
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning

Ziheng Qin* Kai Wang∗† Zangwei Zheng Jianyang Gu
Xiangyu Peng Daquan Zhou Yang You‡

National University of Singapore
{zihengq, kai.wang, youy}@comp.nus.edu.sg

Code: https://github.com/henryqin1997/InfoBatch

Abstract

Data pruning aims to obtain lossless performances as
training on the original data with less overall cost. A com-
mon approach is to simply filter out samples that make less
contribution to the training. This leads to gradient expecta-
tion bias between the pruned and original data. To solve
this problem, we propose InfoBatch, a novel framework
aiming to achieve lossless training acceleration by unbi-
ased dynamic data pruning. Specifically, InfoBatch ran-
domly prunes a portion of less informative samples based
on the loss distribution and rescales the gradients of the
remaining samples. We train the full data in the last few
epochs to improve the performance of our method, which
further reduces the bias of the total update. As a plug-
and-play and architecture-agnostic framework, InfoBatch
consistently obtains lossless training results on CIFAR-10,
CIFAR-100, Tiny-ImageNet, and ImageNet-1K saving 40%,
33%, 30%, and 26% overall cost, respectively. We extend
InfoBatch into semantic segmentation task and also achieve
lossless mIoU on ADE20K dataset with 20% overall cost
saving. Last but not least, as InfoBatch accelerates in data
dimension, it further speeds up large-batch training meth-
ods (eg. LARS and LAMB) by 1.3 times without extra cost
or performance drop. The code will be made public.

1. Introduction
In the past decade, deep learning has achieved remark-

able progress in the computer vision area [12, 43, 17, 37].
Most state-of-the-art methods [12, 43, 27] are trained on
ultra-large-scale datasets, but the heavy training cost is
hardly affordable for researchers with limited computing re-
sources. Reducing the training effort for large-scale datasets
has become urgent for broader computer vision and other
deep-learning applications.

*Equal contribution.
†project lead.
‡Corresponding author.

Hard
Prune

K Iterations
Acc 78.2%

Acc 71.0%

0.06
0.15
0.40

0.02

Bias
O(𝑙𝑜𝑔𝑁)
Sorting

(a) Previous methods [42, 35, 36] prune samples via setting some
heuristic metrics (e.g. EL2N score). The hard pruning operation
results in biased gradient expectation (green lines) and sub-optimal
training results.

Soft
Prune

Rescale

K Iterations
0.06
0.15
0.40

Acc 78.2%
Acc 78.2%

0.02

O(1)
Compare

(b) Our proposed InfoBatch randomly prunes samples with small
loss values and rescales the updates of them. Thereby Info-
Batch maintains approximately the same gradient expectation
(blue lines) as training on the original dataset.

Figure 1: Visualization of difference between InfoBatch
and a previous data pruning method (EL2N [35]). Info-
Batch achieves lossless acceleration performance compared
to previous works, while EL2N encounters a performance
drop of 7.2%. Experiments are conducted with ResNet-18
under the same pruning ratio of 30% on the CIFAR-100
dataset. The semi-transparent triangles represent the vari-
ance range of gradient estimation.

An intuitive solution is to reduce the training sample
amount. Dataset distillation [50, 45, 3, 32, 33] and coreset
selection [16, 4, 44, 40] respectively synthesize or choose
a small but informative dataset from the original large
one. Although the sample amount is reduced, the distil-
lation and selection algorithms lead to extra costs. Besides,
these two methods are also hard to achieve lossless perfor-
mance [51, 50, 19, 3, 45]. Another solution is weighted
sampling methods [52, 9, 20] that aim to improve the sam-
pling frequency of certain samples. It improves the conver-
gence speed, but their accelerations are sensitive to models
and datasets [52]. LARS [48] and LAMB [49] enable a

ar
X

iv
:2

30
3.

04
94

7v
1

 [
cs

.C
V

]
 8

 M
ar

 2
02

3

https://github.com/henryqin1997/InfoBatch

super large batch size to improve data parallelism during
training to reduce the overall training time. However, more
computation units are required and the total training cost is
not reduced, which limits the effect under constraint com-
putation resources.

Most recently, a series of works propose to accelerate
training by reducing the total training iterations. [42, 35]
estimate a score for each sample and accordingly prune less
informative samples. However, these methods usually need
several trials to estimate more accurate scores, which re-
quires extra overhead even longer than training time (as
shown in Tab. 2) for large-scale datasets (e.g. ImageNet-
1K). To reduce this heavy overhead, [36] dynamically
prunes the samples based on scores, e.g., loss values, dur-
ing the training without trials. Nevertheless, this work still
needs to sort the whole dataset by the score in each prun-
ing cycle, which leads to O(logN) (N denotes the number
of samples) per sample time complexity on sorting. There-
fore, it is impractical to apply this methods [42, 35, 36] on
large-scale datasets, such as ImageNet-1K. Meanwhile, di-
rectly pruning data may lead to a biased gradient estimation
as illustrated in Fig. 1a, which affects the convergence re-
sult. This is a crucial factor that limits their performance,
especially under a high pruning ratio.

To tackle these issues, we propose InfoBatch, a novel un-
biased dynamic data pruning framework based on the idea
of maintaining the same total update between training on
the pruned and original datasets. We refer to this idea as
expectation rescaling for simplicity. Specifically, given a
dataset, we maintain a score of each sample with its loss
value during forward propagation. We randomly prune a
certain portion of small-score (i.e. well-learned) samples in
each epoch. Different from previous methods where well-
learned samples are dropped directly, as shown in Fig. 1b,
we scale up the gradient of those remaining small-score
samples to keep the approximately same expectation as the
original dataset. Compared to previous works [42, 35, 36],
the gradient expectation bias in optimization between Info-
Batch and standard training is reduced, as illustrated in the
right part of Fig. 1a and 1b. In order to further reduce the
bias of the total update, we train with the full dataset in the
last few epochs. We provide theoretical analysis in Sec 3.3
to prove our proposed InfoBatch is an unbiased dynamic
data pruning framework.

