the Q-function of a policy π can be written as

Qπ(s, a; ℓ̄) = φ(s, a)⊤ξπh for s ∈ Sh,

where ξπh is recursively defined as

ξπh = θ̄h +
∑

s′∈Sh+1

ψ(s′)
∑

a′∈A
π(a′|s′)〈φ(s′, a′), ξπh+1〉.

Notice that by Definition 2, we have ‖ξπh‖2 ≤ H
√
dK. Let π⋆ be the optimal policy under loss function ℓ̄.

Then by Bellman’s optimality equation, π⋆ can be represented as

π⋆(s) = argmin
a

{
φ(s, a)⊤ξπ

⋆

h

}

and ξπ
⋆

h can be found recursively from layer H to layer 1.
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Now, let ξ′h be the closest element to ξπ
⋆

h in the H
√
d-net of Bd(H

√
dK), and let π′ be the policy induced by

ξ′ = (ξ′1, . . . , ξ
′
H), i.e.,

π′(s) = argmin
a

{
φ(s, a)⊤ξ′h

}
.

Then for any π, we have

K∑

k=1

H∑

h=1

∑

s∈Sh

∑

a∈A
(µπ

′

(s, a)− µπ(s, a))φ(s, a)⊤θk,h

=

K∑

k=1

H∑

h=1

∑

s∈Sh

∑

a∈A
(µπ

⋆

(s, a)− µπ(s, a))φ(s, a)⊤θk,h +
K∑

k=1

H∑

h=1

∑

s∈Sh

∑

a∈A
(µπ

′

(s, a)− µπ⋆

(s, a))φ(s, a)⊤θk,h

= V π⋆

(s1; ℓ̄)− V π(s1; ℓ̄) +

H∑

h=1

∑

s∈Sh

µπ
′

(s)
∑

a∈A
(π′(a|s)− π⋆(a|s))φ(s, a)⊤ξ⋆h

(by the performance difference lemma)

≤ 0 +

H∑

h=1

∑

s∈Sh

µπ
′

(s)
∑

a∈A
(π′(a|s)− π⋆(a|s))φ(s, a)⊤ξ′h +H2

√
d

(by the optimality of π⋆ under ℓ̄ and the discretization error)

≤ H2
√
d

where the last inequality is by the fact that π′ takes the argmin with respect to ξ′h. Finally, notice that policy π′

belongs to Π corresponding to the parameter θh = 1
H
√
d
ξ′h.
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A.2 Feature Estimation

Proof of Lemma 5. µπ(s) satisfies Eq. (7) because µπ is a valid occupancy measure. To show Eq. (8), notice

that
∣∣∣∣∣∣
∑

s∈Xh

∑

a∈A
µπ(s)π(a|s) clip

[
φ(s, a)⊤ξ⋆h,f

]
−

∑

s∈Xh+1

µπ(s′)f(s′)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

s∈Sh

∑

a∈A
µπ(s)π(a|s) clip

[
φ(s, a)⊤ξ⋆h,f

]
−

∑

s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
(µπ(s) = 0 for s ∈ X \ S)

=

∣∣∣∣∣∣
∑

s∈Sh

∑

a∈A
µπ(s)π(a|s) clip


φ(s, a)⊤

∑

s′∈Sh+1

ψ(s′)f(s′)


−

∑

s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

s∈Sh

∑

a∈A
µπ(s)π(a|s) clip


 ∑

s′∈Sh+1

P (s′|s, a)f(s′) + z


−

∑

s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
(for some z such that |z| ≤ ζ by Definition 3)

≤

∣∣∣∣∣∣
∑

s∈Sh

∑

a∈A
µπ(s)π(a|s) clip


 ∑

s′∈Sh+1

P (s′|s, a)f(s′)


−

∑

s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
+ ζ

= ζ (17)

Finally, we show Eq. (9). For simplicity, let Dh = {(si, ai, s′i)}ni=1 and let φi = φ(si, ai). We first consider a

fixed policy π and a layer h. Let ǫ = 1
K , and let Nǫ,1 be an ǫ-net of Fπ on layer h so that for any f ∈ Fπ , there

exists an f ′ ∈ Nǫ,1 such that |f ′(s)− f(s)| ≤ ǫ for all s ∈ Xh. Let Nǫ,2 be the ǫ-net of Bd(
√
d). Furthermore,

define |Πh| = (3K)d (whose meaning will be clear later).

Then under this fixed π, for any ξ ∈ Nǫ,2 any f ∈ Nǫ,1, with probability at least 1− δ
|Nǫ,1||Nǫ,2||Πh|K ,

n∑

i=1

(
f(s′i)− φ⊤i ξ⋆h,f

)2
−

n∑

i=1

(
f(s′i)− φ⊤i ξ

)2

= −2
n∑

i=1

(f(s′i)− φ⊤i ξ⋆h,f )
(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)
−

n∑

i=1

(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)2

≤ −2
n∑

i=1

(f(s′i)− Es′∼P (·|si,ai)[f(s
′)])
(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)
−

n∑

i=1

(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)2
+ 2
√
dnζ

≤ 6

√√√√
n∑

i=1

(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)2
log
|Nǫ,1||Nǫ,2||Πh|K

δ
+ 2
√
d log

|Nǫ,1||Nǫ,2||Πh|K
δ

−
n∑

i=1

(
φ⊤i ξ

⋆
h,f − φ⊤i ξ

)2
+ 2
√
dnζ (Freedman’s inequality)

≤ 7
√
d log

|Nǫ,1||Nǫ,2||Πh|K
δ

+ 2
√
dnζ. (AM-GM)

Below, we take a union bound over f ∈ Nǫ,1, ξ ∈ Nǫ,2, and π ∈ |Π|. Notice that although the size of the policy

set is |Π| ≤ (3K)dH (a product of H 1
K -net for Bd(1)), when considering the policies over layer h, the total
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number of different policies is only |Πh| ≤ (3K)d. Therefore, a union bound over policies require only a size

of |Πh|. Bounding the distance between the full sets and ǫ-nets, we conclude that with probability at least δ
K ,

for all ξ ∈ B
d(
√
d), all π ∈ Π, and all f ∈ Fπ ,

n∑

i=1

(
f(s′i)− φ⊤i ξ⋆h,f

)2
−

n∑

i=1

(
f(s′i)− φ⊤i ξ

)2
≤ 7
√
d log

|Nǫ,1||Nǫ,2||Πh|K
δ

+ 2
√
dnζ +

√
dnǫ. (18)

By our choice of ζ and ǫ, the second and third terms above are both negligible compared to the first term. Finally,

we bound |Nǫ,1| and |Nǫ,2| via Lattimore and Szepesvári [2020] (Exercise 27.6). |Nǫ,2| is the size of the ǫ-net

of Bd(
√
d), equivalently the (ǫ/

√
d)-net of Bd(1), which is upper bounded by (3

√
d/ǫ)d. By the definition of

Fπ, the ǫ-net of Fπ would be the union of the ǫ-nets of {θ : θ ∈ B
d(
√
d)} and {Γ ∈ R

d×d : 0 � Γ � I}.
Thus |Nǫ,1| = (6d

3

2/ǫ)d+d
2

. Using these in Eq. (18) concludes the proof.

7
√
d log

|Nǫ,1||Nǫ,2||Πh|K
δ

+ 2
√
dnζ +

√
dnǫ

≤ 8
√
d log

|Nǫ,1||Nǫ,2||Πh|K
δ

≤ 16d
5

2 log
18d

3

2K

δ
.

Lemma 9. Fix π ∈ Π, h ∈ [H], f ∈ Fπ . Let ξ1 and ξ2 be two solutions for the ξ̂h,f in Eq. (9). Then

‖ξ1 − ξ2‖Λh
≤ Cbonus

H . (Cbonus is defined in Algorithm 2)

Proof. LetDh = {(si, ai, s′i)}ni=1 and denote φi = φ(si, ai). Let ξmin := argminξ∈Bd(
√
d)

∑n
i=1

(
f(s′i)− φ⊤i ξ

)2
,

where φi := φ(si, ai). By the first-order optimality condition,

n∑

i=1

(
f(s′i)− φ⊤i ξmin

)(
φ⊤i ξ1 − φ⊤i ξmin

)
≤ 0. (19)

By the fact that ξ1 satisfies Eq. (9),

16d
5

2 log
18d

3

2K

δ
≥

n∑

i=1

(
f(s′i)− φ⊤i ξ1

)2
−

n∑

i=1

(
f(s′i)− φ⊤i ξmin

)2

= 2
n∑

i=1

(
f(s′i)− φ⊤i ξmin

)
(φ⊤i ξmin − φ⊤i ξ1) +

n∑

i=1

(
φ⊤i (ξ1 − ξmin)

)2

≥
n∑

i=1

(
φ⊤i (ξ1 − ξmin)

)2
(using Eq. (19))

= ‖ξ1 − ξmin‖2Λh
− ‖ξ1 − ξmin‖22 (by the definition of Λh)

≥ ‖ξ1 − ξmin‖2Λh
− 4d,

which gives ‖ξ1 − ξmin‖2Λh
≤ C2

bonus

4H2 (recall Cbonus = 10d
5

4H

√
log 18d

3
2K
δ . Similarly, ‖ξ2 − ξmin‖2Λh

≤ C2
bonus

4H2 .

Combining them proves the lemma.
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Proof of Lemma 6.

∑

s′∈Xh+1

(µ̂π(s′)− µπ(s′))f(s′)

≤
∑

s∈Xh

∑

a∈A
µ̂π(s, a) clip

[
φ(s, a)⊤ξ̂h,f

]
−
∑

s∈Xh

∑

a∈A
µπ(s, a) clip

[
φ(s, a)⊤ξ⋆h,f

]
+ 2ζ

(by Eq. (8) and the same calculation as Eq. (17))

=
∑

s∈Xh

∑

a∈A
µπ(s, a)

(
clip

[
φ(s, a)⊤ξ̂h,f

]
− clip

[
φ(s, a)⊤ξ⋆h,f

])

+
∑

s∈Xh

∑

a∈A
(µ̂π(s, a)− µπ(s, a)) clip

[
φ(s, a)⊤ξ̂h,f

]
+ 2ζ

≤
∑

s∈Xh

∑

a∈A
µπ(s, a)‖φ(s, a)‖Λ−1

h
‖ξ̂h,f − ξ⋆h,f‖Λh

+
∑

s∈Xh

(µ̂π(s)− µπ(s))f̃(s) + 2ζ

≤ Cbonus

H
×
∑

s∈Xh

∑

a∈A
µπ(s, a)‖φ(s, a)‖Λ−1

h
+
∑

s∈Xh

(µ̂π(s)− µπ(s))f̃(s) + 2ζ (by Lemma 9)

where f̃(s) :=
∑

a∈A π(a|s) clip
[
φ(s, a)⊤ξ̂h,f

]
, which again belongs to Fπ. Recursively applying the in-

equality proves the first inequality in the lemma. To obtain the second inequality in the lemma, with slightly

different decomposition in the second step above, we get

∑

s∈Xh

∑

a∈A
µ̂π(s, a)

