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Abstract

Geophysics has witnessed success in applying deep learning to one of its core
problems: full waveform inversion (FWI) to predict subsurface velocity maps from
seismic data. It is treated as an image-to-image translation problem, jointly training
an encoder for seismic data and a decoder for the velocity map from seismic-
velocity pairs. In this paper, we report a surprising phenomenon: when training an
encoder and decoder separately in their own domains via self-supervised learning,
a linear relationship is observed across domains in the latent spaces. Moreover, this
phenomenon connects multiple FWI datasets in an elegant manner: these datasets
can share the self-learned encoder and decoder with different linear mappings.

Based on these findings, we develop SimFWI, a new paradigm that includes two-
steps: (a) learning a seismic encoder and a velocity decoder separately by masked
image modeling over multiple datasets; (b) learning a linear mapping per dataset.
Experimental results show that SimFWI can achieve comparable results to a jointly
trained model from the supervision of paired seismic data and velocity maps.

1 Introduction

Geophysical inversion techniques are crucial for revealing subsurface layering and geophysical
properties (such as velocity and conductivity), supporting important applications such as energy
exploration, carbon capture, and sequestration, groundwater contamination and remediation, and
earthquake early warning systems. In this field, the full waveform inversion (FWI) is a well-known
method to infer subsurface velocity map from the seismic data, which are mathematically connected
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by an acoustic wave equation as:

∇2p(x, z, t)− 1

c2(x, z)

∂2

∂t2
p(x, z, t) = s(x, z, t), (1)

where p(x, z, t) represents the seismic data and c(x, z) is the velocity map. s(x, z, t) is the source
term. x is the horizontal direction, z is the depth, t denotes time, and∇2 is the Laplacian operator. In
practice, seismic data is usually collected by the sensors on the surface. Thus, we only have the 2D
seismic data p(x, z = 0, t), abbreviating it as p(x, t).
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Figure 1: Overview of SimFWI. Compared to the jointly trained encoder-decoder (top), SimFWI
(bottom) decouples the encoder and decoder and self-supervised trains them separately in their own
domains. Then, a linear converter is learned to connect the frozen, pre-trained encoder and decoder.

Recent works Wu & Lin (2019); Zhang et al. (2019); Sun et al. (2021); Jin et al. (2022) consider FWI
as an image-to-image translation problem constrained by a wave equation, and leverage deep neural
networks in the solution. As shown in Figure 1-a, they learn an encoder-decoder architecture to map
seismic data to velocity. Note that the encoder and decoder are jointly trained from the supervision of
paired seismic data and velocity maps.

In this paper, we shift the paradigm to decouple the encoder and decoder and train them separately
in their own domains via self-supervised learning. In particular, we train two masked autoencoders
(MAE) He et al. (2022) separately, i.e. one for seismic data and one for velocity maps (see Figure 1-
b). Surprisingly, we observe a linear correlation between the two latent spaces. This means the
self-pretrained encoder and decoder can be frozen, and we only need to learn a linear converter
to connect them from the paired seismic data and velocity map. This introduces an interesting
insight into FWI: the self-consistent representation within each domain is associated with simpler
mapping across domains. We name this method SimFWI, as it simplifies the mapping (linear) in
FWI between seismic data and velocity map via domain-independent self-supervised learning.

Furthermore, SimFWI provides a better understanding of the relationship among multiple FWI
datasets with different subsurface structures. We found that these datasets can share both encoders
and decoders, but have different linear mappings between the latent spaces of two domains (i.e.
seismic data and velocity map). Essentially, the two domains have a piece-wise linear relationship
over multiple datasets. In addition, we found a correlation between the linear layer’s singular values
and the complexity of the dataset.

SimFWI achieves solid performance on multiple FWI datasets. It has comparable results to the
InversionNet Wu & Lin (2019), a jointly trained model that uses paired data as supervision, with
only half the model size (12.3M vs. 24.4M). In the few-shot context where only limited paired data
exists, SimFWI outperforms the InversionNet. Moreover, it is more robust to large, noisy data and
the pre-trained encoder and decoder have a strong generalization ability.
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Variable Definition

p(x, t) seismic data
c(x, z) velocity maps
Es encoder of seismic data
Ds decoder of seismic data
Ev encoder of velocity map
Dv decoder of velocity map
Φ linear converter

Table 1: Table of Notation.

2 Related Works

Recently, data-driven methods for FWI have been developed. They consider the FWI as an image-to-
image problem and jointly train the encoder-decoder network to solve it. Araya-Polo et al. (2018) use
a fully connected network to invert velocity maps. Wu & Lin (2019) adopted an encoder-decoder
CNN to solve. Zhang et al. (2019) employ GAN and transfer learning to improve the generalization.
In Zeng et al. (2021), authors present an efficient and scalable encoder-decoder network for 3D
FWI. Feng et al. (2021) develop a multi-scale framework with two convolutional neural networks to
reconstruct the low- and high-frequency components of velocity maps. A thorough review of deep
learning for FWI can be found in Lin et al. (2023).

