
Multi-Architecture Multi-Expert Diffusion Models

Yunsung Lee∗ JinYoung Kim∗ Hyojun Go∗
Myeongho Jeong Shinhyeok Oh Seungtaek Choi†

Riiid AI Research
{yunsung.lee, jinyoung.kim, hyojun.go,

myeongho.jeong, shinhyeok.oh, seungtaek.choi}@riiid.co

Abstract

Diffusion models have achieved impressive results in generating diverse and re-
alistic data by employing multi-step denoising processes. However, the need for
accommodating significant variations in input noise at each time-step has led to
diffusion models requiring a large number of parameters for their denoisers. We
have observed that diffusion models effectively act as filters for different frequency
ranges at each time-step noise. While some previous works have introduced
multi-expert strategies, assigning denoisers to different noise intervals, they over-
look the importance of specialized operations for high and low frequencies. For
instance, self-attention operations are effective at handling low-frequency com-
ponents (low-pass filters), while convolutions excel at capturing high-frequency
features (high-pass filters). In other words, existing diffusion models employ de-
noisers with the same architecture, without considering the optimal operations for
each time-step noise. To address this limitation, we propose a novel approach called
Multi-architecturE Multi-Expert (MEME), which consists of multiple experts with
specialized architectures tailored to the operations required at each time-step inter-
val. Through extensive experiments, we demonstrate that MEME outperforms large
competitors in terms of both generation performance and computational efficiency.

1 Introduction

Diffusion models [49, 52, 20] are a promising approach for generative modeling, and they are
likely to play an increasingly important role in diverse domains, including image [7, 41, 44, 42, 1],
audio [29, 40, 23, 27], video [22, 19, 70], and 3D generation [39, 68, 46]. However, despite
their impressive performance, diffusion models suffer from high computation costs, which stem
from the following two orthogonal factors: (i) the lengthy iterative denoising process, and (ii)
the cumbersome denoiser networks. Though there have been several efforts to overcome such
limitations [2, 30, 32, 45, 36, 50, 51, 15, 21, 42, 61, 57], most of these efforts have focused only
on resolving the first factor, such that the cumbersome denoisers still limit their applicability to
real-world scenarios. A few efforts reduce the size of the denoisers based on post-training low-bit
quantization [47] and distillation [67], as we illustrated in Fig. 1b, but they usually achieve such
efficiency by compromising on accuracy.

In this paper, we thus aim to build a diffusion model that is compact yet comparable in performance
to the large models. For this purpose, we first ask a research question “why the traditional diffusion
models require such massive parameters?”. From a frequency perspective, there was a theoretical
explanation that it is because the models should learn too many different features in varying time-
steps [67], where diffusion models tend to initially form low-frequency components (e.g., overall
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(a) Single large model with an identical architecture

(b) Single small model with an identical architecture

(c) Multiple small expert models with an identical architecture

(d) Multiple small expert models with multiple architectures (MEME)

Figure 1: Comparative illustration of single/multiple-expert models with single/multiple archi-
tectures. Figure 1a depict the standard diffusion models approach, which employs a single large
denoiser. To reduce the cost due to the large-scale of the model, a diffusion model with a small
denoiser is designed with post-training low-bit or distillation as illustrated in Fig.1b. In Fig. 1c,
to alleviate the performance drop, we consider a configuration with multiple small expert models
having identical architectures. Finally, our proposed method, the Multi-architecturE Multi-Expert
diffusion models (MEME), constructs small expert models with unique optimal architectures for their
respective assigned time-step intervals, as visualized in Fig. 1d.

image contour) and subsequently fill in high-frequency components (e.g., detailed textures). However,
as they assume the denoiser network to be a linear filter, which is not practical, we aim to investigate
empirical evidence to support this claim. Specifically, we analyze the per-layer Fourier spectrum for
the input xt at each diffusion time-step t, finding that there are significant and consistent variations
in the relative log amplitudes of the Fourier-transformed feature maps as t progresses. This finding
indicates that the costly training process of large models indeed involves learning to adapt to the
different frequency characteristics at each time-step t.