(
clip

[
φ(s, a)⊤ξ̂h,f

]
− clip

[
φ(s, a)⊤ξ⋆h,f

])

+
∑

s∈Xh

∑

a∈A
(µ̂π(s, a)− µπ(s, a)) clip

[
φ(s, a)⊤ξ⋆h,f

]
+ 2ζ

≤
∑

s∈Xh

∑

a∈A
µ̂π(s, a)‖φ(s, a)‖Λ−1

h
‖ξ̂h,f − ξ⋆h,f‖Λh

+
∑

s∈Xh

(µ̂π(s)− µπ(s))f̃ ′(s) + 2ζ

≤ Cbonus

H
×
∑

s∈Xh

∑

a∈A
µ̂π(s, a)‖φ(s, a)‖Λ−1

h
+
∑

s∈Xh

(µ̂π(s)− µπ(s))f̃ ′(s) + 2ζ

where f̃ ′(s) :=
∑

a∈A π(a|s) clip
[
φ(s, a)⊤ξ⋆h,f

]
. Following the same argument proves the second inequality.
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A.3 Regret Analysis

E [RK ]

= E

[
K∑

k=1

H∑

h=1

∑

π∈Π
q′k(π)(φ

π
h)

⊤θk,h −
K∑

k=1

H∑

h=1

(φπ
⋆

h )⊤θk,h

]

= E

[
K∑

k=1

H∑

h=1

∑

π∈Π
qk(π)(φ

π
h)

⊤θk,h −
K∑

k=1

H∑

h=1

(φπ
⋆

h )⊤θk,h +
K∑

k=1

H∑

h=1

(q′k(π)− qk(π))(φπh)⊤θk,h
︸ ︷︷ ︸

≤ηHK

]

≤ E

[
K∑

k=1

∑

π∈Π
qk(π)(φ̂

π
k )

⊤θ̂k −
K∑

k=1

(φ̂π
⋆

k )⊤θ̂k +
K∑

k=1

H∑

h=1

∑

π∈Π
qk(π)

(
(φπh − φπ

⋆

h )⊤θk,h − (φ̂πk,h − φ̂π
⋆

k,h)
⊤θ̂k,h

)

︸ ︷︷ ︸
bias

]
+ ηHK

= E

[
K∑

k=1

∑

π∈Π
qk(π)

(
(φ̂πk)

⊤θ̂k − bπk
)
−

K∑

k=1

(
(φ̂π

⋆

k )⊤θ̂k − bπ
⋆

k

)

︸ ︷︷ ︸
ftrl

+

K∑

k=1

∑

π∈Π
qk(π)b

π
k −

K∑

k=1

bπ
⋆

k

︸ ︷︷ ︸
bonus

+bias

]
+ ηHK

We bound the terms individually in Lemma 10, Lemma 11 and Lemma 12. The potentially unbounded bias

term is offset by a negative contribution in the bonus term.

A.3.1 Bounding the Bias

Lemma 10.

bias ≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

k,h
+ η

K∑

k=1

‖φ̂π⋆

k ‖2M−1

k

]

+ Õ
(
d

9

2H3

η
+ ηdHK + d3H3

√
K

)
.

Proof. The bias of any policy π at episode k and stage h can be calculated as the following:

(φπh)
⊤θk,h − (φ̂πk,h)

⊤
E[θ̂k,h] ≤

∣∣∣(φπh − φ̂πk,h)⊤θk,h
∣∣∣

︸ ︷︷ ︸
biasπk,h,1

+
∣∣∣(φ̂πk,h)⊤(θk,h − E[θ̂k,h])

∣∣∣
︸ ︷︷ ︸

biasπk,h,2

.

Set

f(s) =
∑

a∈A
π(a|s)φ(s, a)⊤θk,h =

∑

a∈A
π(a|s) clip

[
φ(s, a)⊤θk,h

]
∈ Fπ1 , (|φ(s, a)⊤θk,h| ≤ 1)

then the first term is by Lemma 6

biasπk,h,1 =

∣∣∣∣∣∣
∑

s∈Xh

(µπ(s)− µ̂πk(s))f(s)

∣∣∣∣∣∣
≤ Cbonus

H
×
∑

h′<h

∑

s∈Xh′

∑

a∈A
µ̂πk(s, a)‖φ(s, a)‖Λ−1

k,h′
+ 2ζH.
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Define Mk,h =
∑

π∈Π q
′
k(π)φ̂

π
k,h(φ̂

π
k,h)

⊤. Then the second term is

biasπk,h,2 ≤ ‖φ̂πk,h‖M−1

k,h

∥∥∥∥∥θk,h −M
−1
k,h

∑

π′

q′k(π
′)φ̂π

′

k,h(φ
π′

h )⊤θk,h

∥∥∥∥∥
Mk,h

= ‖φ̂πk,h‖M−1

k,h

∥∥∥∥∥M
−1
k,h

∑

π′

q′k(π
′)φ̂π

′

k,h(φ̂
π′

k,h − φπ
′

h )⊤θk,h

∥∥∥∥∥
Mk,h

= ‖φ̂πk,h‖M−1

k,h

∥∥∥∥∥
∑

π′

q′k(π
′)φ̂π

′

k,h(φ̂
π′

k,h − φπ
′

h )⊤θk,h

∥∥∥∥∥
M−1

k,h

≤ η‖φ̂πk,h‖2M−1

k,h

+
1

η

∥∥∥∥∥
∑

π′

q′k(π
′)φ̂π

′

k,h(φ̂
π′

k,h − φπ
′

h )⊤θk,h

∥∥∥∥∥

2

M−1

k,h

≤ η‖φ̂πk,h‖2M−1

k,h

+
1

η

(∑

π′

q′k(π
′)
∥∥∥φ̂π′

k,h

∥∥∥
2

M−1

k,h

)(∑

π′

q′k(π
′)((φ̂π

′

k,h − φπ
′

h )⊤θk,h)
2

)

(by Lemma 47)

≤ η‖φ̂πk,h‖2M−1

k,h

+
d

η

∑

π′

q′k(π
′)


Õ(d 5

4 )×
∑

h′<h

∑

s∈Xh′

∑

a∈A
µπ

′

(s, a)‖φ(s, a)‖Λ−1

k,h′
+ 2ζH




2

(by Lemma 6)

≤ η‖φ̂πk,h‖2M−1

k,h

+
Õ(d 7

2 )

η
×
∑

π′

q′k(π
′)


∑

h′<h

∑

s∈Xh′

∑

a∈A
µπ

′

(s, a)




∑

h′<h

∑

s∈Xh′

∑

a∈A
µπ

′

(s, a)‖φ(s, a)‖2
Λ−1

k,h′




(Cauchy-Schwarz)

+O
(
dζ2H2

η

)

≤ η‖φ̂πk,h‖2M−1

k,h

+
Õ(d 7

2H)

η

∑

h′<h

βk,h′ +O
(
dζ2H2

η

)

where βk,h =
∑

π

∑
s∈Sh,a∈A q

′
k(π)µ

π(s, a)‖φ(s, a)‖2
Λ−1

k,h

. We have

E

[
K∑

k=1

H∑

h=1

βk,h

]
= E

[
K∑

k=1

H∑

h=1

E

[
‖φ(sk,h, ak,h)‖2Λ−1

k,h

| Dk−1

]]

= E

[
K∑

k=1

H∑

h=1

‖φ(sk,h, ak,h)‖2Λ−1

k,h

]
≤ O(dH log(K)).

Thus, for any π,

E

[
K∑

k=1

H∑

h=1

biasπk,h,2

]
= E

[
K∑

k=1

H∑

h=1

η‖φ̂πk,h‖2M−1

k,h

+
Õ(d 7

2H)

η
×

K∑

k=1

H∑

h=1

∑

h′<h

βk,h′

]
+O

(
dζ2H3K

η

)

≤ E

[
K∑

k=1

η‖φ̂πk‖2M−1

k

]
+
Õ(d 9

2H3)

η
. (ζ = d

K )
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Overall,

bias ≤ E

[
K∑

k=1

H∑

h=1

(
biasπ

⋆

k,h,1 +
∑

π

qk(π)biasπk,h,1

)
+

K∑

k=1

H∑

h=1

(
biasπ

⋆

k,h,2 +
∑

π

qk(π)biasπk,h,2

)]

≤ E

[
K∑

k=1

H∑

h=1


Cbonus

H
×
∑

h′<h

∑

s∈Xh′

∑

a∈A

(
µ̂π

⋆

k (s, a) +
∑

π

qk(π)µ̂
π
k(s, a)

)
‖φ(s, a)‖Λ−1

k,h′




+
K∑

k=1

(
η‖φ̂π⋆

k ‖2M−1

k

+ η
∑

π

qk(π)‖φ̂πk‖2M−1

k

)]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

(
µ̂π

⋆

k (s, a) + 2
∑

π

q′k(π)µ̂
π
k(s, a)

)
‖φ(s, a)‖Λ−1

k,h

+

K∑

k=1

(
η‖φ̂π⋆

k ‖2M−1

k

+ 2η
∑

π

q′k(π)‖φ̂πk‖2M−1

k

)]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

(
µ̂π

⋆

k (s, a) + 2
∑

π

q′k(π)µ
π(s, a)

)
‖φ(s, a)‖Λ−1

k,h

+ 2Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)(µ̂
π
k (s, a)− µπ(s, a))‖φ(s, a)‖Λ−1

k,h

+ η

K∑

k=1

‖φ̂π⋆

k ‖2M−1

k

+ 2ηdHK

]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

k,h
+ Õ(CbonusH

√
dK) (*)

+ 2Cbonus

K∑

k=1

H∑

h=1

∑

π

q′k(π)


Cbonus

H

∑

h′<h

∑

s∈Xh′

∑

a∈A
µπ(s, a)‖φ(s, a)‖Λ−1

k,h′


 (by Lemma 6)

+ η
K∑

k=1

‖φ̂π⋆

k ‖2M−1

k

+ 2ηdHK

]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

k,h
+ η

K∑

k=1

‖φ̂π⋆

k ‖2M−1

k

+ 2C2
bonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)µ
π(s, a)‖φ(s, a)‖Λ−1

k,h

]

+ Õ
(
d

9

2H3

η
+ ηdHK + CbonusH

√
dK

)

≤ E

[
Cbonus

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

k,h
+ η

K∑

k=1

‖φ̂π⋆

k ‖2M−1

k

]

+ Õ
(
d

9

2H3

η
+ ηdHK + CbonusH

√
dK + C2

bonusH
√
dK

)
(*)
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where in the two (*) places we use

E




K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)µ
π(s, a)‖φ(s, a)‖Λ−1

k,h




≤ E



√√√√

K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)µ
π(s, a)

√√√√
K∑

k=1

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)µ
π(s, a)‖φ(s, a)‖2

Λ−1

k,h




≤

√√√√HKE

[
K∑

k=1

H∑

h=1

βk,h

]

≤ Õ(H
√
dK).

Finally, plugging in the definition of Cbonus = Õ(d
5

4H) gives the desired bound.

A.3.2 Bounding the FTRL regret

Lemma 11.

ftrl ≤ Õ
(
ηd2H4K +

η3H2

γ2
K + γHK

)
.