Jin et al. (2022) use the finite difference to approximate the forward modeling as a differentiable
operator and integrate it and a deep neural network (DNN) in a loop to construct an unsupervised
learning method. Chen et al. (2021) proposed a self-supervised approach to solve the inverse problem
from the perspective of image invariance. These purely self-supervised and unsupervised methods
focus on how to solve problems without labels and still treat the network as a black box. Unlike
them, our method uses self-supervised learning as a tool with the aim of simplifying the problem and
decoupling the inverse process. We hope this can help the field better understand the problem and the
relationship among different subsurface structures.

Recently, OpenFWI was released. It is the first open-source collection of large-scale multi-structural
benchmark datasets for FWI Deng et al. (2022). It includes 12 datasets (11 2D datasets and one 3D
dataset) synthesized from multiple sources. The datasets cover diverse domains in geophysics, such
as interfaces, faults, and CO2 reservoirs, and feature a variety of subsurface structures, including flat
and curved geologies. Along with the dataset, they also report performance benchmarks by using
state-of-art data-driven methods and the physics-driven method.

3 Methodology

Recent works Wu & Lin (2019); Zhang et al. (2019); Sun et al. (2021); Jin et al. (2022) treat the
full waveform inversion (FWI) as an image-to-image translation (from seismic data to velocity map)
problem and leverage encoder-decoder architecture to achieve a significant performance boost. Here,
we present new insights from the perspective of self-supervised learning. In particular, the encoder
and decoder can be learned separately in their own domains via MAE He et al. (2022), and the two
corresponding latent spaces are linearly correlated. Table 1 lists notations of our method.

3.1 Domain-Independent Self-Supervised Learning

We decouple seismic data p(x, t) and velocity maps c(x, z) and train individual masked autoencoders
(MAE) He et al. (2022) for each domain (shown in Figure 1-b). Let us denote the encoder and
decoder for seismic data as Es and Ds. They are trained by using seismic data alone. Similarly, the
encoder and decoder for the velocity map are denoted as Ev and Dv, which are trained by using
velocity maps alone. As the pre-training is separate for the two domains, the pairing of seismic data
and velocity maps is not needed at this stage. Note that the decoder for seismic data Ds and the
encoder for velocity map Ev are auxiliary and will be removed. The encoder for seismic data Es and
the decoder for the velocity map Dv are the outputs of this domain-independent pre-training.

3.2 Two Intriguing Properties

We observe two intriguing properties in the latent spaces of two pre-trained models (seismic data and
velocity maps). Note that the pre-trained models in both domains are frozen.
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Property 1: The latent representation of two domains are linearly correlated. Surprisingly, without
any fine-tuning, a simple relationship is observed between the latent embeddings of paired seismic data
and velocity maps. This demonstrates an interesting association between self-consistent representation
within each domain and simpler linear mapping across two domains.

Property 2: The encoder and decoder can be shared across datasets, while the linear mapping is
dataset-specific. When dealing with multiple datasets with different subsurface structures, we find
that the self-learned encoder and decoder can be shared across datasets (i.e. performing MAE on the
combination of multiple datasets). The linear mapping (as mentioned in property 1) still holds for
each dataset, but it is dataset-specific. Essentially, the two domains have a piece-wise linear relation
globally over multiple datasets. Each dataset shows linear relation locally.

Seismic 
Data

Linear
Velocity 

map

Self-Supervision

Seismic 
Data

LinearΦ

Supervision

Velocity 
map

Self-Supervision

Sine 
Kernels

Pre-Determined Supervision

Linear
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Framework

SimFWI
(Ours)

InvLINT

Figure 2: Comparison between our SimFWI and InvLINT Feng et al. (2022). The first row shows the
similar framework of both methods. The second row indicates how our method trains each component.
The third row shows how InvLINT trains each component.
3.3 SimFWI

As shown in Figure 1-b, SimFWI contains three components: a seismic encoder Es, a linear converter
Φ, and a velocity decoder Dv. They are trained in two steps: a domain-independent self-supervised
learning step to train two autoencoders, and a supervised learning step to train the linear converter.

In the self-supervised learning step, as described above, we use Masked Autoencoder (MAE) He
et al. (2022) as the self-supervised learners. In this step, paired data are not needed. Two MAEs are
trained in their own domains. The trained Es and Dv are frozen. Due to a lack of constraint, the
self-supervised learner can easily learn shortcuts for reconstruction. We chose to use MAE because
it generates better latent representations and can learn essential information about two physical
quantities through the use of masks as noise, making it easier to connect the latent spaces of two
modalities and transform and reconstruct the other.

In the supervised learning step, the converter Φ is trained to connect the frozen Es and Dv with paired
data. In practice, we decompose the linear converter into two linear layers with a low-dimensional
bottleneck to constrain its rank. This effectively reduces redundancy in the network.

3.4 Comparing with the recent work

Compared with joint training methods (e.g., InversionNet), SimFWI decouple the training of the
encoder and decoder. Only a linear converter is trained in a supervised manner with paired data. We
achieve comparable results with only half the model size. Moreover, the pre-trained encoder and
decoder have strong generalization ability and good handling of few-shot situations and noisy data.