One way to leverage this finding is to assign distinct time-step intervals to multiple diffusion mod-
els [13, 1], referred to as the multi-expert strategy, in order for models to be specialized in the assigned
time-step intervals as shown in Fig. 1c. However, since [13] utilized the multi-expert strategy for
the conditioned generation with guidance and [1] focused on high performance, the efficiency is
not considered while ignoring the fact that different operations may be more suitable at different
time-step from a frequency perspective.

To this end, we propose to assign different models with different architectures for each different
time-step interval, whose base operations vary according to their respective frequency ranges, which
we dub Multi-architecturE Multi-Expert diffusion models (MEME) (Fig. 1d). Specifically, we
leverage the recent insights from [10, 6, 37, 48, 66, 9] that convolutions are advantageous for handling
high-frequency components (t ∼ 0), while multi-head self-attention (MHSA) excels in processing
low-frequency components (t ∼ T ). However, naively placing two different architectures in different
time-step intervals would be suboptimal because the features are inherently a combination of high-
and low-frequency components [10, 48, 37].

In order to better adapt to such a complex distribution of frequency-specific components, we propose
a more flexible denoiser architecture called iU-Net, which incorporates an iFormer [48] block that
allows for adjusting the channel-wise balance ratio between the convolution operations and MHSA
operations. We take advantage of the characteristic of diffusion models we discovered that first
recover low-frequency components during the denoising process and gradually add high-frequency
features. Consequently, we configure each architecture to have a different proportion of MHSA,
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effectively tailoring each architecture to suit the distinct requirements at different time-step intervals
of the diffusion process.

We further explore methods for effectively assigning focus on specific time-step intervals to our
flexible iU-Net. Specifically, we identify a soft interval assignment strategy for the multi-expert
models that prefers a soft division over a hard segmentation. This strategy allows the experts assigned
to intervals closer to T to have more chance to be trained with the entire time-step, which prevents
excessive exposure to meaningless noises at the time-step t ∼ T .

Empirically, our MEME diffusion models effectively perform more specialized processing for each
time-step interval, resulting in improved performance compared to the baselines. MEME, with
LDM as the baseline, has managed to reduce the computation cost by 3.3 times while training on
FFHQ [26] and CelebA-HQ [25] datasets from scratch and has simultaneously improved image
generation performance by 0.62 and 0.37 in FID scores, respectively. By comparing the Fourier-
transformed feature maps of MEME and multi-expert with identical architecture, we have confirmed
that MEME’s multi-architecture approach allows for distinct frequency characteristics suitable for
each interval. Furthermore, MEME not only improves performance when combined with the LDM
baseline but also demonstrates successful performance enhancements when integrated with the other
diffusion model, DDPM [20].

In summary, our contributions can be distilled into three main points:

• As far as we know, we are the first to identify and address the issue that existing diffusion
models rely solely on identical operations at all time-steps, despite the vastly different
functionalities required at each time-step in diffusion processes.

• We propose MEME, a novel diffusion models framework composed of multi-architecture
multi-expert denoisers which can balance operations for low-frequency and high-frequency
components, performing distinct operations for each time-step interval.

• MEME surpasses its counterparts not only in computational efficiency but also in terms of
generation quality. Trained from scratch on the FFHQ and CelebA datasets, MEME operates
3.3 times faster than baselines while improving FID scores by 0.62 and 0.37, respectively.

2 Related Work

2.1 Diffusion Models

Diffusion models [49, 52, 20], a subclass of generative models, generate data through an iterative
denoising process. Trained by denoising score-matching objectives [53], these models demonstrate
impressive performance and versatility in various domains, including image [7, 41, 44, 42, 1],
audio [29, 40, 23, 27], video [22, 19, 70], and 3D [39, 68, 46] generation. However, diffusion models
suffer from significant drawbacks, such as high memory and computation time costs [28, 32, 50].
These issues primarily stem from two factors: the lengthy iterative denoising process and the
substantial number of parameters in the denoiser model. A majority of studies addressing the
computation cost issues of diffusion models have focused on accelerating the iteration process.
Among these, [63, 64, 8] have employed more efficient differential equation solvers. Other studies
have sought to reduce the lengthy iterations by using truncated diffusion [34, 69] or knowledge
distillation [45, 51, 33].