InfoBatch is compatible with various deep-learning
tasks. In this paper, we investigate its effect on classifica-
tion and semantic segmentation tasks. Under the same batch
size and computational resource budget, InfoBatch achieves
lossless training performances with 20%∼ 40% less overall
cost across various tasks and architectures. It helps mitigate
the heavy computation cost for training on ultra-large-scale
datasets. The time complexity of InfoBatch is O(1) per
sample, which is significantly faster than previous works

(O(logN)), especially when N is huge. Our contributions
are summarized as follows,

• We propose a novel framework termed as InfoBatch,
aiming to achieve lossless training acceleration by un-
biased dynamic data pruning.

• InfoBatch prunes less informative samples based on
loss value distribution and maintains the same gradient
update expectation as training on the original dataset
via expectation scaling.

• InfoBatch reduces the overall cost by 20% ∼ 40%
across various architectures on different datasets in-
cluding CIFAR-10, CIFAR-100, ImageNet-1K, and
ADE20K, showing its effectiveness and generality for
accelerating the training of deep-learning.

2. Related Works
Static Data Pruning. The motivation for static data

pruning methods [42, 35, 19, 22, 13] is to utilize fewer
samples while achieve comparable results as the original
dataset. Almost all the methods are based on predefined
or heuristic metrics. These metrics can be roughly di-
vided into the following categories: geometry-based [1,
39], uncertainty-based [6], error-based [42, 35], decision-
boundary-based [13], gradient-matching [31, 21], bilevel
optimization [22] and submodularity-based methods [19].
Contextual Diversity (CD) [1], Herding [46], and k-Center
remove the redundant samples based on their similarity to
the rest of the data. Cal [30] and Deepfool [13] select sam-
ples based on their difficulties for learning. FL [19] and
Graph Cut (GC) [19] consider the diversity and informa-
tion simultaneously by maximizing the submodular func-
tion. Recently GraNd and EL2N [35] propose to estimate
sample importance with gradient norm and error-L2-norm.
The main limitation of these works can be summarized as
follows: 1). The predefined or heuristic metrics can not
work well across architectures or datasets. 2). The extra
cost of these methods is not negligible. As illustrated in
Tab. 2, the extra time cost of EL2N is 17.5 hours, which is
even longer than the 12.3-hour training time.

Dynamic data pruning. Dynamic data pruning aims
to save the training cost by reducing the number of itera-
tions for training. The pruning process is conducted dur-
ing training and sample information can be obtained from
current training. [36] proposes two dynamic pruning meth-
ods called UCB and ε-greedy. An uncertainty value is de-
fined and the estimated moving average is calculated. Once
for every pruning period, ε-greedy/UCB is used to select a
given fraction of the samples with the highest scores and
then trains on these samples during the period. Under
this dynamic pruning setting, it achieves a favorable per-
formance compared to static pruning methods on CIFAR-

Dataset

𝐷 Arch.

𝐷2

Expectation

Rescaling
𝐷2

𝐷3

Soft

Pruning
𝐷1

Score update for Epoch 𝑡 + 1

Backward update

𝐷1 𝐷2

𝐷3

Figure 2: Illustration of the proposed InfoBatch framework. InfoBatch mainly consists of two operations, named soft pruning
and expectation rescaling. H̄t denotes the mean value of scores of samples. Soft pruning randomly prunes some samples from
D1 with small scores. For remaining samples from D1, expectation rescaling scales up the losses to keep the approximately
same gradient expectation as the original dataset.

10/100[25, 26], while saving the overhead of assessing sam-
ples and pruning before training. Yet the lossless pruning
ratio of a new dataset is still unknown in advance. Besides,
the sorting operation (cost O(logN) per sample on dataset
size N) for obtaining samples with the highest scores is a
huge overhead for extra-large datasets (e.g. ImageNet-1K
has 1.28 million pictures) as it is called multiple times.

Other related works. Large batch training fully ex-
ploits the accelerator’s parallelism power. Nonetheless,
it cannot reduce the overall cost. With fewer iterations,
a large learning rate is needed [14, 18] to keep the up-
date size but make the training unstable. LARS [48] and
LAMB [49] stabilize the training process by normalizing
layer-wise gradients. Stochastic optimization with impor-
tance sampling[52, 9, 20] tries to accelerate the optimiza-
tion convergence speed by sampling certain samples more
frequently. A drawback is that the speed-up is sensitive to
the model and dataset[52]. It cannot directly fit into a train-
ing scheme without knowing how much it speeds up.

3. Methods
In this section, we first review the preliminaries of static

data pruning (including coreset selection) [35, 42, 7, 19, 22,
21] and dynamic data pruning [36]. Then we introduce In-
foBatch and its components. Finally, we provide a detailed
theoretical analysis to prove that InfoBatch achieves unbi-
ased data pruning results.

3.1. Preliminaries

In this part, we briefly introduce preliminaries of several
data pruning strategies.