In Feng et al. (2022), the authors also decouple the encoder and decoder, and use a linear layer to
connect two latent spaces. They provided theoretical proof that establishes a near-linear relationship in
a high-dimensional latent space when an appropriate encoder and decoder are used. But the difference
is they use two pre-determined integral transforms, with Sine and Gaussian kernels, to embed the
seismic data and velocity into high-dimensional spaces. A comparison between our SimFWI and this
separate training method is shown in Figure 2. In particular, their encoder is a pre-determined Sine
kernel. Their linear layer is calculated by Ridge Regression based on the embedding from integral
transforms. Then, their decoder is trained in a supervised manner with the Sine kernel encoder and
frozen linear layer. However, this kernel solution has its limitations: 1) For datasets with very large
variations and high-frequency components (e.g., OpenFWI Deng et al. (2022)), their performance
is quite bad; 2) Since there is no explicit inverse transformation of Gaussian integral transform, the
decoder still needs to be trained with supervision and cannot be shared among multiple datasets; 3) it
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has very poor noise resistance. Thus, this pre-determined kernel solution may not be applicable to
broader scenarios as there is no clear rule for selecting the right kernels for different situations. In
contrast, we integrate self-supervised learning with the FWI problem, so that both the encoder and
decoder can be pre-trained. Only a linear converter needs supervised training.

Compared to pre-determined kernel functions, properly self-supervised trained networks are more
expressive, applicable to more scenarios, more noise tolerant, and can be shared across multiple
datasets with different sub-surface structures. To substantiate the claims made about performance
and noise resistance, we have included a comprehensive comparison in the following section. The
quantitative evaluation of their performances is presented in Table 3, Section 4.2. The robustness
to noise of both models is shown in Section 4.3. A comparison of the seismic and velocity latent
representations obtained by our method and InvLINT is presented in the Appendix.

4 Experiments

We evaluate our approach on OpenFWI Deng et al. (2022), the first and only large-scale collection of
openly accessible multi-structural seismic FWI datasets with benchmarks. We compare our method
with the state-of-the-art works, including InversionNet Wu & Lin (2019), i.e., the method that jointly
trains the encoder and decoder, and InvLINT Feng et al. (2022), i.e., the method that separates the
encoder and decoder. We also discuss different factors that affect the performance of our method.
In the Appendix, we compare the latent representation learned by our method and InvLINT, and
evaluate SimFWI’s generalizability for other imaging and PDE tasks. In particular, we test it on the
electromagnetic (EM) inversion task controlled by Maxwell’s equations. For interested readers, Deng
et al. also provide a detailed comparison of the physics-driven method in Deng et al. (2022).

4.1 Implementation Details

Datasets. We verify our method on OpenFWI Deng et al. (2022). OpenFWI is the first open-source
collection of large-scale, multi-structural benchmark datasets for data-driven seismic FWI. While
real data are extremely expensive and difficult to obtain, OpenFWI is currently the largest and most
comprehensive dataset. It contains 11 2D datasets with baseline, which can be divided into four
groups: four datasets in the “Vel Family”, four datasets in the “Fault Family”, two datasets in the
“Style Family”, and one dataset in the “Kimberlina Family”. Four datasets in the “Vel Family”
are FlateVel-A/B, and CurveVel-A/B; four datasets in the “Fault Family” are FlateFault-A/B, and
CurveFault-A/B; two datasets in“Style Family” are Style-A/B; and one dataset in “Kimberlina Family”
is Kimberlina-CO2. The first three families cover two versions: easy (A) and hard (B), in terms of
the complexity of subsurface structures. We will use the abbreviations (e.g. FVA for FlatVel-A and
CO2 for Kimberlina-CO2). For more details, please refer to the original paper Deng et al. (2022).

Training Details. The input seismic data are normalized to the range [-1, 1] with a log scale. We
employ AdamW Loshchilov & Hutter (2018) optimizer with momentum parameters β1 = 0.9,
β2 = 0.999 and a weight decay of 0.05 for both self-supervision and supervision steps. In the self-
supervision step, we use the same hyper-parameters and the training schedule with the original MAE
paper He et al. (2022), except we change the batch size to 512 and remove the pixel normalization.
We use each family together to train the MAE. Thus, in total, we trained four different models. In the
supervision step, the initial learning rate is set to be 1× 10−3, and decayed with a cosine annealing
Loshchilov & Hutter (2016). The batch size is set to 256. To make a fair comparison with the
previous work, we use l1 loss to train the linear layer. The exact network architectures are shown in
Appendix. We implement our models in Pytorch and train them on 1 NVIDIA Tesla V100 GPU.