In contrast, [47] and [67] focus on reducing the size of diffusion models. Shang et al. [47] proposes a
post-training low-bit quantization specifically tailored for diffusion models. Yang et al. [67] analyze
diffusion models based on frequency, enabling small models to effectively handle high-frequency
dynamics by applying wavelet gating and spectrum-aware distillation. However, these attempts at
lightweight models usually failed to match the performance of large models and rely on resource-
intensive training, which assumes the availability of a pretrained diffusion model. However, despite
the well-known insight [67, 5, 16] that diffusion models have very different functionality to learn
at each time-step, previous diffusion models use the same structured denoiser model with the same
operations at every time-step. Our research aims to provide more optimized operations for denoiser
models at each time-step of the diffusion process. To achieve this, we embrace the multi-expert
strategy, which has been previously utilized in plug-and-play guidance models [13] or for increasing
architectural capacity [1].
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2.2 Combination of Convolutions and Self-attentions

Since the advent of the Vision Transformer [9], there has been active research into why self-attention
works effectively in the image domain and how it differs from convolution operations. [9, 10, 60]
suggest that this is because self-attention operations better capture global features and act as low-pass
filters [37, 48]. There have been efforts [37, 6, 66, 10, 48] aiming to design optimal architectures
that better combine the advantages of self-attention and convolution. [37, 6] suggest structuring
networks with convolution-focused front layers, which are advantageous for high-pass filtering, and
self-attention-focused rear layers, which are advantageous for low-pass filtering. [10, 48] propose
new blocks that perform operations intermediate between convolution and self-attention. Notably,
iFormer [48] proposes a block that allows for adjustable ratios between convolution and self-attention
operations. Despite numerous efforts to reveal the benefits of different operations depending on the
frequency and design better architectures for image recognition, current diffusion models still rely on
a single fixed architecture to learn vastly different noise levels. This approach proves to be highly
suboptimal and calls for multi-architecture.

3 Background

3.1 Diffusion Models and Spectrum Evolution over Time

Diffusion models [49, 52, 20] work by inverting a stepwise noise process using latent variables. Data
points x0 from the true distribution are perturbed by Gaussian noise with zero mean and βt variance
across T steps, eventually reaching Gaussian white noise. As in [20], efficiently sampling from the
noise-altered distribution q(xt) is achieved through a closed-form expression to generate arbitrary
time-step xt:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), αt = 1− βt, ᾱt =

t∏
s=1

αs (1)

The denoiser, a time-conditioned denoising neural network sθ(x, t) with trainable parameters θ, is
trained to reverse the diffusion process by minimizing re-weighted evidence lower bound (ELBO) [52,
20], adapting to the noise as follows:

Et,x0,ϵ

[
||∇xt log p(xt|x0)− sθ(xt, t)||22

]
(2)

In essence, the denoiser learns to recover the gradient that optimizes the data log-likelihood. Utilizing
the trained denoiser, the previous step data xt−1 is generated by inverting the Markov chain:

xt−1 ←
1√

1− βt

(xt + βtsθ(xt, t)) +
√
βtϵt (3)

In this reverse process, the insight that diffusion models evolve from rough to detailed was gained
through several empirical observations [5, 20, 35, 42]. Beyond them, [67] provides a numerical
explanation of this insight from a frequency perspective by considering the network as a linear filter.
In this case, the optimal filter, known as the Wiener filter [65], can be expressed in terms of its
spectrum response at every time-step. Under the widely accepted assumption that the power spectra
E[|X0(f)|2] = As(θ)/f

αS(θ) of natural images x0 follows a power law [62, 3, 11, 58], the frequency
response of the signal reconstruction filter is determined by the amplitude scaling factor As(θ) and
the frequency exponent αS(θ). As the reverse denoising process progresses from t = T to t = 0, and
ᾱ increases from 0 to 1, diffusion models, as analyzed by [67], exhibit spectrum-varying behavior
over time. Initially, a narrow-banded filter restores only low-frequency components responsible for
rough structures. As t decreases and ᾱ increases, more high-frequency components, such as human
hair, wrinkles, and pores, are gradually restored in the images.