Static Pruning. Given a large-scale dataset D =

{zi}||D|i=1 = {(xi, yi)}||D|i=1, we can define a score H(z) for
each sample. During training, samples are drawn from a
pruning probability P defined on top of H. Static prun-
ing aims to select a static subset that achieves comparable
results as the original dataset with less storage and train-

ing cost. It directly discards all samples satisfying a certain
condition. This results in P(z;H) ∈ {0, 1}. For examples,
[42] defines:

P(z;H) = 1(H(z) < H̄t), (1)

where H̄t is a threshold and 1(·) is indicator function. A
subset S is formed by pruning samples with P(z;H) = 1.

Fig. 1a briefly illustrates the whole process of static prun-
ing. One can find that directly dropping the samples with
low scores and training on the rest samples could be prone
to a gradient expectation bias compared to training on the
original dataset. We also provide a more detailed theoreti-
cal analysis in Appendix.

Dynamic Pruning. Different from static pruning, dy-
namic pruning aims to save the training cost by reducing
the number of iterations during the training[36]. Also, scor-
ing and selection are both necessary. The biggest difference
is that the score Ht can change along with the training pro-
cess, where t denotes the temporal status. As a result, the
probability is also a step-dependent one:

Pt = P(z;Ht), (2)

and forms a dynamic pruned dataset St.
Compared to static pruning, dynamic pruning has access

to all the original data during training. Thus the gradient
expectation bias should be much smaller than static prun-
ing. However, such a scheme still has the following limita-
tions: i). As claimed in [36], low-score samples of differ-
ent t during the training could easily overlap, and directly
pruning them every time may still lead to a bias (see it in
Fig. 1a). ii). Pruning samples leads to reduced number
of gradient updates. Under the premise of saving training
cost, many dynamic pruning methods [36] hardly achieve
lossless results compared to training on the original dataset.
iii). Scoring and sorting operations in dynamic pruning are
conducted multiple times, the overhead of which limits the
application on large-scale datasets.

3.2. Overview of InfoBatch

Based on the above observation and analysis, we propose
InfoBatch, a novel framework for achieving lossless train-
ing acceleration based on unbiased dynamic data pruning.
As illustrated in Fig. 2, we maintain a score for each sam-
ple with its loss value during forward propagation. We set
the mean of these values as the pruning threshold. A cer-
tain portion of small-score samples is accordingly pruned
in each epoch. Then, to obtain the same expectation of
gradient as the original dataset in each epoch, we scale up
the gradients of the remaining small-score samples. By do-
ing this, compared to previous static and dynamic pruning
methods [42, 35, 7, 36, 19], the performance differences be-
tween training on the pruned dataset and the original dataset
are reduced. In order to further reduce the bias of the total
update, we train with the full dataset in the last few epochs.

3.3. Unbiased Prune and Rescale

InfoBatch adopts the dynamic pruning process as in
Eqn. 2. We first define our pruning policy Pt. Previ-
ous methods using a deterministic pruning operation could
cause bias as discussed above. In contrast, we introduce
randomness into the pruning process to solve this. Given a
dataset D, in t-th epoch, we assign a pruning probability to
each sample based on its score. Such a soft pruning policy
is formulated as:

Pt(z) =

{
r, Ht(z) < H̄t
0, Ht(z) ≥ H̄t

, (3)

where H̄t is the mean value of all the scores Ht and r ∈
(0, 1) is a predefined hyper-parameter as the pruning prob-
ability. Our new prune policy has the following benefits: i).
Soft pruning allows each small-score sample to be utilized
for training, which reduces the bias caused by hard pruning
in previous dynamic pruning methods. ii). Our proposed
strategy is based on the comparison with H̄t, with no re-
quirement to sort the whole training samples, which reduces
the time complexity from O(logN) to O(1). It indicates
that InfoBatch could be practical on large-scale datasets.

Then, we utilize loss values L(z) of each sample as the
corresponding score based on the following two reasons: i).
loss values can be obtained without extra cost, ii). loss val-
ues reflect the learning status of samples [5]. Specifically,
in the t-th (t > 0) epoch, we utilize the soft pruning pol-
icy to prune samples based on their scores. After that, for
the pruned samples, their scores remain unmodified as pre-
vious. For the remaining samples, their scores are updated
by the losses in the current epoch. Mathematically, Ht(z)
would be updated by the latest losses to Ht+1(z) for the
following epochs:

Ht+1(z) =

{
Ht(z), z ∈ D\St
L(z), z ∈ St

. (4)

Note that, for the first epoch, we initialize the scores with
{1} provided no previous loss.

There are several significant benefits of our soft pruning
policy, yet it still cannot avoid the influence caused by the
less number of gradient updates. To address this issue, we
scale up the gradients of the remaining samples. Specif-
ically, given a remaining sample with score H(z) < H̄t,
whose corresponding pruning probability is r, we rescale
its gradient to 1/(1− r). For the samples with scores larger
than H̄t, the loss is not modified. Thereby the gradient up-
date expectation is approximately equal to training on the
original dataset. Besides, as the rescaling is operated on
small-score samples, it further refines the direction of gra-
dient update expectation. We provide the following theoret-
ical analysis to demonstrate the necessity and advantages of
the expectation rescaling operation.