Evaluation Metrics. We apply three metrics to evaluate the geophysical properties generated by
our method: MAE, MSE, and Structural Similarity (SSIM). Following the existing literature Wu
& Lin (2019); Feng et al. (2022); Deng et al. (2022), MAE and MSE are employed to measure the
pixel-wise error, and SSIM is to measure the perceptual similarity since velocity has highly structured
information, and degradation or distortion can be easily perceived by a human. We calculate them on
normalized velocity maps, i.e., MAE and MSE in the scale [−1, 1], and SSIM in the scale [0, 1].
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4.2 SimFWI is Simple and Effective

Comparisons with the Joint Training Method. Table 2 shows the comparison results with Inver-
sionNet Wu & Lin (2019). The results of InversionNet are the reported benchmark in Deng et al.
(2022). Compared to the jointly trained method, our SimFWI achieves comparable results on multiple
datasets with only half the model size (12.3M vs. 24.4M), and only needs to supervised train the
linear layer. In FlatVel-A/B, Style-B, and Kimberlina-CO2, SimFWI even outperforms InversionNet
in some metrics. The velocity maps inverted by different methods are shown in Figure 3. We can find
InversionNet has a clearer boundary, while SimFWI is better at capturing the structure details in deep
position (e.g., as boxed out on FaltVel-A, CurveVel-A, Style-B, and Style-A). The corresponding
error map and more visualizations are provided in the Appendix for readers who might be interested.
Note that, InversionNet in Style-B always outputs a strange pattern in results as boxed out in red.

Metrics Model FVA FVB CVA CVB FFA FFB CFA CFB SA SB CO2

MAE↓ SimFWI 0.0081 0.0467 0.0738 0.1820 0.0164 0.1208 0.0277 0.1791 0.0719 0.0638 0.0060
InversionNet 0.0131 0.0351 0.0685 0.1497 0.0172 0.1055 0.0260 0.1646 0.0625 0.0689 0.0061

MSE↓ SimFWI 0.0005 0.0151 0.0188 0.1051 0.0026 0.0362 0.0061 0.0697 0.0139 0.0097 0.0017
InversionNet 0.0004 0.0077 0.0162 0.0836 0.0018 0.0303 0.0042 0.0614 0.0105 0.0260 0.0014

SSIM↑ SimFWI 0.9888 0.9044 0.8057 0.6169 0.9701 0.6868 0.9426 0.5672 0.8423 0.7275 0.9908
InversionNet 0.9895 0.9461 0.8074 0.6727 0.9766 0.7208 0.9566 0.6136 0.8859 0.6314 0.9872

Table 2: Quantitative results evaluated on on OpenFWI, compared with InversionNet Wu & Lin
(2019), in terms of MAE, MSE, and SSIM. SimFWI achieves comparable accuracy.

Metrics Model FVA FVB CVA CVB FFA FFB CFA CFB SA SB CO2

MAE↓ SimFWI 0.0081 0.0467 0.0738 0.1820 0.0164 0.1208 0.0277 0.1791 0.0719 0.0638 0.0060
InvLINT 0.0532 0.1621 0.0981 0.2462 0.0729 0.1522 0.0853 0.1955 0.1002 0.0835 0.0150

MSE↓ SimFWI 0.0005 0.0151 0.0188 0.1051 0.0026 0.0362 0.0061 0.0697 0.0139 0.0097 0.0017
InvLINT 0.0085 0.0650 0.0238 0.1312 0.0190 0.0467 0.0229 0.0754 0.0209 0.0132 0.0039

SSIM↑ SimFWI 0.9888 0.9044 0.8057 0.6169 0.9701 0.6868 0.9426 0.5672 0.8423 0.7275 0.9908
InvLINT 0.8457 0.6465 0.7355 0.4946 0.8506 0.6445 0.8204 0.5471 0.7916 0.6557 0.9760

Table 3: Quantitative results evaluated on OpenFWI, compared with InvLINT Feng et al. (2022), in
terms of MAE, MSE, and SSIM. SimFWI outperforms it in terms of all three metrics.
Comparisons with the Separate Training Method. We also compare SimFWI with InvLINT Feng
et al. (2022), which also separates the encoder and decoder, and has a linear converter. Results are
shown in Table 3. Compared to InvLINT, SimFWI outperforms it in terms of all three metrics. The
velocity maps inverted by different methods are shown in Figure 3. The corresponding error map and
more visualization results are provided in the Appendix for readers who might be interested.

We can clearly observe that InvLINT performs poorly for data with high-frequency layering locations
and faults (i.e., “Vel Family" and “Fault Family"), but yields good results in smoother structures like
“Style Family" and Kimberlina CO2. This phenomenon may come from: 1) InvLINT model is very
small and has limited expressive power. “Vel Family" and “Fault Family" are very diverse. It does
not have enough capacity to learn all cases. 2) The Gaussian kernel cannot capture the small fault
structure well, such as the interface and fault structures. 3) Their encoder uses frequency domain
features. However, the high-frequency signal is mainly present in the reflected wave, which has a
small amplitude. It is not easy to be captured by a frequency-domain encoder.

4.3 SimFWI has Nice Properties

In this part, we demonstrate that our SimFWI has some nice properties, including the strong general-
ization ability of the pre-trained encoder/decoder, good handling of noise, and solid performance on
few-shot learning. There is also a correlation between our linear converter and the dataset complexity.