Proof. The magnitude of the loss is bounded by

|φ̂π⊤

k θ̂k − bπk | ≤
∣∣∣φ̂π⊤

k M−1
k φ̂πkk Lk

∣∣∣+ Cbonus

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂πk(s, a)‖φ(s, a)‖Λ−1

k,h
+ η‖φ̂πk‖2M−1

k

≤
∥∥∥φ̂π

∥∥∥
M−1

k

∥∥∥φ̂πkk
∥∥∥
M−1

k

H + CbonusH +
ηdH

γ

≤ dH

γ
+ CbonusH +

ηdH

γ
≤ 2dH

γ
+ CbonusH.

If η ≤ 1
4dH
γ

+2CbonusH
, then we have η|φ̂π⊤

k θ̂k − bπk | ≤ 1
2 and we can use the standard FTRL regret bound of

exponential weights [Lattimore and Szepesvári, 2020, Equation (27.2, 27.3)]:

ftrl ≤ γKH︸ ︷︷ ︸
John’s exploration

+
ln |Π|
η

+ η
K∑

k=1

E

[
Eπk∼q′k

[∑

π∈Π
qk(π)(2(φ̂

π⊤

k θ̂k)
2 + 2(bπk )

2)

]]
.

Since Mk = Eπ∼q′k [φ̂
π
k φ̂

π⊤

k ], we have M−1
k � 1

1−γ

(
Eπ∼qk [φ̂

π
k φ̂

π⊤

k ]
)−1

, and thus

Eπk∼q′k

[∑

π∈Π
qk(π)(φ̂

π⊤

k M−1
k φ̂πkk Lk)

2

]
≤ H2 1

(1− γ)2 Tr
(
MkM

−1
k MkM

−1
k

)
= O(dH3) .

For the final term, we have

K∑

k=1

η
∑

π

qk(π)(b
π
k )

2 ≤ ηC2
bonusH

2K +
η3d2H2

γ2
K = Õ

(
ηd

5

2H4K +
η3d2H2

γ2
K

)
.
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A.3.3 Bounding the bonus

Lemma 12.

bonus ≤ −E
[

K∑

k=1

η‖φ̂π⋆

k ‖2M−1

k

+ Cbonus

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

h

]

+ Õ
(
d

9

2H3

η
+ ηdHK + d3H3

√
K

)
.

Proof.

bonus ≤ E

[
K∑

k=1

η
∑

π

q′k(π)‖φ̂πk‖2M−1

k

+ Cbonus

H∑

h=1

∑

s∈Xh

∑

a∈A

∑

π

q′k(π)µ̂
π
k(s, a)‖φ(s, a)‖Λ−1

h

− η‖φ̂π⋆

k ‖2M−1

k

− Cbonus

H∑

h=1

∑

s∈Xh

∑

a∈A
µ̂π

⋆

k (s, a)‖φ(s, a)‖Λ−1

h

]

The first and the second term above have been handled in the proof of Lemma 10. Following the analysis there,

we can bound their sum by Õ
(
d
9
2H3

η + ηdHK + d3H3
√
K

)
.

A.3.4 Finishing up

Proof of Theorem 7. Combining the bounds in Lemma 10, Lemma 11, and Lemma 12, we bound the regret as

E [RK ] ≤ Õ
(
ηd

5

2H4K +
η3d2H2

γ2
K + γHK +

d
9

2H3

η
+ d3H3

√
K

)

= Õ
(
ηd

5

2H4K +
d

9

2H3

η
+ d3H3

√
K

)
(γ = Θ(ηdH))

= Õ(d 7

2H
7

2

√
K). (η = Θ(d/

√
HK))
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B Initial Pure Exploration Phase

Algorithm 5 Initial Pure Exploration (Algorithm 2 of Sherman et al. [2023a])

input: δ, ρ, ǫcov
Set m = ⌈log 1

ǫcov
⌉

Set ∀i ∈ [m], ρi = ρ
for h = H, . . . , 1 do{
X̃h,i, D̃h,i, Λ̃h,i

}m
i=1
← COVERTRAJ(h, δH , {ρi}mi=1,m)

Dh ←
⋃
i D̃h,i

Λh ← I +
∑

(s,a,s′)∈Dh
φ(s, a)φ(s, a)⊤

Zh ←
{
s ∈ Sh : ∀a ∈ A, ‖φ(s, a)‖Λ−1

h
≤ ρ
}

end for

return (Dh,Zh)Hh=1

Theorem 13 (Theorem 2 in Sherman et al. [2023a]). The COVERTRAJ algorithm [Wagenmaker et al., 2022b,

Algorithm 4] when instantiated with FORCE [Wagenmaker et al., 2022a, Algorithm 1] enjoys the following

guarantee for linear MDPs. Given a sequence of tolerance parameters ρ1, . . . , ρm > 0 and h ∈ [H], the

algorithm interacts with the environment for T steps, where

T ≤ Tmax , C
m∑

i=1

2imax

{
d

ρ2i
log

2i

ρ2i
, d4H3m3 log7/2

1

δ

}
, C > 0 is a logarithmic term,

and outputs
{
X̃h,i, D̃h,i, Λ̃h,i

}m
i=1

such that
{
X̃h,i

}m+1

i=1
forms a partition for the unit Euclidean ball, Λ̃h,i =

I +
∑

(s,a,s′)∈D̃h,i
φ(s, a)φ(s, a)⊤, and with probability 1− δ, it holds that:

∀i ∈ [m], φ⊤Λ̃−1
h,iφ ≤ ρ2i , ∀φ ∈ X̃h,i;

and ∀i ∈ [m+ 1], sup
π




∑

s∈Sh

∑

a∈A
I

{
φ(s, a) ∈ X̃h,i

}
µπ(s, a)



 ≤ 2−i+1.

Lemma 14 (Lemma 15 in Sherman et al. [2023a]). Assume h ∈ [H], ǫcov > 0, δ > 0,m = ⌈log(1/ǫcov)⌉, ρm ≥
· · · ≥ ρ1 > 0, and let

{
Λ̃h,i

}
i∈[m]

be the covariance matrices returned from COVERTRAJ(h, δH , {ρi}mi=1,m).

Then under the assumption that the event from Theorem 13 holds, we have for any policy π and i ∈ [m]:

∑

s∈Sh

µπ(s)I
{
∃a s.t. ‖φ(s, a)‖

Λ̃−1

h,i
> ρm

}
≤ ǫcov.

Lemma 15. For linear MDPs, with inputs δ ∈ (0, 1), ρ > 0, ǫcov > 0, Algorithm 5 will terminate in T =

Θ̃
(
dH/ρ2+d4H4

ǫcov
polylog

(
1
δ ,

1
ρ ,

1
ǫcov

, d,H
))

episodes, and output H datasets {Dh}Hh=1 where Dh ⊂ Sh×A×
Sh+1 such that with probability ≥ 1− δ,

∀h,∀π,
∑

s∈Sh

µπ(s)I{s /∈ Zh} ≤ ǫcov, where Zh ,

{
s ∈ Sh : ∀a ∈ A, ‖φ(s, a)‖Λ−1

h
≤ ρ
}

with Λh , I +
∑

(s,a,s′)∈Dh
φ(s, a)φ(s, a)⊤.
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Proof of Lemma 15. Let Th denote the number of episodes run by COVERTRAJ, by Theorem 13,

Th ≤ C
m∑

i=1

2imax

{
d

ρ2i
log

2i

ρ2i
, d4H3m3 log7/2

1

δ

}

≤ Õ
(
m2m

(
d

ρ2
log

(
2m

ρ2

)
+ d4H3m3 log7/2

1

δ

))

≤ Õ
(
d/ρ2 + d4H3

ǫcov
polylog

(
1

δ
,

1

ǫcov
,
1

ρ
, d,H

))
.

Given that Algorithm 5 executes COVERTRAJ H times, the claim follows. For the claim on the un-reachability

of Sh \ Zh, fix h ∈ [H], and observe that by Lemma 14, w.p. 1− δ/H , for any π;
∑

s∈Sh

µπ(s)I
{
∃a s.t. ‖φ(s, a)‖Λ−1

h
> ρm

}
≤ ǫcov,

where in the inequality we use that Λ̃h,i � Λh. The proof is complete by a union bound over h.

C Omitted Details in Section 4

We will be using several additional notations in the analysis.

Definition 16 (µπh, µkh, µ⋆h). Define µπh(s) = µπ(s)I{s ∈ Sh}. By the definition of µπ(s), we know that µπh is a

distribution over S that is supported on Sh. Define µkh = µπkh and µ⋆h = µπ
⋆

h .

Definition 17 (T πh , Eπh, E⋆h). We define T πh be the distribution over trajectories {(si, ai)}hi=1 for the first h steps

generated by policy π and transition P . Then we define

E
π
h [·] = E(si,ai)

h−1

i=1
∼Tπ

h−1

Es∼P (·|sh−1,ah−1) [·] ,

where [·] can be a function of (s1, a1, . . . , sh−1, ah−1, s).

In the analysis, we will mainly consider the optimal policy π⋆. For notation simplicity, we write E⋆h [·] = E
π⋆

h [·].
Definition 18 (Good trajectory). For any trajectory t = {(sh, ah, sh+1)}jh=i where 1 ≤ i ≤ j ≤ H , if sh ∈ Zh
for any h, then we say t is a good trajectory.

Definition 19 (Qk). Define Qk(s, a) = Qπk(s, a; ℓk).

C.1 Regret Decomposition and Dilated Bonus Lemma

Lemma 20. For any trajectory t = {(sh, ah, sh+1)}jh=i with 1 ≤ i ≤ j ≤ H generated by any policy, we have

Pr (t is not a good trajectroy) ≤ HK− 1

4

Proof. From Lemma 15, since we choose ǫcov = K− 1

4 , for any h and sh generated by any policy, we have

P (t /∈ Zh) ≤ K− 1

4 . By union bound, we have

Pr (t is not a good trajectory) = Pr


 ⋃

i≤h≤j
sh /∈ Zh


 ≤ HK− 1

4
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In the regret decomposition below, we use the notation E
⋆
h[·] defined in Definition 17 to denote the expectation

over trajectories (s1, a1, . . . , sh−1, ah−1, sh = s) drawn from π⋆, and use Eh to denote the event that ∀h′ ≤
h, sh′ ∈ Zh′ . By Lemma 20, we have E

⋆
h[I{Eh}] ≥ 1 −HK− 1

4 for any h. By performance difference lemma

[Kakade and Langford, 2002], we have

E [RK ]

= E

[
K∑

k=1

H∑

h=1

Es∼µ⋆h [〈Qk(s, ·), πk(·|s)− π
⋆(·|s)〉]

]

= E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·), πk(·|s)− π⋆(·|s)〉]

]

= E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]
+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[
〈Qk(s, ·), πk(·|s)− π⋆(·|s)〉 I{Eh}

]
]

≤ E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]

︸ ︷︷ ︸
reg-term

+H3K
3

4 (20)

where the last step comes from Lemma 20 and Qk(s, a) ≤ H for any k, h, s, a.