Theoretical Analysis. We can interpret the training ob-
jective as minimizing empirical risk L. Assuming all sam-
ples z from D are drawn from continuous i.i.d. distribution
ρ(z), we can establish the training objective as:

arg min
θ∈Θ

E
z∈D

[L(z, θ)] =

∫
z

L(z, θ)ρ(z)dz. (5)

After applying our proposed pruning, we sample z ac-
cording to normalized (1 − Pt(z))ρ(z). In backpropaga-
tion, rescaling loss is equivalent to rescaling the gradient.
By rescaling the loss of each sample z with a factor γt(z) (
∀z ∈ D,Pt(z) = 0 ⇒ γt(z) = 1), the training objective
on St becomes:

arg min
θ∈Θ

E
z∈St

[γt(z)L(z, θ)]

= arg min
θ∈Θ

∫
z
(1− Pt(z))γt(z)L(z, θ)ρ(z)dz∫

z
(1− Pt(z))ρ(z)dz

.
(6)

By setting γt(z) = 1/(1− Pt(z)), Eqn. 6 becomes

arg min
θ∈Θ

1

ct

∫
z

L(z, θ)ρ(z)dz, (7)

where ct = Ez∼ρ[1 − Pt(z)] =
∫
z
ρ(z)(1 − Pt(z))dz,

ct ∈ (0, 1) is a constant for temporal status t. Then the
objective in Eqn. 7 is a constant-rescaled version of the
original objective in Eqn. 5. Therefore, training on St with
rescaled factor γt(z) could achieve a similar result as train-
ing on the original dataset. Furthermore, we find these op-
erations also leverage the problem of reduced iterations. In

Table 1: The accuracy (%) comparison to state-of-the-art methods. All methods are trained with ResNet-18. As InfoBatch
has a self-adaptive ratio, we mark the results with † where the same forward propagation number during training are matched.
Random* denotes dynamic random pruning. Due to the differences of hyper-parameter designs, for static methods, we report
the Tiny-ImageNet results in the original paper. Our results are reproduced by ourselves. Details are available in Appendix.

Dataset CIFAR10 [25] CIFAR100 [26] Tiny-ImageNet [27]

Prune Ratio % 70 50 30 70 50 30 50 40 30 0

Static

Random 90.2↓5.4 93.3↓2.3 94.6↓1.0 69.7↓8.5 72.1↓6.1 73.8↓4.4 38.2↓12.9 41.2↓9.9 44.3↓6.8 51.1±0.2

CD [1] 90.8↓4.8 94.3↓1.3 95.0↓0.6 70.3↓7.9 72.3↓5.9 74.2↓4.0 - - - -
Herding [46] 80.1↓15.5 88.0↓7.6 92.2↓3.4 69.6↓8.0 71.8↓6.4 73.1↓5.1 38.8↓12.3 42.2↓8.9 44.8↓6.3 51.1±0.2

K-Center [39] 90.9↓4.7 93.9↓1.7 94.7↓0.9 70.2↓8.0 72.2↓6.0 74.1↓4.1 - - - -
Least Confidence [6] 90.3↓5.3 94.5↓1.1 95.0↓0.6 69.8↓8.4 72.3↓5.9 74.2↓4.0 - - - -

Margin [6] 90.9↓4.7 94.3↓1.3 94.9↓0.7 70.2↓8.0 72.2↓6.0 74.0↓4.2 - - - -
Forgetting [42] 91.7↓3.9 94.1↓1.5 94.7↓0.9 69.9↓8.3 73.1↓5.1 75.3↓2.9 39.1↓12.0 42.5↓8.6 46.3↓4.8 51.1±0.2

GraNd [35] 91.2↓4.4 94.6↓1.0 95.3↓0.3 68.8↓9.4 71.4↓6.8 74.6↓3.6 37.2↓13.9 40.8↓10.3 45.1↓6.0 51.1±0.2

DeepFool [13] 90.0↓5.6 94.1↓1.5 95.1↓0.5 69.8↓6.4 73.2↓5.0 74.2↓4.0 - - - -
Craig [31] 88.4↓7.2 93.3↓3.3 94.8↓0.8 69.7↓8.5 71.9↓6.3 74.4↓3.8 - - - -

Glister [22] 90.9↓4.7 94.0↓1.6 95.2↓0.4 70.4↓7.8 73.2↓5.0 74.6↓3.6 - - - -
Influence [24] 88.3↓7.3 91.3↓4.3 93.1↓2.5 68.9↓9.5 72.0↓6.2 74.4↓3.8 37.7↓13.4 41.2↓9.9 45.3↓5.8 51.1±0.2

EL2N [42] 89.8↓5.8 93.2↓2.4 94.4↓1.2 68.5↓9.7 71.0↓7.2 74.1↓4.1 37.1↓14.0 40.1↓11.0 44.5↓6.6 51.1±0.2

DP [47] 90.8↓4.8 93.8↓1.8 94.9↓0.7 - 73.1↓5.1 77.2↓1.0 40.5↓10.6 43.6↓7.5 46.7↓4.4 51.1±0.2

Dynamic

Random* 93.0↓2.6 94.5↓1.1 94.8↓0.8 - 75.3↓2.9 77.3↓0.9 - - - -
ε-greedy[36] 94.1↓1.5 94.9↓0.7 95.2↓0.4 - 74.8↓3.4 76.4↓1.8 - - - -

UCB [36] 93.9↓1.7 94.7↓0.9 95.3↓0.3 - 75.3↓2.9 77.3↓0.9 - - - -
InfoBatch †94.7↓0.9 †95.1↓0.5 95.6↑0.0 †77.6↓0.6 †78.2↑0.0 78.8↑0.6 59.5↑0.0 59.6↑0.1 60.2↑0.7 59.5±0.4

Whole Dataset 95.6±0.1 78.2±0.1 59.5±0.4

real-world application, we consider the dataset as discrete
case and provide specific analysis as follows,

E
[

1

ct

]
=

|D|∑
z∈D(1− Pt(z))

' |D|
|St|

. (8)

In implementation we force a deterministic result of 1
ct

=
|D|
|St| , so that we can substitute Eqn. 8 into Eqn. 7, and do a
differentiation of loss L over θ as follows:

E[∇θL(St)] '
|D|
|St|

E[∇θL(D)]. (9)

For each epoch, the iteration number, i.e. gradient update
number becomes |St||D| of the original one, while our method

scale the expected gradient to |D||St| . As a result, this would
leverage the influence of reduced gradient update number.
The approximation will hold when the pruning ratio is not
too high. We provide a detailed analysis in the Appendix.