Generalization Ability of Encoder and Decoder. We study the generalization ability of the pre-
trained encoder and decoder. In particular, we choose the seismic encoder and velocity decoder
that self-supervised trained on “Fault Family", fix it, and train the linear converter on other datasets
(except the Kimberlina-CO2, since it has different dimensions). The results are shown in Table 4.

Results show that the encoder and decoder trained on the “Fault Family" performed quite well in other
datasets. They achieved impressive results, even in Style-A and Style-B, which have significantly
different subsurface structures compared to the “Fault Family". Notably, when the encoder and
decoder were migrated to simpler datasets (i.e., “Vel Family"), they achieved better results than the
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Figure 3: Results illustration of InversionNet, InvLINT and SimFWI.

results shown in Table 2that trained exclusively on these datasets (results shown in bold). These
results illustrate that 1) the latent representations obtained by self-supervision do capture the essential
information in both domains and can be shared across diverse datasets, and 2) the performance of our
method can be further improved by a delicate selection of self-supervision data. The current choice
of using each family together in the self-supervision is to not lose generality.

To further show the generalization ability of the pre-trained encoder and decoder, and the performance
improvement by picking self-supervision data, we conduct another experiment that train the encoder
and decoder on cross-family datasets. In particular, CurveVel-A, FlatFault-A, and CurveFault-A are
used. We test this pair of encoder and decoder in all datasets. Results are shown in Appendix.
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Metrics Model FVA FVB CVA CVB SA SB
SimFWI 0.0073 0.0570 0.0653 0.1804 0.0725 0.0646

MAE↓
InversionNet 0.0131 0.0351 0.0685 0.1497 0.0625 0.0689
SimFWI 0.0005 0.0198 0.0159 0.1030 0.0144 0.0099

MSE↓
InversionNet 0.0004 0.0077 0.0162 0.0836 0.0105 0.0260
SimFWI 0.9895 0.8752 0.8192 0.6044 0.8351 0.7222

SSIM↑
InversionNet 0.9895 0.9461 0.8074 0.6727 0.8423 0.7275

Table 4: Generalizability of pre-trained encoder and decoder, using InversionNet as a baseline. The
encoder and decoder are trained on “Fault Family”. We highlight the results that are better than the
results pre-trained exclusively on these datasets.

Model
σ2 =0 σ2 =1e-5 σ2 =5e-5 σ2 =1e-4 σ2 =5e-4

PSNR=70.49dB PSNR=63.48dB PSNR=60.45dB PSNR=53.39dB
MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑

SimFWI 0.0277 0.0061 0.9426 0.0354 0.0070 0.9387 0.0508 0.0102 0.9255 0.0630 0.0139 0.9113 0.1093 0.0339 0.8308
Degradation (%) \ \ \ -27.80 -14.75 -0.41 -83.39 -67.21 -1.81 -127.44 -127.87 -3.32 -294.58 -455.74 -11.86
InversionNet 0.0260 0.0042 0.9566 0.0332 0.0050 0.9539 0.0696 0.0133 0.9290 0.1439 0.0479 0.8830 0.4496 0.3948 0.6407
Degradation (%) \ \ \ -27.69 -19.05 -0.28 -167.69 -216.67 -2.89 -453.46 -4.57 -7.69 -1629.23 -9300.00 -33.02
InvLINT 0.0853 0.0229 0.8204 3.1849 19.33 0.0449 7.4442 103.23 0.0172 10.16 185.87 0.0084 23.81 1033.92 0.0025
Degradation (%) \ \ \ -3634 -84307 -94.53 -8627 -450687 -97.90 -11816 -22654 -98.98 -27807 -4514820 -99.70

Table 5: Quantitative results of different models on CurveFault-A with noisy seismic input. Gaussian
noise with different variance σ2 is added to seismic data during testing.

Good handling of noise. We provide the quantitative results of the robustness test. In particular, we
add Gaussian Noise with different variances to the input seismic data during testing. Table 5 shows
the performance on CurveFault-A for clean and noisy data. We also include the noise’s variance (σ2)
and average peak-to-noise ratio (PSNR) in the table. The PSNR of a sample is defined as

PSNR = 10 log10

(pmax − pmin)2

`2(p− p′)
, (2)

where pmax and pmin denote the maximum and minimum possible values of the seismic data in a
dataset, p is the clean seismic data, and p′ is the noisy data.

Compared to other models, our SimFWI is the most robust one to noise. The robustness of SimFWI
shows in two aspects. First, its performance degradation on noisy data is smaller than others. Second,
when the noise’s variance is large (σ2 ≥ 5e-5), our method outperforms InversionNet. As expected,
InvLINT is extremely sensitive to the noise, since it only uses a Fourier transform as its encoder.

Strong Performance on Few-Show Learning. One of the most important benefits of our method is
it does not need paired data to train its encoder and decoder. Thus, we test SimFWI on the Few-show
learning situation, where only a limited number of paired data exists, and compare it with the jointly
trained method, InversionNet. We choose three datasets as examples and test the situation that only
1/5 or 1/10 paired data can be used in supervised learning. MAE results are reported in Table 6. We
can see that on all three datasets, our approach’s performance is a little worse than InversionNet when
using the full data. However, when the paired data becomes less, our model outperforms InversionNet.
This implies that our SimFWI has a strong performance on few-show learning.