3.2 Inception Transformer

The limitation of transformers in the field of vision is well-known as they tend to capture low-
frequency features that convey global information but are less proficient at capturing high-frequency
features that correspond to local information, as noted in previous works [9, 48]. To address this
shortcoming, [48] introduced the Inception Transformer, which combines a convolution layer with a
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transformer, utilizing the Inception module [55, 56, 54] To elaborate, the input feature Z ∈ RN×d is
first separated into Zh ∈ Rn×dh and Zl ∈ Rn×dl along the channel dimension, where d = dh + dl.
The iFormer block then applies a high-frequency mixer to Zh and a low-frequency mixer to Zl.
Specifically, Zh is further split into Zh1

and Zh2
along the channel dimension as follows:

Yh1
= FC(MP(Zh1

)), (4)

Yh2
= D-Conv(FC(Zh2

)), (5)

where Y denotes the outputs of high-frequency mixer, FC is fully-connected layer, MP represents
max pooling layer, and D-Conv is depth-wise convolutional layer.

In the low-frequency mixer, MHSA is utilized to acquire a comprehensive and cohesive representation,
as shown in Eq. 6. This global representation is then combined with the output from the high-
frequency mixer as in Eq. 7. However, due to the potential oversmoothing effect of the upsample
operation described in Eq. 6, a fusion module outlined in Eq. 8 is introduced to counteract this issue
and produce the final output.

Yl = Up(MHSA(AP(Zh2
))), (6)

Yc = Concat(Yh1
,Yh2

,Yl), (7)

Y = FC(Yc + D-Conv(Yc)), (8)

where Up denotes upsampling, AP is average pooling, and Concat represents concatenation.

4 Frequency Analysis for Diffusion Models

As in [10, 60], it is useful to design the architecture with distinct blocks capturing appropriate
frequency according to the depth of the block. In this section, we analyze the frequency-based
characteristics of latents and extracted features by the model according to time-step.

4.1 Frequency Component from Latents.

(a) t = 125 (b) t = 375 (c) t = 625 (d) t = 875

Figure 2: Visualization of the Fourier spectrum
of the inputs used in the training of diffusion mod-
els. As t increases from 0 to T , we observe the
high-frequency feature spectrum, initially concen-
trated towards the center, gradually disappearing.

From the fact that a Gaussian filter prioritizes
the filtering out of high-frequency [14], it is ev-
ident that the training data fed into diffusion
models progressively lose their high-frequency
spectrum as t increases. As shown in Fig. 2,
by illustrating the Fourier coefficients of the pe-
riodic function against the corresponding fre-
quency, we demonstrate that the training data
gradually lose their high-frequency spectrum as
t increases. It is thus clear to design the diffusion
model which filters different frequency compo-
nents according to the time-step for dealing with
the corresponding features.

4.2 Frequency Component Focused by Model.

Here, we first introduce the analysis on the frequency for each layer with the distinct depth as [9, 10]
did. We examine examining the relative log amplitudes of Fourier-transformed feature maps obtained
from the pre-trained latent diffusion model (LDM). As shown in Fig. 3, it reveals that image
recognition deep neural networks primarily perform high-pass filtering in earlier layers and low-pass
filtering in later layers. Additionally, in this paper, we further analyze the frequency components
focused by the diffusion model with respect to the diffusion time-step. The captured feature with
frequency perspective is illustrated in each subfigure of Fig. 3, indicating that diffusion models tend
to attenuate low-frequency signals more prominently as t increases. These findings align with the
well-established characteristics of a Gaussian filter, known for its tendency to suppress high-frequency
components primarily [14].
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875

Time-step

(a) The former layer in the encoder

125
375
625
875

Time-step

(b) The later layer in the encoder

125
375
625
875

Time-step

(c) The former layer in the decoder

125
375
625
875

Time-step

(d) The later layer in the decoder

Figure 3: Visualization of relative log amplitudes of Fourier transformed feature map obtained
from the pre-trained large LDM. The ∆Log amplitude of high-frequency signals is a difference
with log amplitudes at the frequency of 0.0π and π. We compute it with 10K image samples at
each time-step t ∈ {125, 375, 625, 875}. We can confirm that the tendency of ∆Log amplitude is
interpolated as t is changed. In particular, as t→ T (i.e., more noised input), the Fourier transformed
features from the model are rapidly changed after 0.0π. Following [37], we provide half-diagonal
components of two-dimensional Fourier-transformed feature maps for better visualization.