To handle reg-term, we utilize the dilated bonus technique proposed in Luo et al. [2021]. We summarize the

technique in Lemma 21, with slight modification to make it align with our settings.

Lemma 21 (Adaptation of Lemma 3.1 in Luo et al. [2021]). Suppose that for some bonus functions bk(s, a),
Bk(s, a) and some constants f, g, we have for all s ∈ Sh,

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
− f, (21)

and suppose that our algorithm guarantees

E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·)−Bk(s, a), πk(·|s) − π⋆(·|s)〉 I{Eh}]

]

≤ g + E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]
+

1

H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
. (22)

Then, we have (recall the reg-term defined in the proof of Eq. (20))

reg-term ≤ g + fHK +

(
1 +

1

H

)
E

[
K∑

k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]
.

Proof. Notice that for any function X of (s1, a1, . . . , sH , aH), it holds that

E
⋆
hEa∼π⋆(·|s)Es′∼P (·|s,a)

[
XI{Eh}I{s′ ∈ Zh+1}

]
= E

⋆
h+1 [XI{Eh+1}] . (23)

By the definition of reg-term, we have

reg-term
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= E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]

≤ g + E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]
+

1

H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Bk(s, ·), πk(·|s)〉 I{Eh}]

]
− E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Bk(s, ·), π⋆(·|s)〉 I{Eh}]

]
(by Eq. (22))

≤ g + fHK + E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]

+

(
1 +

1

H

)
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
− E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]

−
(
1 +

1

H

)
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s)Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{Eh}I{s′ ∈ Zh+1}
]
]

(by Eq. (21))

= g + fHK +

(
1 +

1

H

)
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]

−
(
1 +

1

H

)
E

[
K∑

k=1

H∑

h=1

E
⋆
h+1Ea∼π⋆(·|s) [Bk(s, a)I{Eh+1}]

]
(by Eq. (23))

= g + fHK +

(
1 +

1

H

)
E

[
K∑

k=1

E
⋆
1Ea∼πk(·|s) [Bk(s, a)I{E1}]

]
(telescoping)

= g + fHK +

(
1 +

1

H

)
E

[
K∑

k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]
. (S1 = {s1} and s1 ∈ Z1)

In the following Appendix C.2 and Appendix C.3, we aim to show that our Algorithm 3 and Algorithm 4 could

induce bonus functions bk(s, a), Bk(s, a) that satisfy the condition of Lemma 21. This allows us to directly ap-

ply it and get the desired regret bound in Appendix C.4. Our choices of Bk(s, a) and bk(s, a) are the following:

For s ∈ Sh, a ∈ A,

bk(s, a) = β‖φ(s, a)‖2
Σ̂−1

k,h

+

(
1− 1

4H

)
α‖φ(s, a)‖2

Λ−1

k,h

(24)

Bk(s, a) = bk(s, a) + φ(s, a)⊤wk,h (25)

where

wk,h =

(
1 +

1

H

) ∑

s′∈Sh+1

ψ(s′)Ŵk(s
′)I{s′ ∈ Zh+1} (wk,H , 0) (26)

with the Ŵk(s
′) defined in Algorithm 4.
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C.2 Construction of Dilated Bonus (achieving Eq. (21) using Algorithm 4)

In the linear regression (Line 5) of Algorithm 4, the ŵk,h is an estimation of wk,h defined in Eq. (26), where for

s′ ∈ Sh+1,

Ŵk(s
′) = Ea′∼πk(·|s′)

[[
β‖φ(s′, a′)‖2

Σ̂−1

k,h+1

+ α‖φ(s′, a′)‖2
Λ−1

k,h+1

+ φ(s′, a′)⊤ŵk,h+1

]+]
, (27)

with [x]+ denoting max{x, 0}.
The next Lemma 22 is a key lemma that 1) bounds the error between ŵk,h and wk,h, and 2) bounds the magni-

tude of ŵk,h and wk,h for all h ∈ [H].

Lemma 22. Let Cι = 15
√

log
(
12dK
δ

)
and suppose that Bmax

h ≤ α
C2

ιHd
2 . Then with probability at least 1− δ,

the following inequalities hold for all k ∈ [K], h ∈ [H], and all s ∈ Sh:

‖wk,h‖2 ≤
√
dBmax

h , (28)∣∣∣φ(s, a)⊤ŵk,h − φ(s, a)⊤wk,h
∣∣∣ ≤ CιdBmax

h ‖φ(s, a)‖Λ−1

k,h
, (29)

|φ(s, a)⊤ŵk,h|I{s ∈ Zh} ≤
(
1 +

1

2H

)
Bmax
h . (30)

Proof. We use induction to prove these three inequalities. For the base case h = H , we have wk,H = 0 and

ŵk,H = 0, so all three inequalities holds.

Suppose that all three inequalities holds for the case of h+ 1. Below, we show that that also holds for h.

Showing Eq. (28). Observe that for any s′ ∈ Sh+1,

(
1 +

1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1}

≤ max
a′∈A

(
1 +

1

H

)(
β‖φ(s′, a′)‖2

Σ̂−1

k,h+1

+ α‖φ(s′, a′)‖2
Λ−1

k,h+1

+ |φ(s′, a′)⊤ŵk,h+1|
)
I{s′ ∈ Zh+1}

≤
(
1 +

1

H

)(
β

γ
+ αρ2

)
+

(
1 +

1

H

)(
1 +

1

2H

)
Bmax
h+1

(‖φ(s′, a′)‖Λ−1

k,h+1

≤ ρ for s′ ∈ Zh+1 by Algorithm 5; using induction hypothesis Eq. (30) for h+ 1)

≤
(
1 +

1

H

)
1

2H
Bmax
h+1 +

(
1 +

1

H

)(
1 +

1

2H

)
Bmax
h+1 (by the definition of Bmax

h+1)

≤
(
1 +

1

H

)2

Bmax
h+1

= Bmax
h . (31)

Thus,

‖wk,h‖2 =

∥∥∥∥∥∥

(
1 +

1

H

) ∑

s′∈Sh+1

ψ(s′)Ŵk(s
′)I{s′ ∈ Zh+1}

∥∥∥∥∥∥
2

≤ Bmax
h

∥∥∥∥∥∥
∑

s′∈Sh+1

ψ(s′)

∥∥∥∥∥∥
2

≤
√
dBmax

h

where in the last inequality we use the linear MDP assumption (Definition 2).
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Showing Eq. (29).

∣∣∣φ(s, a)⊤ŵk,h − φ(s, a)⊤wk,h
∣∣∣ ≤ ‖φ(s, a)‖Λ−1

k,h
‖ŵk,h − wk,h‖Λk,h

. (32)

By Lemma 44 and ‖wk,h‖ ≤
√
dBmax

h (which we just proved), it holds that

‖ŵk,h −wk,h‖Λk,h

≤

∥∥∥∥∥∥
∑

(s,a,s′)∈Dk,h

φ(s, a)

((
1 +

1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1} − φ(s, a)⊤wk,h
)∥∥∥∥∥∥

Λ−1

k,h

+
√
dBmax

h . (33)

By Lemma 43, the first term above can be upper bounded by

√
4(Bmax

h )2
(
d

2
logK + log

Nǫ (Vh)
δ

)
+ 8K2ǫ2. (34)

where Vh is the function class where
(
1 + 1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1} lies, and Nǫ(Vh) is its ǫ-covering number.

By the form of Ŵk(s
′) given in Eq. (27), Vh can be chosen as the that defined in Definition 39. Then by

Lemma 42 with ǫ = 1
K and β

γ + 2α ≤ K2, we have

log (Nǫ (Vh)) ≤ 4(d + 1)2 log
(
400(d + 1)2K3

)
≤ 48d2 log (12dK)

Combining this with Eq. (33) and Eq. (34), we get

‖ŵk,h − wk,h‖Λk,h
≤ 15dBmax

h

√
log

(
12dK

δ

)
.

Further combining this with Eq. (32) proves Eq. (29).

Showing Eq. (30).

∣∣∣φ(s, a)⊤ŵk,h
∣∣∣ I{s ∈ Zh}

≤
∣∣∣φ(s, a)⊤wk,h

∣∣∣ I{s ∈ Zh}+
∣∣∣φ(s, a)⊤ (ŵk,h − wk,h)

∣∣∣ I{s ∈ Zh}

≤
(
1 +

1

H

)
sup

s′∈Sh+1

Ŵk(s
′)I{s′ ∈ Zh+1}+ CιdB

max
h ‖φ(s, a)‖Λ−1

k,h

(by the definition of wk,h and Eq. (29))

≤ Bmax
h +

(
(CιdB

max
h )2

4α
+ α‖φ(s, a)‖2

Λ−1

k,h

)
I{s ∈ Zh} (by Eq. (31) and AM-GM inequality)

≤ Bmax
h +

(
1

4H
Bmax
h + αρ2

)

(by the condition specified in the lemma and that ‖φ(s, a)‖Λ−1

k,h
≤ ρ for s ∈ Zh)

≤ Bmax
h +

1

2H
Bmax
h (by the definition of Bmax

h )

This proves Eq. (30).
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Lemma 23. With the definition of Eq. (24) and Eq. (25), any s ∈ Sh, we have

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
− (CιdB

max)2

α
.

where Bmax , maxh∈[H]B
max
h and Cι is a logarithmic term defined in Lemma 22.

Proof. Recall the definition of wk,h in Eq. (26), from the definition of linear MDP, for all k, h, s, a, we have

φ(s, a)⊤wk,h

=

(
1 +

1

H

)
Es′∼P (·|s,a)

[
Ŵ (s′)I{s′ ∈ Zh+1}

]

=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂+
k (s

′, a′)I{s′ ∈ Zh+1}
]

≥
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂k(s

′, a′)I{s′ ∈ Zh+1}
]

=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[(
Bk(s

′, a′) +
α

4H
‖φ(s′, a′)‖2

Λ−1

k,h+1

+ φ(s′, a′)⊤ (ŵk,h+1 − wk,h+1)

)
I{s′ ∈ Zh+1}

]

(by the definition of B̂k(s
′, a′) in Line 7 and Bk(s

′, a′) in Eq. (25))

≥
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
− (CιdB

max)2

α
(Eq. (29) and AM-GM inequlity)

Thus, we have

Bk(s, a)

= bk(s, a) + φ(s, a)⊤wk,h

≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
− (CιdB

max)2

α
.

C.3 Regret Analysis (achieving Eq. (22) using Algorithm 3)

The goal of this subsection is to prove Eq. (22) for the definitions of bk(s, a) and Bk(s, a) in Eq. (24) and

Eq. (25). We first decompose the left-hand side of Eq. (22).