Correlation between the linear layer and datasets’ complexity. By simplifying the image-to-
image translation problem to a linear problem, our model is easy to analyze. With only a linear
converter trained in a supervised manner, we can conduct singular value decomposition analysis.

Dataset Model Ratio=1 Ratio=1/5 Ratio=1/10

CurveVel-A
SimFWI 0.0738 0.1108 0.1284
InversionNet 0.0685 0.1113 0.1335

CurveFault-A
SimFWI 0.0277 0.0500 0.0683
InversionNet 0.0260 0.0589 0.0843

Style-A
SimFWI 0.0719 0.0917 0.1030
InversionNet 0.0625 0.0942 0.1046

Table 6: MAE results using partial datasets.
Ration indicates the proportion of datasets
used. 0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0 fva
fvb
cva
cvb
ffa
ffb
cfa
cfb
sta
stb
co2

Table 7: Normalized Singular Values.
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The results are shown in Figure 7. Since the singular value varies greatly in different datasets, we
normalize it by dividing it by its maximum value and trunk it at 128 dim, which is the bottleneck
dimension.

We can clearly observe that there is a strong correlation between the singular values and the dataset
complexity. Generally speaking, CurveFault-B, FlatFault-B, Style-A, Style-B, and CurveFault-B have
the most complex velocity map among all datasets. As we can see, their singular values are much
slower to fall. On the other hand, FlatVel-A and Kimberlina-CO2 are the simplest datasets, which
are also reflected in their singular values. We also provide the original singular Value in Appendix
Figure 4 for reference. All these results prove that our linear converter correlates to the datasets’
complexity. For readers who might be interested, Deng et al. (2022) provides a more detailed analysis
of datasets’ complexity among all 11 datasets.

4.4 Ablation Test

In this part, we will test how the rank of the linear converter will influence the performance and
demonstrates the influence of the local linear relationship between two latent spaces. In the Appendix,
we also show the comparison between using the masked autoencoder and the classical autoencoder,
and test the performance with several different non-linear converters.

Rank of Linear. We evaluate performances over five different numbers of ranks of the linear
converter, varying from 32 to 128. The quantitative results are shown in Table 8. Results indicate that
increasing the rank makes the model much larger, but the growth of the results is limited. On the
other hand, decreasing the model’s rank also does not reduce its capacity a lot but results in a smaller
number of parameters. This allows for the balance of performance and computational cost based on
specific requirements and available resources, highlighting the flexibility of our model.

Dataset Dim #Param MAE↓ MSE↓ SSIM↑
128* 12.3M 0.0277 0.0061 0.9426
512 26.0M 0.0271 0.0058 0.9441
256 16.8M 0.0274 0.0059 0.9434
64 10.0M 0.0280 0.0064 0.9392

CurveFault-A

32 8.9M 0.0304 0.0075 0.9300
Table 8: Quantitative results of different bottleneck dimensions, and the corresponding number of
parameters. As a reference, InversionNet has 24.4M parameters. (*) indicates the default option.

Local Linear Relationship. We demonstrate the property we found that each dataset shows linear
relation locally, and there is a piece-wise linear relation globally over multiple datasets. In particular,
we let datasets in each family share not only the encoder and decoder but also the linear converter. In
other words, we use all datasets in each family to train the linear converter. We report the results and
performance change in Table 9. In the table, we highlight the improvement of the results after sharing
the linear converter. It is quite interesting that, generally, the datasets with a more complex subsurface
structure show a performance improvement. In contrast, simpler datasets’ performance drops a lot.
The results come from the fact that a complex dataset covers a larger range in the latent space. The
scope of simple datasets is covered by those complex ones in the same family. Thus, with more data to
use, SimFWI achieves better results on complex datasets. But, for simple datasets, out-of-distribution
data make the learning results deviate substantially from their local linear relationship.

Metrics Model FlatVel-A FlatVel-B CurveVel-A CurveVel-B FlatFault-A FlatFault-B CurveFault-A CurveFault-B Style-A Style-B

MAE↓ Original 0.0081 0.0467 0.0738 0.1820 0.0164 0.1208 0.0277 0.1791 0.0719 0.0638
Sharing Linear 0.0191 0.0545 0.0761 0.1709 0.0306 0.1198 0.0421 0.1697 0.0699 0.0636

MSE↓ Original 0.0005 0.0151 0.0188 0.1051 0.0026 0.0362 0.0061 0.0697 0.0139 0.0097
Sharing Linear 0.0015 0.0161 0.0193 0.0963 0.0054 0.0339 0.0093 0.063 0.013 0.0094

SSIM↑ Original 0.9888 0.9044 0.8057 0.6169 0.9701 0.6868 0.9426 0.5672 0.8423 0.7275
Sharing Linear 0.9633 0.8827 0.8007 0.6326 0.9411 0.6913 0.9096 0.5873 0.8512 0.7248

Table 9: Quantitative results of sharing linear converter over multiple datasets, compared with original
results. Both the encoder/decoder and the linear layer are shared across each dataset family. We
highlight the improvement of the results after sharing the linear converter.