5 Multi-Architecture Multi-Expert Diffusion Models

Based on the above observations in Section 4, we propose the following significant hypothesis: By
structuring the denoiser model with operations that vary according to each time-step interval, it
could potentially enhance the efficiency of the diffusion model’s learning process. To validate this
hypothesis, two key elements are needed: i) a denoiser architecture with the capacity to adjust the
degree of its specialization towards either high or low frequencies, and ii) a strategy for varying the
application of this tailored architecture throughout the diffusion process.

5.1 iU-Net Architecture

Norm+Act.

Conv.

Norm+Act.

Drop.

Conv.

𝑥! 𝑇𝐸(𝑡)

Norm

i.Mixer

Norm+Act.

Drop.

Conv.

𝑥! 𝑇𝐸(𝑡)

Norm

i.Mixer

Norm

FFN

𝑥

(a) U-Net (b) iFormer (c) Ours (iU-Net)

Figure 4: Comparative illustration of the block
in the diffusion models. Figure 4a illustrates the
U-Net block for the diffusion model as in [20].
Our proposed architecture, iU-Net, exploits the
iFormer depicted in Fig. 4b based on conventional
U-Net for frequency dynamic feature extraction in
the diffusion process as shown in Fig. 4c. The ⊕
denotes element-wise addition and TE denotes the
time-embedding lookup table.

We propose the iU-Net architecture, a variant
of U-Net [43] that allows for adjusting the ratio
of operations favorable to high and low frequen-
cies. We utilize a block referred to as the in-
ception transformer (iFormer) [48], which inter-
twines convolution operations, suitable for high-
pass filtering, and Multi-Head Self-Attention
(MHSA) operations, suitable for low-pass filter-
ing, with an inception [55] mixer. Figure 4 illus-
trates the manner in which we have adapted the
iFormer block to fit the denoiser architecture of
diffusion. This setup allows the iFormer block
to regulate the ratio between the convolution-
heavy high-frequency mixer and the MHSA-
heavy low-frequency mixer in the architecture’s
composition. Following [37, 6, 66, 10, 48] that
tried to combine convolution and MHSA, we
set the iU-Net encoder to perform more MHSA
operations in the later layers. We discuss it
more technically in Section 5.2. Furthermore,
as in [4], rather than completely replacing the
block architecture from the U-Net block to the
iFormer block, asymmetrically merging the two
is effective in constructing an architecture for
diffusion model that exploits iFormer.

5.2 Multi-Architecture Multi-Expert Strategy

Architecture Design for Experts To facilitate the construction of structures capable of accommodat-
ing diverse architectures, we employ a multi-expert strategy [13, 1], but assign different architectures
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Table 1: Overall Results of Unconditional Generation on FFHQ and CelebA-HQ We use the
Clean-FID implementation to ensure reproducibility. We sample 200 steps using DDIM on the
FFHQ, and 50 steps on the CelebA-HQ. Even with N models trained using Multi-Expert and MEME,
the total training cost was equivalent to that of a large model. SD is trained through knowledge
distillation, which is dependent on having a large pretrained model already, but we can build an
efficient model from scratch. The symbols denote †: values reported in the original source; ‡: average
value across four architectures; ∗: calculated using checkpoints from our training; ∗∗: recalculated
using pretrained checkpoints from the official repository.

FFHQ 256× 256 (DDIM-200)
Model #Param↓ MACs↓ FID↓ Prec.↑ Recall ↑

LDM-L∗∗ (635K iter) [42] 274.1M 288.2G 9.03 0.72 0.49
Lite-LDM† [67] 22.4M 23.6G 17.3 - -

SD (with Distill.) [67] 21.1M - 10.5 - -
LDM-L∗ (540K iter) 274.1M 288.2G 9.14 0.72 0.48

LDM-S∗ 89.5M(3.1×) 94.2G(3.1×) 11.41(−2.27) 0.66(−0.06) 0.44(−0.04)
iU-LDM-S∗ 82.6M(3.3×) 90.5G(3.2×) 11.64(−2.50) 0.65(−0.07) 0.45(−0.03)