3.4. Annealing

Based on the theoretical analysis above, the objectives
and updating expectations between InfoBatch and training
on the original dataset are approximately the same. How-
ever, there still exist minor differences between the opti-
mization on D and St. During training, if a sample is
pruned in the middle stage, it is still likely to be revisited
afterwards. However, in the last few epochs, the revisiting

probability drastically drops, resulting in remaining gradi-
ent expectation bias. Therefore, given training epoch C, we
define a ratio hyper-parameter δ ∈ (0, 1). The pruning is
only conducted in the first δ ·C epochs. After that, we train
on the full dataset till end. The corresponding operation can
be interpreted as

Pt(z) =

{
r, Ht(z) < H̄t ∧ t < δ · C
0, Ht(z) ≥ H̄t ∨ t ≥ δ · C

. (10)

Combining the above components, InfoBatch achieves loss-
less training performance with fewer iterations compared
with training on the original dataset.

4. Experiments
4.1. Datasets and Implementation Details

We verify the effectiveness of our method on multi-
ple popular datasets, including CIFAR-10/100 [25, 26],
ImageNet-1K [11] and ADE20K [53].

CIFAR-10/100. Two CIFAR datasets consist of 32× 32
size colored natural images divided into 10 and 100 cate-
gories, respectively. In each dataset, 50,000 images are used
for training and 10,000 images for testing.

ImageNet-1K is the subset of the ImageNet-21k dataset
with 1,000 categories. It contains 1,281,167 training images
and 50,000 validation images.

ADE20K is a popular semantic segmentation bench-
mark. It contains more than 20,000 images with pixel-level
annotations of 150 semantic categories.

Implementation Details. All experiments are con-
ducted with an A100 GPU server. For InfoBatch, default
value r = 0.5 and δ = 0.875 are used if not specified.
For classification tasks, We train ResNet18 and ResNet-
50[17] for evaluation. On CIFAR-10/100 and ImageNet-
1K, all models are trained with OneCycle scheduler (with
cosine annealing) [41, 29] with default setting and LARS
optimizer [48] with momentum 0.9, weight decay 5e-4; On
Tiny-ImageNet, we use SGD [38] optimizer and cosine an-
nealing optimizer. All images are augmented with com-
monly adopted transformations, i.e. normalization, random
crop, and horizontal flop. The implementation is based on
PyTorch [34]. For the semantic segmentation task, we con-
duct experiments on ADE20K [53]. The chosen network is
UperNet with backbone R-50. We follow the default con-
figuration of the mmsegmentation [8]. All other details can
be found in Appendix. The code is available in the supple-
mentary material.

4.2. Comparisons with SOTA methods

Performance Comparisons. We compare our proposed
InfoBatch with static and dynamic data pruning methods
in Tab. 1 on CIFAR-10 [25], CIFAR-100 [26], and Tiny-
ImageNet [27] datasets. In the first part, we introduce static
pruning methods, the simplest baseline of which is random
selection before training. Influence [24] and EL2N [35]
are two classical static pruning methods that prune sam-
ples based on Influence-score and EL2N-score. DP [47]
conducts pruning with consideration of generalization. To
make a wider comparison, we include 10 coreset selection
methods. These methods [19, 1, 46, 39, 6, 35, 13, 31, 22, 24]
select a coreset of data via their predefined score function or
heuristic knowledge. Then, we introduce 3 dynamic prun-
ing methods in the second part. Following [36], we also
construct a dynamic pruning baseline, termed as Random∗,
which conducts random selection in each epoch. Compared
to Random operation in Tab. 1, the diversity of training sam-
ples in Random∗ is much better than Random. Therefore,
as shown in Tab. 1, Random∗ usually performs better than
Random. ε-greedy [36] is inspired by reinforcement learn-
ing. UCB [36] proposes to prune samples using the upper
confidence bound of loss.

Based on the comparisons in Tab. 1, we have the fol-
lowing observations: 1). Under 30% pruning ratio, only
InfoBatch achieves lossless performances among the three
datasets. Other methods only obtain near-lossless results
on CIFAR-10 dataset while encountering large performance
drops on CIFAR-100 and Tiny-ImagNet datasets. 2). As
the pruning ratio increases, InfoBatch continuously outper-
forms other methods by an even larger accuracy margin.

Table 2: Comparison of performance and time cost on
ImageNet-1K. Results are reported with ResNet-50 under
30% prune ratio for 90 epochs on an 8-A100-GPU server.
The extra cost denotes overhead caused by the used algo-
rithm. All the results are obtained from the same hardware.

GC EL2N UCB Ours Whole Dataset

Performance (%) 74.5±0.4 - - 76.6±0.2 76.4±0.2

Training time (h) 12.3 12.3 12.3 12.3 17.5
Extra time cost (h) >24 >17.5 0.04 0.002 0.0
Total GPU hour (h) >122.4 >238.4 98.7 98.4 140.0

Table 3: Ablation of proposed operations in the proposed
framework. We set r = 0.5 in the experiments. Random∗

is consistent with the definition in Tab. 1.