5 Disscussion

While our proposed method has shown promising results, there are still some limitations that need to
be further addressed. Firstly, the linear relation in the latent space is currently only piece-wise linear.
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Although we have demonstrated the effectiveness of sharing the encoder and decoder across datasets,
the linear converter is still limited to a single dataset. Thus, there is a need to explore more advanced
methods for learning better representations that make the latent-space representations closer to the
physical nature and enable the linear relationship to be applicable in broader scenarios.

Secondly, it is hard to train our model from scratch exclusively on real data due to the lack of labeled
real data in subsurface geophysics. This is not just a limitation of our work, but a common limitation
in the seismic inversion community. The concept of “Sim2Real” is a well-received technique to
transfer knowledge learned in simulation to real data James et al. (2019). To mitigate the gap between
simulation and real scenarios, we have tested our model in velocity maps that yield physically realistic
subsurface structures, i.e. Style-A and Style-B Feng et al. (2021). Additionally, we have imposed
noise to simulate more realistic measurement procedures. Our method demonstrated promising
performance in both scenarios of realistic subsurface data and noisy seismic measurements. We will
explore how to train the converter with purely unpaired data and further mitigate the knowledge gap
when applying our proposed model to real data in our future work.

6 Conclusion

In this paper, we present a new framework, SimFWI, that simplifies the mapping between seismic
data and velocity maps into a linear problem via domain-independent self-supervised learning. We
decouple two domains of FWI and train the encoder and decoder separately in their own domain, with
two masked autoencoders. We observed a linear correlation between the two latent spaces, meaning
that the self-supervised encoder and decoder can be frozen, and a linear converter can be learned
to connect them from the paired seismic data and velocity map. This framework allows a better
understanding of the relationship among multiple FWI datasets with different subsurface structures.
In experiments, SimFWI achieved comparable performance, with half the model size, and showed
solid performance in a few-shot situation and robustness test.
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A Appendix

A.1 Architecture

The exact transformer architectures and layer dimensions of the seismic and velocity autoencoders
are provided in Table 10. We will add this table to the revised paper. For all the datasets except
Kimberlina, the size of seismic data is 1000× 70 and the size of velocity maps is 70× 70. We choose
the patch size 100× 10 for seismic data and 10× 10 for velocity maps. Thus, the latent dimension
of seismic data is 132× 70, and the latent dimension of velocity maps is 516× 49. For Kimberlina,
the patch size of seismic data is 250 × 10, and of velocity maps is 20 × 40. The latent dimension
of seismic data is 132× 50, and the latent dimension of velocity maps is 516× 70. The rank of the
linear converter is set to 128. The mask ratio for training MAE is set to 0.75.

Model #Layers Embedded Dim MLP Dim #Heads

Seismic Encoder 2 132 528 12

Seismic Decoder 2 512 144 16

Velocity Encoder 3 516 2064 12

Velocity Decoder 2 512 2064 16

Table 10: Details of seismic and velocity autoencoders

A.2 Generalizability

Dataset MAE↓ MSE↓ SSIM↑
CurveVel-A* 0.0634 0.0155 0.8267
FlatFault-A* 0.0166 0.0026 0.9698
CurveFault-A* 0.0271 0.006 0.9434
FlatVel-A 0.0072 0.0004 0.9912
FlatVel-B 0.0552 0.0179 0.8783
CurveVel-B 0.1754 0.0981 0.6157
FlatFault-B 0.1260 0.0381 0.6734
CurveFault-B 0.1837 0.0711 0.5590
Style-A 0.0744 0.0146 0.8311
Style-B 0.0653 0.0102 0.7175

Table 11: Quantitative results of the generalization ability of pre-trained encoder and decoder. The
encoder and decoder are trained across datasets’ families. (*) indicates the datasets used to train the
encoder and decoder.

A.3 Ablation Test

In this part, we show the comparison between using masked autoencoder and autoencoder as self-
supervised learners; and test the performance of several different non-linear converters.

MAE v.s. Autoencoder. We conducted another experiment that use autoencoders (i.e., mask ratio
equals zero.) with the same architecture as the self-supervised training model. We pre-trained the
model on “Fault Family"; and trained the linear converter and validated it on CurveFault-A as an
example. The reconstruction and inversion results are shown in Table 12. As demonstrated, a simple
autoencoder cannot capture the important information that is necessary for both reconstructing and
connecting to another domain. If we simply consider both seismic data and velocity maps as pure
images and ignore the physical meaning behind them, the autoencoder would learn too many shortcuts
which are only useful to reconstruct the image but lost the essential information reflecting its physical
properties. This is because seismic data and velocity maps not as diverse as natural images. On the
other hand, if a model can embed the essential underlying physics information of these two quantities,
it will naturally enhance the generalization ability.