Multi-Expert∗ (w/o Soft) 89.5M×4(3.1×) 94.2G(3.1×) 10.42(−1.28) 0.69(−0.03) 0.46(−0.02)
Multi-Expert∗ 89.5M×4(3.1×) 94.2G(3.1×) 9.58(−0.44) 0.70(−0.02) 0.46(−0.02)

MEME∗(w/o Soft) 82.9M‡×4(3.3×) 90.4G‡(3.3×) 9.20(−0.06) 0.70(−0.02) 0.48(+0.00)
MEME∗ 82.9M‡×4(3.3×) 90.4G‡(3.3×) 8.52(+0.62) 0.72(+0.00) 0.50(+0.02)

CelebA-HQ 256× 256 (DDIM-50)
Model #Param↓ MACs↓ FID↓ Prec.↑ Recall ↑

LDM-L∗∗ (410K iter) [42] 274.1M 288.2G 5.92 0.71 0.49
Lite-LDM† [67] 22.4M 23.6G 14.3 - -

SD† (with Distill.) [67] 21.1M - 9.3 - -
LDM-S∗ 89.5M(3.1×) 94.2G(3.1×) 9.11(−3.19) 0.61(−0.10) 0.45(−0.04)

iU-LDM-S∗ 82.6M(3.3×) 90.5G(3.2×) 9.06(−3.14) 0.60(−0.11) 0.47(−0.02)
Multi-Expert∗ 89.5M×4(3.1×) 94.2G(3.1×) 7.00(−1.08) 0.67(−0.04) 0.48(−0.01)

MEME∗ 82.9M‡×4(3.3×) 90.4G‡(3.2×) 5.55(+0.37) 0.73(+0.02) 0.49(+0.00)

to each expert according to the frequency component. In each architecture, the ratio of dimension
sizes for high and low channels is defined by two factors: layer depth and diffusion time-step. The
former is well-known to enable the frequency dynamic feature extraction by focusing on lower fre-
quency as a deeper layer [37, 6]. For more technical derivation, let dk be the channel size in the k-th
layer, dkh be the dimension size for the high mixer, and dkl for the low mixer, satisfying dk = dkh + dkl .
Based on the analysis in Fig. 3, the ratio in each iFormer block is defined for dealing with appropriate
frequency components according to the depth; dkh/d

k
l decreases as a deeper block. On the other

hand, the latter (diffusion time-step) can be associated with the frequency components based on the
observation we found in Section 4; as time-step t increases, the lower frequency components are
focused. Therefore, we configure the iU-Net architecture such that the ratio of dkh/d

k
l decreases faster

for the denoiser taking charge of the expert on the larger t.

Soft Expert Strategy. As suggested in [13], one of N experts Θn is trained on the uniform and

disjoint interval In =

{
t

∣∣∣∣t ∈ (
(n−1)

N T, n
N T

]}
for n = 1, ..., N . However, for the large n, expert

Θn takes as noised input images by near Gaussian noise ϵn ∼ N (
√
ᾱnx0, (1− ᾱn)I), which makes

it challenging for meaningful learning to take place with Θn. To address this, we propose a soft expert
strategy, where each Θn learns on the interval In with a probability of pn denoted as the expertization
probability3. Otherwise, it learns on the entire interval

⋃N
n=1 In with the remaining probability of

(1− pn).

Since it is evident that Θn for large n takes more noised images, larger pn as n → N is a more
flexible strategy for training multi-expert, yielding p1 ≥ · · · ≥ pN .

6 Experiments

In this section, we demonstrate the capability of MEME to enhance the efficiency of diffusion models.
Section 6.1 showcases how our model can achieve superior performance over the baseline models,

3Note that When pn = 1 regardless of n, it can be denoted as hard expert strategy proposed by [13].
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despite being executed with less computation. In Section 6.2, we verify if our MEME model, as
hypothesized, indeed incorporates appropriate Fourier features for each time-step interval input.

We evaluated the unconditional generation of models on two datasets, FFHQ [26] and CelebA-
HQ [25]. We construct models based on the LDM framework [42]. All pre-trained auto-encoders for
LDM were obtained from the official repository4.