E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·) −Bk(s, a), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]

≤ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Qk(s, ·)− Q̂k(s, ·), πk(·|s)

〉
I{Eh}

]]

︸ ︷︷ ︸
bias-1

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Q̂k(s, ·)−Qk(s, ·), π⋆(·|s)

〉
I{Eh}

]]

︸ ︷︷ ︸
bias-2
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+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)

〉
I{Eh}

]]

︸ ︷︷ ︸
ftrl

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
B̂k(s, ·) −Bk(s, ·), πk(·|s)− π⋆(·|s)

〉
I{Eh}

]]

︸ ︷︷ ︸
bias-3

(35)

where we use that for s ∈ Sh, Ea∼π(·|s)Q̂k(s, a) = 〈Ĉov(s, π(·|s)), Γ̂̂Γ̂Γk,h〉 and Ea∼π(·|s)B̂k(s, a) = 〈Ĉov(s, π(·|s)), B̂̂B̂Bk,h〉,
and we defineHHHk(s) = Ĉov(s, πk(·|s)),HHH⋆(s) = Ĉov(s, π⋆(·|s)).
We further deal with the ftrl term. This term is analyzed through the standard FTRL analysis. In order to deal

with the issue that F can be unbounded on the boundary of Hs, we define the following auxiliary comparator:

HHH⋆(s) =

(
1− 1

K3

)
HHH⋆(s) +

1

K3
HHHmin(s)

whereHHHmin(s) = argmin
HHH∈Hs

F (HHH)

Applying Lemma 46 for logdet FTRL, we have

ftrl = E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)

〉
I{Eh}

]]

= E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)

〉
I{Eh}

]]

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)

〉
I{Eh}

]]

≤ E
⋆
h

[
τ
(
F
(
HHH⋆(s)

)
−minHHH∈Hs

F (HHH)
)

η
I{Eh}

]

︸ ︷︷ ︸
penalty

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH, Γ̂̂Γ̂Γk,h〉 −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]

︸ ︷︷ ︸
stability-1

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂Bk,h〉 −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]

︸ ︷︷ ︸
stability-2

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)

〉
I{Eh}

]]

︸ ︷︷ ︸
error

(36)

Below, we further bound the individual terms in Eq. (35) and Eq. (36).

32



C.3.1 Bound bias-1, bias-2, bias-3 in Eq. (35)

Lemma 24. For any policy πk, there exists a qk,h such that for any s ∈ Sh,Qk(s, a) = φ(s, a)⊤qk,h. Moreover,

‖qk,h‖2 ≤ H
√
d.

Proof. Define qk,h = θk,h +
∑

s′∈Sh+1
ψ(s′)Ea′∼πk(·|s′) [Qk(s

′, a′)], we have

Qk(s, a) = Qπk(s, a; ℓk) = ℓk(s, a) + Es′∼P (·|s,a)Ea′∼πk(·|s′)
[
Qk(s

′, a′)
]

= φ(s, a)⊤


θk,h +

∑

s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′)
[
Qk(s

′, a′)
]



= φ(s, a)⊤qk,h.

Moreover,

‖qk,h‖2 =

∥∥∥∥∥∥
θk,h +

∑

s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′)
[
Qk(s

′, a′)
]
∥∥∥∥∥∥
2

≤
√
d+
√
d(H − 1) =

√
dH.

Lemma 25. Let Σk,h = Es∼µk
h
Ea∼πk(·|s)

[
φ(s, a)φ(s, a)⊤

]
. If γ ≥ 5d log(6dHK/δ)

τ , then with probability of

1− δ, for all k, h, ∥∥∥
(
Σ̂k,h − Σk,h

)
qk,h

∥∥∥
2

Σ̂−1

k,h

≤ O
(
d2H2 log (dHK/δ)

τ

)

Proof. This follows the fact the ‖qk,h‖2 ≤ H
√
d given in Lemma 24 and the matrix concentration bound in

Lemma 14 of Liu et al. [2023a] with a union bound over k, h. Taking a union bound for all k, h finishes the

proof.

Lemma 26. If γ ≥ 5d log(6dHK/δ)
τ , then

bias-1 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]]

bias-2 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]]
.

Proof. Let Ek [·] be the expectation conditioned on history up to episode k − 1. We have

Ek

[
H∑

t=h

ℓk,t

]
= Ek [Qk(sk,h, ak,h)] = Ek

[
φ(sk,h, ak,h)

⊤qk,h
]
.

Therefore,

Ek [q̂k,h] = Ek

[
Σ̂−1
k,hφ(sk,h, ak,h)φ(sk,h, ak,h)

⊤qk,h
]
= Σ̂−1

k,hΣk,hqk,h,
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and for s ∈ Sh,

Ek

[
Qk(s, a)− Q̂k(s, a)

]
= Ek

[
φ(s, a)⊤qk,h − φ(s, a)⊤q̂k,h

]

= φ(s, a)⊤
(
I − Σ̂−1

k,hΣk,h

)
qk,h

= φ(s, a)⊤Σ̂−1
k,h

(
Σ̂k,h − Σk,h

)
qk,h

≤ ‖φ(s, a)‖Σ̂−1

k,h

∥∥∥
(
Σ̂k,h − Σk,h

)
qk,h

∥∥∥
Σ̂−1

k,h

(Cauchy-Schwarz)

≤ O
(√

d2H2 log (dK/δ)

τ
‖φ(s, a)‖Σ̂−1

k,h

)
(Lemma 25)

≤ O
(
d2H3 log (dK/δ)

τβ

)
+

β

4H
‖φ(s, a)‖2

Σ̂−1

k,h

. (AM-GM inequality)

Thus,

bias-1 = E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Qk(s, ·)− Q̂k(s, ·), πk(·|s)

〉
I{Eh}

]]

≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]]

Similarly, we can prove

bias-2 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]]

Lemma 27. Suppose that Bmax
h ≤ α

C2
ιHd

2 where Cι = 15
√

log
(
12dK
δ

)
. Then

bias-3 ≤ Õ
(
H2d2(Bmax)2

α
K

)
+

α

2H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Λ−1

k,h

I{Eh}
]]
.

Proof. By Eq. (29) and AM-GM inequality, we have that with probability at least 1 − δ, for all k, h, s, a,∣∣φ(s, a)⊤ (ŵk,h − wk,h)
∣∣ ≤ H(CιdBmax)2

α + α
4H ‖φ(s, a)‖2Λ−1

k,h

. Combining this with the definitions of B̂k(s, a)

in Line 7 and Bk(s, a) in Eq. (25), we get

B̂k(s, a)−Bk(s, a) =
α

4H
‖φ(s, a)‖2

Λ−1

k,h

+ φ(s, a)⊤ (ŵk,h − wk,h) ≥ −
H(CιdB

max)2

α

B̂k(s, a)−Bk(s, a) ≤
α

2H
‖φ(s, a)‖2

Λ−1

k,h

+
H(CιdB

max)2

α
.

With the two inequalities above, we have

bias-3
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= E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
B̂k(s, ·)−Bk(s, ·), πk(·|s)− π⋆(·|s)

〉
I{Eh}

]]

≤ E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
B̂k(s, a)−Bk(s, a)

]]
− E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s)

[
B̂k(s, a)−Bk(s, a)

]]

≤ Õ
(
H2(dBmax)2

α
K

)
+

α

2H

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Λ−1

k,h

I{Eh}
]]
.

C.3.2 Bound penalty in Eq. (36)

Lemma 28. penalty ≤ 3dτ log(K)
η

Proof. SinceHHH⋆(s) =
(
1− 1

K3

)
HHH⋆(s) +

1
K3HHHmin(s), we have HHH⋆(s) � 1

K3HHHmin(s). Then

τ
(
F (HHH⋆(s))−minHHH∈Hs

F (HHH)
)

η
=
τ

η
log

det(HHHmin(s))

det(HHH⋆(s))
≤ 3dτ log(K)

η

C.3.3 Bound error in Eq. (36)

Lemma 29. error ≤ O (H).

Proof. By the choices of β, γ, α, it holds that β
γ + αρ2 ≤ O(K) and H

γ ≤ O(K). Let πmin be such that

HHHmin(s) = Ea∼πmin(·|s)

[
φ(s, a)φ(s, a)⊤ φ(s, a)

φ(s, a)⊤ 1

]
. For s ∈ Sh, we have

∣∣Q̂k(s, a)
∣∣ = |φ(s, a)⊤q̂k,h| ≤ H

γ

by the definition of q̂k,h, and ‖ŵk,h‖2 ≤ K2, which implies
∣∣B̂k(s, a)

∣∣I{s ∈ Zh} ≤ 2K2.

Therefore,

E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)

〉
I{Eh}

]]

=
1

K3
E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHmin(s)−HHH⋆(s)

〉
I{Eh}

]]
(by the definition ofHHH⋆(s))

=
1

K3
E

[
K∑

k=1

H∑

h=1

E
⋆
h

[〈
Q̂k(s, ·)− B̂k(s, ·), πmin(·|s)− π⋆(·|s)

〉
I{Eh}

]]

≤ O (H)
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C.3.4 Bound stability-1 in Eq. (36)

To bound stability-1, we first introduce a useful identity in Lemma 30. This is first proposed in Zimmert and Lattimore

[2022] and restated in Liu et al. [2023a].

Lemma 30 (Lemma 25 in Liu et al. [2023a]). LetGGG =

[
G+ gg⊤ g
g⊤ 1

]
andHHH =

[
H + hh⊤ h

h⊤ 1

]
, we have

DF (GGG,HHH) = DF (G,H) + ‖g − h‖2H−1 ≥ ‖g − h‖2H−1

Lemma 31 (Lemma 12 in Liu et al. [2023a]). Define Σk,h = Es∼µk
h
Ea∼πk(·|s)

[
φ(s, a)φ(s, a)⊤

]
. If γ ≥

5d log(6dHK/δ)
τ , for any k, h, with probability 1− δ, we have

Σ̂k,h =
1

τ

∑

(s,a,s′)∈Dk,h

φ(s, a)φ(s, a)⊤ + γI � 1

2
Es∼µk

h
Ea∼πk(·|s)

[
φ(s, a)φ(s, a)⊤

]
=

1

2
Σk,h.

Lemma 32. If γ ≥ 5d log(6dHK/δ)
τ , then

stability-1 ≤ ηH2
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]]
.

Proof. In this proof, we define

• φ(s, π) = Ea∼π(·|s) [φ(s, a)]

• Cov(s, π) = Ea∼π(·|s)
[
(φ(s, a)− φ(s, π)) (φ(s, a)− φ(s, π))⊤

]

• Cov(s, π) = Ea∼π(·|s)
[
φ(s, a)φ(s, a)⊤

]

Let Ek [·] be the expectation conditioned on history up to episode k−1. Consider a fixed s ∈ Sh and any policy

π. Let

HHH(s) = Ea∼π(·|s)

[
φ(s, a)φ(s, a)⊤ φ(s, a)

φ(s, a)⊤ 1

]
.