Operation Acc.
P Rescaling Annealing R-18 R-50

Random∗ 77.3 79.7
Soft Pruning 77.5 79.9
Soft Pruning X 78.8 80.1
Soft Pruning X 77.8 80.0
Soft Pruning X X 78.8 80.6

Full Dataset 78.2 80.6

It validates the effectiveness of the proposed unbiased dy-
namic pruning strategy.

Efficiency Comparisons. In addition to the perfor-
mance comparison, we also compare the efficiency between
Infobatch and other methods. Although the motivations of
these methods are diverse, their main goal is to save train-
ing costs. Thus, we report training time, extra cost, and to-
tal GPU hours of these methods in Tab. 2. Under the same
computational condition, static pruning methods GC [19]
and EL2N [42] require even more time than the actual train-
ing run to process the pruning. Previous state-of-the-art dy-
namic data pruning method UCB [36] shows far better effi-
ciency in the pruning process. However, as shown in Tab. 1,
UCB is hard to achieve lossless training performance even
on CIFAR-100. In contrast, InfoBatch further reduces the
extra time cost by 20 times than UCB, taking only 8.4 sec-
onds for 90 epochs of pruning. More importantly, InfoBatch
achieves lossless performance on ImageNet-1K at the prun-
ing ratio of 30%.

4.3. Ablation Experiments

We perform extensive ablation experiments to illustrate
the effects of InfoBatch. If not stated, the experiments are
conducted on CIFAR-100 by default.

Evaluating the components of InfoBatch. We de-
sign an ablation study to investigate the soft pruning policy,
expectation rescaling, and annealing operations in the In-

Table 4: Evaluation of different prune conditions. The sam-
ples satisfying the conditions are pruned under r = 0.5.
Experiments are conducted on CIFAR-100 using R-50.

Prune Condition Acc. (%) Pruned (%) GPU Hours (h)

Ht(z) < H̄t 80.6 33 1.48
Ht(z) > H̄t 80.5 16 1.87

Full Dataset 80.6 0 2.20

foBatch in Tab. 3. Dynamic random pruning, serving as
the baseline method, fails to achieve lossless performance
on all the architectures. It can be explained that due to
pruning, the gradient update number is reduced compared
to training on the original dataset. Only applying soft prun-
ing obtain marginally better results than dynamic random
pruning. Second, the proposed rescale and anneal opera-
tions are consistently complementary and achieve lossless
performances in all settings, which aligns with our theoreti-
cal analysis. Third, rescaling obtains better correction to the
gradient expectation bias on these two tasks than annealing.

Exploring where to prune. In our default setting, we
prune samples with Ht(z) < H̄t. Another possible rule
is to prune samples with Ht(z) > H̄t. We compare the
performance and overall training GPU hours of these two
prune strategies in Tab. 4. Compared to training on the orig-
inal dataset, both strategies achieve lossless performance.
It demonstrates that InfoBatch is not sensitive to the prun-
ing strategy differences. Compared in more detail, prun-
ing lower score samples is more efficient as it prunes 17%
more samples than pruning high score samples. It can be ex-
plained by the loss distribution of entropy-based optimiza-
tion usually being long-tailed [45, 15] as training processes.
We provide more visualizations of the loss distribution in
the Appendix.

Evaluation of ratio r. We define r as the probabil-
ity to prune a sample x when Ht(z) < H̄t. In Fig. 3a,
we evaluate the effect under different pruning ratios with
ResNet-18 (R-18) and ResNet-50 (R-50) on CIFAR-100.
Setting r ≤ 0.5 obtains lossless performance on both ar-
chitectures, which indicates InfoBatch is not too sensitive
on hyper-parameter r. Another finding is that setting too
large r > 0.5 leads to degraded performances on both ar-
chitectures. This is mainly due to the increased variance
when too many samples are pruned. Considering the effi-
ciency and performance, we set r = 0.5 by default. More
discussion and analysis can be found in the Appendix.

Evaluation of δ. To further reduce the gradient expecta-
tion bias, we introduced an annealing operation in the last
few epochs. δ is defined as a quantile of given training
epoch number C. We evaluate it from 0.75 to 0.95 and re-
port the performances in Fig. 3b. A larger δ means fewer
annealing epochs, leaving more remaining bias, which re-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
r

75.0

77.5

80.0

A
cc

. (
%

)

R-50 R-18

(a) Evaluation of r.

0.75 0.775 0.825 0.875 0.9 0.95

78

79

80

81

A
cc

. (
%

)

R-50 R-18

(b) Evaluation of δ.

Figure 3: Evaluation curves of hyper-parameter r and δ on
R-18 and R-50. Best viewed in color.

Table 5: Cross-architecture robustness results of InfoBatch.
‘Full Dataset’ denotes training on the original dataset.

CIFAR-10 CIFAR-100 ImageNet-1K
R-18 R-50 R-18 R-50 R-18 R-50

Full Dataset 95.6 95.6 78.2 80.6 70.5 76.4
InfoBatch 95.5 95.6 78.8 80.6 70.4 76.8

Overall Saving (%) 39.2 39.3 33.8 33.9 26.1 26.2

Table 6: Comparison of performance and saved overall cost
on CIFAR-10 when trained with R-50 using different opti-
mizers. All the results are obtained from the same hardware.

SGD Adam RAdam LARS LAMB

Full Dataset (%) 95.6 94.3 95.0 95.5 95.0
InfoBatch (%) 95.6 94.5 95.0 95.5 95.0

Saved (%) 39.1 37.5 37.4 38.3 39.0

sults in degraded performance. When δ ≤ 0.875, lossless
performance can be achieved with the largest overall cost
saving. Not many tuning efforts are required for obtaining
lossless results.