Non-Linear Converter. We evaluate networks with a more complicated nonlinear converter on
CurveFault-A. We tested four different settings: 1) a two-layer MLP; 2) a two-piece Maxout layer;
3) a two-layer U-Net; and 4) a four-layer U-Net. The results are provided in Table 13. From the
results, we can see that 1) a simple nonlinear mapping (e.g., two-layer MLP or U-Net) has no positive
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Model MAE↓ MSE↓ SSIM↑
Seismic

Pre-training
MAE↓

Velocity
Pre-training

MAE↓
Masked Autoencoder 0.0277 0.0061 0.9426 0.1703 0.0410

Autoencoder 0.0614 0.0174 0.8302 0.0008 0.0005
Table 12: Comparison between different pre-training strategies on CurveFault-A. In addition to
the quantitative results of inversion, the mean absolute reconstruction errors (with masks) of the
pre-trained models (Columns 5 & 6) are also reported.

effect on final performance; and 2) a piece-wise linear mapping (Maxout) or a much more complex
nonlinear mapping (four-layer U-Net) can only provide limited improvement. These results are
consistent with our conclusion of a near-linear relationship.

Model MAE↓ MSE↓ SSIM↑
Linear 0.0277 0.0061 0.9426

Two-Layer MLP 0.0280 0.0064 0.9433

Two-Pieces Maxout 0.0260 0.0057 0.9472

2-Layer U-Net 0.0285 0.0062 0.9414

4-Layer U-Net 0.0259 0.0056 0.9465

Table 13: Quantitative results on CurveFault-A with different nonlinear converters.

A.4 Singular Value Decomposition

Figure 4: Original Results of Singular Value Decomposition on different datasets.

A.5 Comparing the latent representations of SimFWI and InvLINT.

To further analyze the realation between our SimFWI and InvLINT, in this part, we compare the
latent representations of seismic data and velocity maps obtained by our method to those obtained by
InvLINT. First, We conducted experiments on CurveFault-A that use a sine kernel from InvLINT as
the encoder and use our pre-trained decoder to construct the inversion network, respectively. The
converter is still linear. The results are shown in Table 14. These results show that using the latent
seismic representation from the sine kernel is difficult to regress the latent velocity representation
from our method.

To further compare the latent representations, we use one latent representation to predict another
with linear regression, for seismic data and velocity maps respectively. We report the coefficient of
determination (R2 score) in Table 15.

These show that our latent space with a higher dimension contains more information. As a preliminary
comparison, we can roughly conclude that their latent space is a linear subspace of our latent space.
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Model MAE↓ MSE↓ SSIM↑
SimFWI 0.0277 0.0061 0.9426

Sine Kernel Encoder 0.0426 0.0093 0.9233
Table 14: Comparison between latent representations of seismic data obtained by SimFWI and
InvLINT on CurveFault-A.

Variable Source Target R^2

Seismic SimFWI InvLINT 0.9869
InvLINT SimFWI 0.6700

Velocity SimFWI InvLINT 0.9996
InvLINT SimFWI 0.4871

Table 15: Predicting the target latent representations from the source latent representations with linear
regression.

A.6 Generalizability of the SimFWI for the other inversion task.

We conducted an experiment using different PDEs on the Kimberlina-Reservoir dataset Alumbaugh
et al. (2021); Feng et al. (2022). In this dataset, the task is to recover the subsurface conductivity
from electromagnetic (EM) measurements acquired on the surface. The governing equations here are
Maxwell’s Equations

σE−∇×H = −J,
∇×E + iωµ0H = −M,

where E and H are the electric and magnetic fields. J and M are the electric and magnetic sources. σ
is the electrical conductivity and µ0 = 4π × 10−7Ω · s/m is the magnetic permeability of free space.
We compared the results of our SimFWI model with those reported in InvLINT (Feng et al., 2022),
and presented the results in Table 16. Note that, to maintain consistency with InvLINT, the MAE and
MSE reported below were calculated after denormalizing to the original range of [0, 0.65]. For all
other results presented in our paper, the MAE and MSE were calculated in the normalized range of
[−1, 1]. We observe that our proposed SimFWI yields better performance than those obtained using
InvLINT and InversionNet.

Dataset Model MAE↓ MSE↓ SSIM↑

Kimberlina-
Reservoir

SimFWI 0.00438 0.000192 0.9700
InversionNet 0.01330 0.000855 0.9175

InvLINT 0.00703 0.000537 0.9370

Table 16: Quantitative results on Kimberlina-Reservoir. MAE and MSE are calculated after denor-
malizing to their original range (i.e., [0, 0.65]).

A.7 Visualizations
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Figure 5: Illustration of absolute error map on OpenFWI, compared, SimFWI, InversionNet Wu &
Lin (2019) and InvLINT Feng et al. (2022) to the ground truth.
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Figure 6: Illustration of results evaluated on OpenFWI, compared with InversionNet Wu & Lin (2019)
and InvLINT Feng et al. (2022).
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Figure 7: Illustration of results evaluated on OpenFWI, compared with InversionNet Wu & Lin (2019)
and InvLINT Feng et al. (2022).
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