We have

Ek

[〈
HHHk(s)−HHH(s), Γ̂̂Γ̂Γk,h

〉
− D(HHH(s),HHHk(s))

2η

]

≤ Ek

[
〈φ(s, πk)− φ(s, π), q̂k,h〉 −

‖φ(s, πk)− φ(s, π)‖2Cov(s,πk)−1

2η

]
(Lemma 30)

≤ Ek

[
‖φ(s, πk)− φ(s, π)‖Cov(s,πk)−1 ‖q̂k,h‖Cov(s,πk)

−
‖φ(s, πk)− φ(s, π)‖2Cov(s,πk)−1

2η

]

≤ η

2
Ek

[
‖q̂k,h‖2Cov(s,πk)

]
(AM-GM inequality)

≤ η

2
Ek



∥∥∥∥∥Σ̂

−1
k,hφ(sk,h, ak,h)

H∑

t=h

ℓkt

∥∥∥∥∥

2

Cov(s,πk)


 (Cov(s, π) � Cov(s, π))
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≤ ηH2

2
Ek

[
φ(sk,h, ak,h)

⊤Σ̂−1
k,hCov(s, πk)Σ̂

−1
k,hφ(sk,h, ak,h)

]

=
ηH2

2
Ek

[
Tr
(
φ(sk,h, ak,h)φ(sk,h, ak,h)

⊤Σ̂−1
k,hCov(s, πk)Σ̂

−1
k,h

)]

=
ηH2

2
Tr
(
Σk,hΣ̂

−1
k,hCov(s, πk)Σ̂

−1
k,h

)

≤ ηH2 Tr
(
Cov(s, πk)Σ̂

−1
k,h

)
(Lemma 31)

= ηH2
Ea∼πk(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

]

Taking expectation and adding indicator for s, and then summing over all k, h finish the proof.

C.3.5 Bound stability-2 in Eq. (36)

Given F (X) = − log det(X),D2F (X) = X−1⊗X−1 where⊗ is the Kronecker product. For any matrixA =

[
a1 a2 · · · an

]
, let vec(A) =



a1
...

an


 which vectorizes matrix A to a column vector by stacking the columns

A. The second order directional derivative for F is D2F (X)[A,A] = vec(A)⊤
(
X−1 ⊗X−1

)
vec(A) =

Tr(A⊤X−1AX−1). We define ‖A‖∇2F (X) =
√

Tr(A⊤X−1AX−1) and ‖A‖∇−2F (X) =
√

Tr(A⊤XAX). It

is a pseudo-norm, and more discussion can be found in Appendix D of Zimmert et al. [2022]. In the following

analysis, we will only use one property of this pseudo-norm which is similar to the Holder inequality. It is

standard and also appears as Lemma 8 in Liu et al. [2023a].

Lemma 33. For any two symmetric matrices A,B and positive definite matrix X,

〈A,B〉 ≤ ‖A‖∇2F (X)‖B‖∇−2F (X)

Proof. Since (X ⊗X)−1 = X−1 ⊗X−1, from Holder inequality, we have

〈A,B〉 = 〈vec(A), vec(B)〉 ≤ ‖vec(A)‖X−1⊗X−1‖vec(B)‖(X−1⊗X−1)−1 = ‖A‖∇2F (X)‖B‖∇−2F (X)

Lemma 34 gives a general argument to bound stability-2 with arbitrary BBB ∈ R
(d+1)×(d+1). Similar theorems

are also stated in Lemma 34 of Dann et al. [2023b] and Lemma 27 of Liu et al. [2023a].

Lemma 34. For any matrixBBB ∈ R
(d+1)×(d+1), for any state s, given

√
Tr(HHHk(s)BBBHHHk(s)BBB) ≤ m, if η ≤ 1

16m ,

max
HHH∈Hs

〈HHHk(s)−HHH,−BBB〉 −
DF (HHH,HHHk(s))

η
≤ 8η‖BBB‖2∇−2F (HHHk(s))

= 8ηTr (HHHk(s)BBBHHHk(s)BBB) .

Proof. For anyHHH ∈ Hs, define

G(HHH) = 〈HHHk(s)−HHH,−BBB〉 −
DF (HHH,HHHk(s))

η
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and λ = ‖BBB‖∇−2F (HHHk(s)). Since
√

Tr(HHHk(s)BBBHHHk(s)BBB) ≤ m and η ≤ 1
16m , we have

ηλ = η‖BBB‖∇−2F (HHHk(s)) = η
√

Tr(HHHk(s)BBBHHHk(s)BBB) ≤ ηm ≤ 1

16
.

Let HHH ′ be the maximizer of G. Since G(HHHk(s)) = 0, we have G(HHH ′) ≥ 0. It suffices to show ‖HHH ′ −
HHHk(s)‖∇2F (HHHk(s)) ≤ 8ηλ because from Lemma 33 it leads to

G(HHH ′) ≤ ‖HHHk(s)−HHH ′‖∇2F (HHHk(s))‖BBB‖∇−2F (HHHk(s)) ≤ 8ηλ‖BBB‖∇−2F (HHHk(s)) = 8η‖BBB‖2∇−2F (HHHk(s))

To show ‖HHH ′−HHHk(s)‖∇2F (HHHk(s)) ≤ 8ηλ, it suffices to show that for allUUU such that ‖UUU−HHHk(s)‖∇2F (HHHk(s)) =
8ηλ, G(UUU ) ≤ 0. This is because given this condition, if ‖HHH ′ −HHHk(s)‖∇2F (HHHk(s)) > 8ηλ, then there is a UUU
in the line segment between HHHk(s) and HHH ′ such that ‖UUU −HHHk(s)‖∇2F (HHHk(s)) = 8ηλ. From the condition,

G(UUU ) ≤ 0 ≤ min{G(HHHk(s)), G(HHH
′)} which contradicts to the concavity of G.

Now consider anyUUU such that ‖UUU −HHHk(s)‖∇2F (HHHk(s)) = 8ηλ. By Taylor expansion, there exists UUU ′ in the line

segment between UUU andHHHk(s) such that

G(UUU ) ≤ ‖UUU −HHHk(s)‖∇2F (HHHk(s))‖BBB‖∇−2F (HHHk(s)) −
1

2η
‖UUU −HHHk(s)‖2∇2F (UUU ′)

We have ‖UUU ′−HHHk(s)‖∇2F (HHHk(s)) ≤ ‖UUU−HHHk(s)‖∇2F (HHHk(s)) = 8ηλ ≤ 1
2 . From the Equation 2.2 in page 23 of

Nemirovski [2004] (also appear in Eq.(5) of Abernethy et al. [2009]) and log det is a self-concordant function,

we have ‖UUU −HHHk(s)‖2∇2F (UUU ′) ≥ 1
4‖UUU −HHHk(s)‖2∇2F (HHHk(s))

. Thus, we have

G(UUU ) ≤ ‖UUU −HHHk(s)‖∇2F (HHHk(s))‖BBB‖∇−2F (HHHk(s)) −
1

8η
‖UUU −HHHk(s)‖2(HHHk(s))−1 = 8ηλ2 − (8ηλ)2

8η
= 0.

Lemma 35. Given Bk(s, a) = β‖φ(s, a)‖2
Σ̂−1

k,h

+α
(
1− 1

4H

)
‖φ(s, a)‖2

Λ−1

k,h

+φ(s, a)⊤wk,h defined in Eq. (25)

for s ∈ Sh, if η ≤ 1

3328H2

(
β
γ
+αρ2

) , we have

stability-2 ≤ 1

2H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
+ Õ

(
(dBmax)2

α
K

)
.

Proof. We can decompose the bonus matrix in the following form and consider stability separately

B̂̂B̂Bk,h =

[
βΣ̂−1

k,h + αΛ−1
k,h

1
2ŵk,h

1
2 ŵ

k⊤
h 0

]
=

[
βΣ̂−1

k,h + αΛ−1
k,h 0

0 0

]

︸ ︷︷ ︸
B̂̂B̂B1

k,h

+

[
0 1

2ŵk,h
1
2 ŵ

k⊤
h 0

]

︸ ︷︷ ︸
B̂̂B̂B2

k,h

.

Then we have

stability-2 = E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂Bk,h〉 −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]
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≤ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂B1
k,h〉 −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

+ E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂B2
k,h〉 −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

For any matrix A ∈ R
d×d with all non-negative eigenvalues, we have

Tr
(
A2
)
=

d∑

i=1

λi(A
2) ≤

(
d∑

i=1

λi(A)

)2

= Tr (A)2

Since both φ(s, a)φ(s, a)⊤ and βΣ̂−1
k,h+αΛ

−1
k,h are positive semi-definite, the eigenvalues of φ(s, a)φ(s, a)⊤

(
βΣ̂−1

k,h + αΛ−1
k,h

)

are all non-negative. Thus, for any s ∈ Zh, we have

√
Tr
(
HHHk(s)B̂̂B̂B

1
k,hHHHk(s)B̂̂B̂B

1
k,h

)
≤
√

Tr

((
Ea∼πk(·|s)

[
φ(s, a)φ(s, a)⊤

(
βΣ̂−1

k,h + αΛ−1
k,h

)])2)

≤ Tr
(
Ea∼πk(·|s)

[
φ(s, a)φ(s, a)⊤

(
βΣ̂−1

k,h + αΛ−1
k,h

)])

= Ea∼πk(·|s)

[
β‖φ(s, a)‖2

Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

]

≤ β

γ
+ αρ2. (‖φ(s, a)‖Λ−1

k,h
≤ ρ for s ∈ Zh)

Thus, from Lemma 34, if η ≤ 1

64H
(

β
γ
+αρ2

) , we have

E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂B1
k,h〉 −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

≤ 8η

K∑

k=1

H∑

h=1

E
⋆
h

[
Tr
(
HHHk(s)B̂̂B̂B

1
k,hHHHk(s)B̂̂B̂B

1
k,h

)
I{Eh}

]

≤ 1

8H

K∑

k=1

H∑

h=1

E
⋆
h

[√
Tr
(
HHHk(s)B̂̂B̂B

1
k,hHHHk(s)B̂̂B̂B

1
k,h

)
I{Eh}

]

≤ 1

8H

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[(
β‖φ(s, a)‖2

Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

)
I{Eh}

]
. (37)

Now consider B̂̂B̂B2
k,h, for any s ∈ Zh, we have

√
Tr
(
HHHk(s)B̂̂B̂B

2
k,hHHHk(s)B̂̂B̂B

2
k,h

)

=
√
2Tr

(
(ŵk,h)⊤Ea∼πk(·|s) [φ(s, a)]Ea∼πk(·|s) [φ(s, a)

⊤] ŵk,h + (ŵk,h)⊤Ea∼πk(·|s) [φ(s, a)φ(s, a)
⊤] ŵk,h

)

≤ 2

√
Ea∼πk(·|s)

[
(φ(s, a)⊤ŵk,h)

2
]
≤ 2

(
1 +

1

2H

)
Bmax
h ≤ 26H

(
β

γ
+ αρ2

)
. (by Eq. (30))
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Similarly, from Lemma 34, if η ≤ 1

3328H2

(
β
γ
+αρ2

) ≤ 1
256HBmax , then for all h ∈ [H] and any state s ∈ Zh, we

have

max
HHH∈H

〈
HHHk(s)−HHH,−B̂̂B̂B2

k,h

〉
− DF (HHH,HHHk(s))

4η

≤ 8ηTr
(
HHHk(s)B̂̂B̂B

2
k,hHHHk(s)B̂̂B̂B

2
k,h

)

≤ 32ηEa∼πk(·|s)

[(
φ(s, a)⊤ŵk,h

)2]

= 32ηEa∼πk(·|s)

[(
φ(s, a)⊤wk,h + φ(s, a)⊤ (ŵk,h − wk,h)

)2]

≤ 64ηEa∼πk(·|s)

[(
φ(s, a)⊤wk,h

)2]
+ 64ηEa∼πk(·|s)

[(
φ(s, a)⊤ (ŵk,h − wk,h)

)2]

((a+ b)2 ≤ 2a2 + 2b2)

≤ 1

4H
Ea∼πk(·|s)

[
φ(s, a)⊤wk,h

]
+

1

H
Ea∼πk(·|s)

[∣∣∣φ(s, a)⊤ (ŵk,h − wk,h)
∣∣∣
]

(see the explanation below)

≤ (CιdB
max)2

Hα
+

1

4H
Ea∼πk(·|s)

[
φ(s, a)⊤wk,h

]
+

1

4H
Ea∼πk(·|s)

[
α ‖φ(s, a)‖2

Λ−1

k,h

]
.