4.4. Generalization Evaluation

Cross-architecture robustness evaluation. InfoBatch
is not correlated to specific model architectures, thereby it is
a model-agnostic framework. In order to evaluate the cross-
architecture generality of InfoBatch, we train R-18 and R-
50 on CIFAR-10, CIFAR-100, and ImageNet-1K. As illus-
trated in Tab. 5, we achieve lossless training performances
under all settings, which indicates strong generality of In-
foBatch. We also report the overall cost saving in Tab. 5.
One can observe that InfoBatch saves more than 26% over-
all cost on training these datasets. Another finding is that
InfoBatch reduces training costs more significantly on eas-
ier datasets, such as saving nearly 40% on CIFAR-10.

Cross-optimizer robustness evaluation. In the deep-
learning area, there are various optimizers [38, 23, 28, 48,

Scope

(a) Loss curve on ADE20K.

1 2 3 4 5 6 7 8 9 10
Test Index

25

30

35

40

45

m
Io

U
 (%

)

InfoBatch Baseline

(b) mIoU curve on ADE20K.

Overhead: 8.4s
Saving: 4.4h

Overhead: 18.3s
Saving: 10.2h

(c) Overhead and savings. (d) Pruned numbers and Acc.

Figure 4: (a)(b) Evaluation of the proposed InfoBatch framework on ADE20K. With 80% iteration and overall cost, InfoBatch
achieves lossless performance on semantic segmentation task. (c) InfoBatch saves the overall cost by more than 25% on
ImageNet-1K. (d) The pruned number and accuracy curve during the ImageNet-1K training process. Best viewed in color.

49] that are broadly adopted. We verify InfoBatch’s robust-
ness across these optimizers. As shown in Tab. 6, Info-
Batch achieves lossless performance with five popular opti-
mizers, and the overall cost saving is stable across optimiz-
ers. Specifically, we apply InfoBatch to large-batch training
optimizers LARS and LAMB. As InfoBatch accelerates in
data dimension, InfoBatch further speeds up training by 1.3
times without extra cost or performance drop. It shows that
InfoBatch has the potential to be combined with accelera-
tion methods in other dimensions.

Cross-task robustness evaluation. To verify the gen-
erality of InfoBatch on different tasks other than classifica-
tion, we apply InfoBatch to the semantic segmentation task.
Our implementation is based on mmsegmentation [8]. We
conduct experiments on ADE20K [53] and report the loss
and mIoU curves of training in Fig. 4a and 4b, respectively.
InfoBatch uses 80% of original iterations to achieve loss-
less performance. The result indicates InfoBatch’s general-
ity and robustness across different tasks.

4.5. Visualizations

In order to more intuitively demonstrate the effectiveness
of InfoBatch, we present two visualizations in this section.

Visualization of savings on ImageNet-1K. To further
investigate the efficiency of our InfoBatch in different train-
ing epoch settings, we conduct experiments on ImageNet-
1K using ResNet-50. We report the 90-epoch and 200-
epoch training time comparison of baseline and InfoBatch
in Fig. 4c. All the results are obtained with an 8-A100-
GPU server. We find that InfoBatch consistently reduces
the training time by more than 25%. Furthermore, we show
the overhead time cost of InfoBatch in both settings. Com-
pared to the saved hours (4.4h and 10.2h), the cost of Info-
Batch (8.4s and 18.3s respectively) is negligible. To explore
the characteristic of InfoBatch during training, we visualize
the per epoch pruned number and the validation accuracy
curve in Fig. 4d. We find that the pruned number steadily
increases during early epochs and then keeps stable. This

Original Loss Distribution Step1: Soft Pruning Step2: Rescaling

Loss Value Loss Value Loss Value

InfoBatch

Figure 5: Loss distribution visualizations before and after
applying InfoBatch. Best viewed in color.

explains why the overall cost saving of our InfoBatch is sta-
ble across the training epoch settings as in Fig. 4c. The
efficiency and stability are crucial factors for broader appli-
cations on ultra-large-scale datasets.

Visualization of effects on loss distribution. To bet-
ter illustrate the effects of InfoBatch, we show the loss dis-
tribution of CIFAR-10 trained with ResNet50 in the first
sub-figure of Fig. 5. Soft pruning randomly prunes samples
with loss smaller than the mean as in the second sub-figure
in Fig. 5. This leads to insufficient and biased updates, re-
sulting in performance degradation. The rescaling operation
of InfoBatch shifts the distribution rightwards. In classifica-
tion tasks, the Cross-Entropy loss is actually the sum of neg-
ative log-likelihood. Therefore, rescaling a sample’s loss by
1/(r− 1) times is basically equivalent to duplicating it into
1/(r − 1) copies. By rescaling, we achieves a loss distri-
bution equivalent to the original one in the first sub-figure.
We show the equivalent distribution (the red dashed line)
and the actual scaled distribution in the third sub-figure of
Fig.5. More detailed analysis will be in Appendix.

5. Conclusion
We present InfoBatch, a novel framework for lossless

training acceleration by unbiased dynamic data pruning. In-
foBatch shows its strong robustness on various tasks and

datasets, achieving lossless training acceleration on CIFAR-
10/100, ImageNet-1K, and ADE20K. InfoBatch reduces the
extra overhead cost by at least 20 times compared to pre-
vious state-of-the-art methods, which is practical for real-
world applications. We provide sufficient experiments and
theoretical analysis in this paper and hope it can help the
following research in this area.

Limitations and future works. The current version of
InfoBatch relies on multi-epoch training schemes. How-
ever, GPT-3 [2] and ViT-22B [10] usually train with limited
epochs to avoid remembering the knowledge from the train-
ing dataset. InfoBatch may not work on these tasks. We are
going to explore new strategies for training with [2, 10] in
the future.