(Lemma 22 and AM-GM)

where in the second-last inequality, we use the condition of η and that

|φ(s, a)⊤wk,h| ≤
(
1 +

1

H

)
sup
s′∈Sh

Ŵ (s′)I{s′ ∈ Zh+1} ≤ Bmax, (by Eq. (31))

|φ(s, a)⊤(ŵk,h − wk,h)| ≤ |φ(s, a)⊤ŵk,h|+ |φ(s, a)⊤wk,h| ≤
(
2 +

1

2H

)
Bmax. (by Eq. (30))

Thus,

E

[
K∑

k=1

H∑

h=1

E
⋆
h

[(
max
HHH∈Hs

〈HHHk(s)−HHH,−B̂̂B̂B2
k,h〉 −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

≤ 1

4H

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
φ(s, a)⊤wk,hI{Eh}

]]

+
1

4H

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
α ‖φ(s, a)‖2

Λ−1

k,h

I{Eh}
]]

+ Õ
(
(dBmax)2

α
K

)
. (38)

Combining Eq. (37) and Eq. (38), we see that if η ≤ 1

3328H2

(
β
γ
+αρ2

) , then

stability-2

≤ 1

8H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[(
β‖φ(s, a)‖2

Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

)
I{Eh}

]]

+
1

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
φ(s, a)⊤wk,hI{Eh}

]]

+
1

4H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
α ‖φ(s, a)‖2

Λ−1

k,h

I{Eh}
]]

+ Õ
(
(dBmax)2

α
K

)

40



≤ 1

2H
E

[
K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
+ Õ

(
(dBmax)2

α
K

)
.

Lemma 36. If η ≤ 1

3228H2

(
β
γ
+αρ2

) and γ ≥ 5d log(6dHK/δ)
τ and Bmax

h ≤ α
225 log(dK

δ
)Hd2

and ηH2 ≤ 3
4β, then

we have

E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]

≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)

+

K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)I{Eh}] +

1

H

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}]

where bk(s, a) is defined in Eq. (24).

Proof. Since η ≤ 1

3328H2

(
β
γ
+αρ2

) , adding up the bound in Lemma 28, Lemma 29, Lemma 32, and Lemma 35

following the decomposition in Eq. (36), we get

ftrl ≤ Õ
(
dτ

η
+H +

d2(Bmax)2

α
K

)
+ ηH2

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{Eh}
]

+
1

2H

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk(s, a)I{Eh}] . (39)

From the decomposition in Eq. (35) and Lemma 26, Lemma 27, and Eq. (39), under the specified conditions,

we have

E

[
K∑

k=1

H∑

h=1

E
⋆
h [〈Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)〉 I{Eh}]

]

≤ bias-1 + bias-2 + bias-3 + ftrl

≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)

+

(
β

4
+ ηH2

) K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s)

[
‖φ(s, a)‖2

Σ̂−1

k,h

I{s ∈ Zh}
]

+
1

H

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk,h(s, a)I{Eh}]

≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)

+

K∑

k=1

H∑

h=1

E
⋆
hEa∼π⋆(·|s) [bk(s, a)] +

1

H

K∑

k=1

H∑

h=1

E
⋆
hEa∼πk(·|s) [Bk,h(s, a)I{Eh}]

where in the last inequality we use β
4 + ηH2 ≤ β.
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C.4 Final Steps

Lemma 37. Let s ∈ Sh. We have

Bk(s, a) ≤ rk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]

where we define

rk(s, a) = bk(s, a) + Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α‖φ(s′, a′)‖2

Λ−1

k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α
.

Proof. Since Bk(s, a) ≥ 0, we have

∣∣∣B̂+
k (s, a)−Bk(s, a)

∣∣∣ ≤
∣∣∣B̂k(s, a)−Bk(s, a)

∣∣∣

=

∣∣∣∣
α

4H
‖φ(s, a)‖2

Λ−1

k,h

+ φ(s, a)⊤ (ŵk,h − wk,h)
∣∣∣∣

≤ (CιdB
max)2

α
+ α‖φ(s, a)‖2

Λ−1

k,h

. (by Lemma 22)

Thus,

φ(s, a)⊤wk,h

=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂+
k (s

′, a′)I{s′ ∈ Zh+1}
]

≤
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]

+ Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α‖φ(s′, a′)‖2

Λ−1

k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α
,

and

Bk(s, a)

= bk(s, a) + φ(s, a)⊤wk,h

≤ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]

+ Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α‖φ(s′, a′)‖2

Λ−1

k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α

= rk(s, a) +

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
.

Theorem 38. Suppose the parameters are properly chosen so that all conditions in Lemma 36 holds (see the

proof for the final parameters). Then the regret of Algorithm 3 has the following guarantee

E [RK ] ≤ Õ
(
d

3

2H3K
3

4

)
.
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Proof. By Lemma 23, we have for s ∈ Sh,

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)I{s′ ∈ Zh+1}
]
− Õ

(
d2(Bmax)2

α

)
.

Combining this with Lemma 36, we see that the two conditions of Lemma 21 are satisfied with f = Õ
(
d2(Bmax)2

α

)

and g = Õ
(
d2H3

τβ K + d2H2(Bmax)2

α K + dτ
η

)
. Thus, by directly applying Lemma 21, we have

reg-term ≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)
+

(
1 +

1

H

)
E

[
K∑

k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]

To bound the last term, below we use induction to show that for s ∈ Sh, the following holds:

Ea∼πk(·|s) [Bk(s, a)] ≤
(
1 +

1

H

)H−h
V πk(s; rk)

for the rk defined in Lemma 37.

Base case (step H). for any s ∈ SH , we have

Ea∼πk(·|s) [Bk(s, a)] = Ea∼πk(·|s) [bk(s, a)] ≤ V πk(s; rk)

Induction. Assume that for any s ∈ Sh+1,

Ea∼πk(·|s) [Bk(s, a)] ≤
(
1 +

1

H

)H−h−1

V πk(s; rk).

Then for any s ∈ Sh, we have

Ea∼πk(·|s) [Bk(s, a)]

≤ Ea∼πk(·|s)

[
rk(s, a) +

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
Bk(s

′, a′)
]]

(Lemma 37)

≤ Ea∼πk(·|s)

[
rk(s, a) +

(
1 +

1

H

)H−h
Es′∼P (·|s,a)

[
V πk(s′; rk)

]
]

(induction hypothesis)

≤
(
1 +

1

H

)H−h
Ea∼πk(·|s)

[
rk(s, a) + Es′∼P (·|s,a)

[
V πk(s′; rk)

]]
(rk(s, a) ≥ 0)

=

(
1 +

1

H

)H−h
V πk(s; rk).

Since
(
1 + 1

H

)H
< e < 3, we have

(
1 +

1

H

) K∑

k=1

Ea∼πk(·|s1) [Bk(s1, a)]

≤ 3
K∑

k=1

V πk(s1; rk)

43



= Õ
(

K∑

k=1

H∑

h=1

Es∼µk
h
Ea∼πk(·|s)

[
β‖φ(s, a)‖2

Σ̂−1

k,h

+ α‖φ(s, a)‖2
Λ−1

k,h

]
+

(dBmax)2

α
K

)

≤ Õ
(
βdHK + αdH +

(dBmax)2

α
K

)
.

Given that Bmax
h = 4H

(
1 + 1

H

)2(H−h+1)
(
β
γ + αρ2

)
, we have Bmax ≤ 36H

(
β
γ + αρ2

)
. Thus,

reg-term ≤ Õ
(
d2H3

τβ
K +

d2H4β2

αγ2
K + d2H4αρ4K +

dτ

η
+ βdHK + αdH

)

We pick ρ = H− 1

2d−
1

4K− 1

4 , β =
√
dK− 1

4 , α = HK
3

4 , τ = K
1

2 , δ = 1
K3 , γ =

5d log(6dHK4)
τ , η = K−

1
4

3328
√
dH2

.

In that case, if
√
K ≥ 16200d

3

2H log
(
dK4

)
= Ω̃

(
d

3

2H
)

, all conditions in Lemma 36 are satisfied and

reg-term ≤ Õ(d 3

2H3K
3

4 ).

By Lemma 15, the initial pure exploration phase takes

K0 = Õ
(
dH
ρ2

+ d4H4

ǫcov

)
= Õ

(
d

3

2H2K
3

4 + d4H4K
1

4

)

episodes, which contributes to an additional regret of HK0 = Õ(d 3

2H3K
3

4 ) (omitting lower-order terms).

Finally, the cost of ignoring states outside of Z is H3K− 3

4 as calculated in Eq. (20).

Combining all parts of regret finishes the proof.

D Auxilary Lemmas

D.1 Uniform Concentration via Covering

Consider policy class

P(s) =

{
p : Ĉov(s, p) = argmin

HHH∈Hs

{〈HHH,ZZZ〉+ F (HHH)} , for ZZZ ∈ Z
}

(40)

where Z = [−K3,K3](d+1)×(d+1) ∩ S with S denoting the set of symmetric matrices. We define the following

function class.

Definition 39. For any h and any s ∈ Sh,

Vh (s; Σ,Λ, w, p) =

(
1 +

1

H

)
Ea∼p

[[
β‖φ(s, a)‖2Σ−1 + φ⊤(s, a)w + 2α‖φ(s, a)‖2Λ−1

]+
I{s ∈ Zh}

]
,

Vh = {V (s ; Σ,Λ, w, p) | λmin (Σ) ≥ γ, λmin (Λ) ≥ 1, ‖w‖ ≤ K2, p ∈ P(s)}.

where P(s) is defined in Eq. (40).

We propose the following two covering lemma. Lemma 40 is standard which argues the upper bound of the

cover number of a Euclidean ball. Lemma 41 inherits from Lemma 15 in Liu et al. [2023a].
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Lemma 40 (Cover number of Euclidian Ball). For any ǫ > 0, the ǫ-covering of the Euclidean ball in R
d with

radius R > 0 is upper bounded by
(
1 + 2R

ǫ

)d
.

Lemma 41 (Covering for logdet policy class, Lemma 15 in Liu et al. [2023a]). For any s, there exists an ǫ-

cover P
′(s) of P(s) with size log |P′(s)| = (d + 1)2 log 24(d+1)2

ǫ such that for any p ∈ P(s), there exists an

p′ ∈ P
′(s) satisfying

∥∥∥Ĉov(s, p)− Ĉov(s, p′)
∥∥∥
F
≤ ǫ.

Lemma 42 gives the covering number of function class Vh.

Lemma 42. Let Nǫ(Vh) be the ‖ · ‖∞ ǫ-covering number of function class Vh, for any h, we have

log (Nǫ(Vh)) ≤ d log
(
1 +

16K2

ǫ

)
+ d2 log

(
1 +

16
√
dβ

ǫγ

)
+ d2 log

(
1 +

16
√
dα

ǫ

)

+ (d+ 1)2 log

(
96(d + 1)2

(
2βγ−1 + 2α +K2

)

ǫ

)
.

If
β
γ + 2α ≤ K2, then

log (Nǫ(Vh)) ≤ 4(d+ 1)2 log

(
400(d + 1)2K2

ǫ

)
.

Proof. Define

B (s, a;D,E,w) = ‖φ(s, a)‖2D + ‖φ(s, a)‖2E + φ⊤(s, a)w

and consider the following function classes

B =
{
B (s, a;D,E,w) | ‖D‖2 ≤ 2βγ−1, ‖E‖2 ≤ 2α, ‖w‖2 ≤ 2K2

}
,

Ṽ = {Ea∼p [B(s, a;D,E,w)] | B(s, a;D,E,w) ∈ B, p ∈ P(s)} .

For any V1 = Ea∼p1 [B(s, a;D1, E1, w1)] and V2 = Ea∼p2 [B(s, a;D2, E2, w2)], it holds that

|V1 − V2| = |Ea∼p1 [B(s, a;D1, E1, w1)]− Ea∼p2 [B(s, a;D2, E2, w2)]|
= |Ea∼p1 [B(s, a;D1, E1, w1)]− Ea∼p1 [B(s, a;D2, E2, w2)]|
+ |Ea∼p1 [B(s, a;D2, E2, w2)]− Ea∼p2 [B(s, a;D2, E2, w2)]| .

On the one hand, we have

|B (s, a;D1, E1, w1)−B (s, a;D2, E2, w2)|
=
∣∣‖φ(s, a)‖2D1

− ‖φ(s, a)‖2D2

∣∣+
∣∣∣φ⊤(s, a) (w1 − w2)

∣∣∣+
∣∣‖φ(s, a)‖2E1

− ‖φ(s, a)‖2E2

∣∣

=
∣∣∣φ(s, a)⊤ (D1 −D2)φ(s, a)

∣∣∣+
∣∣∣φ⊤(s, a) (w1 − w2)

∣∣∣+
∣∣∣φ(s, a)⊤ (E1 − E2)φ(s, a)

∣∣∣
≤ ‖D1 −D2‖2 + ‖w1 − w2‖2 + ‖E1 −E2‖2 (‖φ(s, a)‖2 ≤ 1)
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≤ ‖D1 −D2‖F + ‖w1 − w2‖2 + ‖E1 − E2‖F .

Since for any matrix A ∈ R
d×d, ‖A‖F ≤

√
d‖A‖2, we consider a ǫ

4 net on {D ∈ R
d×d | ‖D‖F ≤ 2

√
dβγ−1},

a ǫ
4 net on {w ∈ R

d | ‖w‖2 ≤ 2K2}, a ǫ
4 net on {E ∈ R

d×d | ‖E‖F ≤ 2
√
dα}. From Lemma 40, the log size

of these nets is

d log

(
1 +

16K2

ǫ

)
+ d2 log

(
1 +

16
√
dβ

ǫγ

)
+ d2 log

(
1 +

16
√
dα

ǫ

)
.

On the other hand, defineBBB2 =

[
D2 + E2

1
2w2

1
2w

⊤
2 0

]
, we have ‖BBB2‖2 ≤ 2βγ−1 + 2α+K2 and

|Ea∼p1 [B(s, a;D2, E2, w2)]− Ea∼p2 [B(s, a;D2, E2, w2)]|
=
∣∣∣
〈
Ĉov(s, p1)− Ĉov(s, p2),BBB2

〉∣∣∣

≤
∥∥∥Ĉov(s, p1)− Ĉov(s, p2)

∥∥∥
2
‖BBB2‖2

≤
(
2βγ−1 + 2α+K2

) ∥∥∥Ĉov(s, p1)− Ĉov(s, p2)
∥∥∥
F
.

Moreover, we construct a ǫ
4(2βγ−1+2α+K2) net on policy class P(s) based on Frobenius norm. From Lemma 41,

the log size of this net is

(d+ 1)2 log

(
96(d + 1)2

(
2βγ−1 + 2α+ L

)

ǫ

)
.

Since clipping and adding more constraints will not increase the cover number, for any h, we have

logNǫ(Vh) ≤ logNǫ(Ṽ) ≤ d log
(
1 +

16K2

ǫ

)
+ d2 log

(
1 +

16
√
dβ

ǫγ

)
+ d2 log

(
1 +

16
√
dα

ǫ

)

+ (d+ 1)2 log

(
96(d+ 1)2

(
2βγ−1 + 2α+K2

)

ǫ

)
.

Lemma 43 shows the uniform concentration of all functions in V . It also appears as Lemma D.4 of Jin et al.

[2020b], Lemma D.7 of Sherman et al. [2023b] and Lemma 24 of Sherman et al. [2023a].

Lemma 43. Let {xτ} be a stochastic process on state space S with corresponding filtration {Fτ}∞τ=1. Let

{φτ} be an R
d-valued stochastic process where φτ ∈ Fτ , and ‖φτ‖ ≤ 1. Further, let Λn = λI +

∑n
τ=1 φτφ

⊤
τ .

Then for any δ > 0, with probability at least 1 − δ, for all n ≥ 1 and any V ∈ V such that ‖V ‖∞ ≤ D, we

have
∥∥∥∥∥

n∑

τ=1

φτ (V (xτ )− E [V (xτ |Fτ−1)])

∥∥∥∥∥

2

Λ−1
n

≤ 4D2

(
d

2
log

(
n+ λ

λ

)
+ log

Nǫ(V)
δ

)
+

8n2ǫ2

λ

where Nǫ(V) is ‖ · ‖∞ ǫ- covering number of V with difference ǫ.

Lemma 44 (Lemma D.4 in Sherman et al. [2023b]). Let {φi}ni=1 ∈ R
d, {yi}ni=1 ∈ R, λ ∈ R and set Λ =∑N

i=1 φiφ
⊤
i + λI , and ŵ = Λ−1

∑N
i=1 φiyi. Then for any w⋆ ∈ R

d

‖ŵ − w⋆‖Λ ≤
∥∥∥∥∥
N∑

i=1

φi (yi − φiw⋆)
∥∥∥∥∥
Λ−1

+
√
λ‖w⋆‖
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D.2 FTRL Regret Bounds

Lemma 45 (Standard FTRL bound). Let Ω ⊂ R
d be a convex set, g1, . . . , gT ∈ R

d, and η > 0. Then the FTRL

update

wt = argmin
w∈Ω

{〈
w,

t−1∑

τ=1

gτ

〉
+

1

η
ψ(w)

}

ensures for any u ∈ Ω and η0 > 0,

T∑

t=1

〈wt − u, gt〉 ≤
ψ(u)−minw∈Ω ψ(w)

η︸ ︷︷ ︸
Penalty

+

T∑

t=1

(
max
w∈Ω
〈wt − w, gt〉 −

Dψ(w,wt)

η

)

︸ ︷︷ ︸
Stability

.

Since we do not use standard FRTL but run the same policy π in 2τ episodes. We will introduce a blocked

FTRL regret bound in Lemma 46.

Lemma 46. Let K ∈ Z+, τ ≤ K,J = ⌈Kτ ⌉, and set Tj = {τ(j − 1) + 1, · · · , τj} for all j ∈ [J ]. Assume

η > 0, let gk be a sequence of input, define

g(j) =
1

τ

∑

k∈Tj
gk,∀j ∈ [J ]

w(j+1) = argmin
w∈Ω

{〈
w,

j∑

τ=1

g(τ)

〉
+

1

η
ψ(w)

}

Then if wk ∈ Ω are such that wk = w(j) for all k ∈ Tj, j ∈ [J ], for any u ∈ Ω we have

K∑

k=1

〈gk, wk − u〉 ≤
τ(ψ(u) −minw∈Ω ψ(w))

η
+

K∑

k=1

(
max
w∈Ω
〈wk − w, gk〉 −

Dψ(w,wk)

η

)

Proof. By applying Lemma 45 on g(j), x(j), we get

J∑

j=1

〈g(j), w(j) − u〉 ≤
ψ(u)−minw∈Ω ψ(w)

η
+

J∑

j=1

(
max
w∈Ω
〈w(j) − w, g(j)〉 −

Dψ(w,w(j))

η

)

In addition,

J∑

j=1

〈g(j), w(j) − u〉 =
J∑

j=1

〈
1

τ

∑

k∈Tj
gk, wk − u

〉
=

1

τ

J∑

j=1

∑

k∈Tj
〈gk, wk − u〉 =

1

τ

K∑

k=1

〈gk, wk − u〉

On the other hand,

J∑

j=1

(
max
w∈Ω
〈w(j) − w, g(j)〉 −

Dψ(w,w(j))

η

)
≤

J∑

j=1


max
w∈Ω

〈
w(j) − w,

1

τ

∑

k∈Tj
gk

〉
− Dψ(w,w(j))

η




≤
J∑

j=1


max
w∈Ω

1

τ

∑

k∈Tj
〈wk − w, gk〉 −

1

τ

∑

k∈Tj

Dψ(w,wk)

η



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≤ 1

τ

J∑

j=1

∑

k∈Tj

(
max
w∈Ω
〈wk − w, gk〉 −

Dψ(w,wk)

η

)

=
1

τ

K∑

k=1

(
max
w∈Ω
〈wk − w, gk〉 −

Dψ(w,wk)

η

)

Thus, we have

K∑

k=1

〈gk, wk − u〉 ≤
τ(ψ(u) −minw∈Ω ψ(w))

η
+

K∑

k=1

(
max
w∈Ω
〈wk − w, gk〉 −

Dψ(w,wk)

η

)

D.3 Other Technical Lemmas

Lemma 47. Let xi be a sequence of vectors, pi a probability distribution and ai arbitrary scalars, then

∥∥∥∥∥
∑

i

piaixi

∥∥∥∥∥

2

≤
(∑

i

pi ‖xi‖2
)
∑

j

pja
2
j


 .

Proof.

∥∥∥∥∥
∑

i

piaixi

∥∥∥∥∥

2

=

∥∥∥∥∥
∑

i

pia
2
i

xi
ai

∥∥∥∥∥

2

=

∥∥∥∥∥
∑

i

pia
2
i∑

j pja
2
j

xi
ai

∥∥∥∥∥

2

∑

j

pja
2
j




2

≤
∑

i

pia
2
i∑

j pja
2
j

∥∥∥∥
xi
ai

∥∥∥∥
2

∑

j

pja
2
j




2

(Jensen’s)

=

(∑

i

pi ‖xi‖2
)
∑

j

pja
2
j


 .
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