References
[1] Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan

Arora. Contextual diversity for active learning. In ECCV,
pages 137–153. Springer, 2020. 2, 5, 6

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 9

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A. Efros, and Jun-Yan Zhu. Dataset distillation by
matching training trajectories. In CVPR, 2022. 1

[4] Ke Chen. On coresets for k-median and k-means clustering
in metric and euclidean spaces and their applications. SIAM
Journal on Computing, 39(3):923–947, 2009. 1

[5] Mirza Cilimkovic. Neural networks and back propagation
algorithm. Institute of Technology Blanchardstown, Blan-
chardstown Road North Dublin, 15(1), 2015. 4

[6] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baha-
ran Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec,
and Matei Zaharia. Selection via proxy: Efficient data selec-
tion for deep learning. In ICLR, 2019. 2, 5, 6

[7] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baha-
ran Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec,
and Matei Zaharia. Selection via proxy: Efficient data selec-
tion for deep learning, 2019. 3, 4

[8] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and bench-
mark. https://github.com/open-mmlab/
mmsegmentation, 2020. 6, 8

[9] Dominik Csiba and Peter Richtárik. Importance sampling
for minibatches, 2016. 1, 3

[10] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner,
Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
et al. Scaling vision transformers to 22 billion parameters.
arXiv preprint arXiv:2302.05442, 2023. 9

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2020. 1

[13] Melanie Ducoffe and Frederic Precioso. Adversarial active
learning for deep networks: a margin based approach. arXiv
preprint arXiv:1802.09841, 2018. 2, 5, 6

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 3

[15] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang,
Dengke Dong, Matthew R. Scott, and Dinglong Huang. Cur-
riculumnet: Weakly supervised learning from large-scale
web images, 2018. 7

[16] Sariel Har-Peled and Soham Mazumdar. On coresets for
k-means and k-median clustering. In Proceedings of the
36th annual ACM symposium on Theory of computing, pages
291–300, 2004. 1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[18] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer,
generalize better: closing the generalization gap in large
batch training of neural networks. Advances in neural in-
formation processing systems, 30, 2017. 3

[19] Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himan-
shu Asanani. Submodular combinatorial information mea-
sures with applications in machine learning. In Algorithmic
Learning Theory, pages 722–754. PMLR, 2021. 1, 2, 3, 4, 6

[20] Tyler B Johnson and Carlos Guestrin. Training deep models
faster with robust, approximate importance sampling. In S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates,
Inc., 2018. 1, 3

[21] Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: Gradient matching
based data subset selection for efficient deep model training.
In ICML, pages 5464–5474, 2021. 2, 3

[22] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh
Ramakrishnan, and Rishabh Iyer. Glister: Generalization
based data subset selection for efficient and robust learning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2021. 2, 3, 5, 6

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014. 8

[24] Pang Wei Koh and Percy Liang. Understanding black-box
predictions via influence functions. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 1885–1894. JMLR. org, 2017. 5, 6

[25] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 3, 5, 6

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

[26] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research). 3, 5, 6

[27] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition
challenge. 2015. 1, 5, 6

[28] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-
ance of the adaptive learning rate and beyond, 2019. 8

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts, 2016. 6

[30] Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and
Nikolaos Aletras. Active learning by acquiring contrastive
examples. arXiv preprint arXiv:2109.03764, 2021. 2

[31] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
Coresets for data-efficient training of machine learning mod-
els. In ICML. PMLR, 2020. 2, 5, 6

[32] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2020. 1

[33] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon
Lee. Dataset distillation with infinitely wide convolutional
networks. NeurIPS, 34:5186–5198, 2021. 1

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 6

[35] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziu-
gaite. Deep learning on a data diet: Finding important exam-
ples early in training, 2021. 1, 2, 3, 4, 5, 6

[36] Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerat-
ing deep learning with dynamic data pruning, 2021. 1, 2, 3,
4, 5, 6

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1

[38] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 6,
8

[39] Ozan Sener and Silvio Savarese. Active learning for con-
volutional neural networks: A core-set approach. In ICLR,
2018. 2, 5, 6

[40] Jae-hun Shim, Kyeongbo Kong, and Suk-Ju Kang. Core-
set sampling for efficient neural architecture search. arXiv
preprint arXiv:2107.06869, 2021. 1

[41] Leslie N. Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates, 2017. 6

[42] Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J.
Gordon. An empirical study of example forgetting during
deep neural network learning, 2018. 1, 2, 3, 4, 5, 6

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention, 2020. 1

[44] Morad Tukan, Alaa Maalouf, and Dan Feldman. Coresets
for near-convex functions. NeurIPS, 33, 2020. 1

[45] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by aligning
features. In CVPR, pages 12196–12205, 2022. 1, 7

[46] Max Welling. Herding dynamical weights to learn. In
ICMLg, pages 1121–1128, 2009. 2, 5, 6

[47] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun,
and Ping Li. Dataset pruning: Reducing training data by ex-
amining generalization influence. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. 5, 6

[48] Yang You, Igor Gitman, and Boris Ginsburg. Large batch
training of convolutional networks, 2017. 1, 3, 6, 8

[49] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Dem-
mel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes, 2019. 1,
3, 8

[50] Bo Zhao and Hakan Bilen. Dataset condensation with distri-
bution matching. arXiv, 1(2):3, 2021. 1

[51] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. ICLR, 1(2):3, 2021. 1

[52] Peilin Zhao and Tong Zhang. Stochastic optimization with
importance sampling, 2014. 1, 3

[53] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 5, 6, 8