MEME employs a multi-expert structure composed of multiple small models, each of which has
its channel dimension reduced from 224 to 128. The use of these smaller models is denoted by
appending an ’S’ to the model name, such as in LDM-S and iU-LDM-S. We set the number of experts
N to 4 for all multi-expert settings, including MEME.

All experiments were conducted on a single NVIDIA A100 GPU. We primarily utilize the AdamW
optimizer [31]. The base learning rate is set according to the oigianl LDM [42]. Notably, our smaller
models employ a setting that doubles the batch size, which is not feasible with the original LDM
on a single A100. Correspondingly, the base learning rate for our smaller models is also doubled
compared to the standard settings.

We assess the quality of our generated models using the FID score [18]. As the FID score can be
challenging to replicate due to the settings of the reference set, we calculate it using the publicly
available Clean-FID [38] implementation5. Particularly for the FFHQ dataset, the availability of a
fixed reference set allows for a fair comparison of generation quality across all evaluated generative
models on Clean-FID. To verify the efficiency of our trained model, we compare its model size
and computational cost using the number of parameters and Multiply-Add cumulation (MACs)6 as
metrics. We provide detailed configurations regarding the models in the Appendix.

6.1 Image Generation Results

Performance and Cost The results of our model trained on FFHQ [26] and CelebA-HQ [25] datasets
are shown in Table 1. Despite requiring only 3.3 times less computation cost (MACs), our model
demonstrates an improvement in performance (FID). Specifically, we observe a gain of 0.62 in FID
for FFHQ and 0.4 in FID for CelebA. In the case of MEME and Multi-Expert, they require N models
to be loaded into system memory for inference. However, in large-scale sample inference scenarios,
it is possible to load only one expert into system memory while storing intermediate outputs on the
disk, yielding less cost to the inferring process. Our approach allows for an improvement of 3.3 times
in memory cost, which is equivalent to that of a single denoiser. In our experimental setting with
N = 4, even if all experts are loaded into system memory for inference, it only requires an additional
20.9% of memory compared to the single large model. Further details regarding these two inference
scenarios can be found in the Appendix. It is also worth noting that in our experiments, the four
experts of Multi-Expert and MEME incurred less than 30% of the computation time compared to
LDM-L based on A100 GPU. Therefore, the overall training cost requires less than an additional 20%
of resources. The qualitative results illustrated in 5 show that the generated images by our methods
are superior to those by baseline.

Module Ablation Table 1 provides ablation study for various methods on FFHQ dataset. Firstly,
when training with the baseline LDM-S, which involves standard diffusion training, performance
drop (FID -2.27, -2.50 for LDM-S, iU-LDM-S, respectively) occurs. Although the incorporation of
Multi-Expert mitigates the performance drop to some extent, there is still a degradation (FID -1.28)
compared to the baseline LDM-L. In contrast, MEME not only reduces computational cost through
the use of smaller-sized denoisers but also achieves performance improvement (FID +0.62).

Additionally, as mentioned in Section 5.2, we found that the soft-expert strategy is more efficient
than the hard-expert strategy, where each expert focuses on its designated region. We empirically
discovered that a staretegy for training the multi-expert with the expertization probability, denoted
as pn, is beneficial. We configured the probabilities as follows: p1 = 0.8, p2 = 0.4, p3 = 0.2, and
p4 = 0.1. Different configurations for pn are provided in the Appendix.

4https://github.com/CompVis/latent-diffusion
5https://github.com/GaParmar/clean-fid
6https://github.com/sovrasov/flops-counter.pytorch
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Figure 5: Samples from baseline LDM-L and MEME trained on FFHQ. The baseline often
generates unnatural aspects in images, whereas our approach MEME shows fewer such cases.

(a) Multi-Expert, t = 125 (b) MEME, t = 125 (c) Multi-Expert, t = 875 (d) MEME, t = 875

Figure 6: Fourier Analysis Comparison between Multi-Expert and MEME Even with the same
input t, we can confirm that MEME exhibits different characteristics for each expert. MEME
demonstrates a similar trend as the pre-trained large model shown in Fig. 3, where experts responsible
for intervals close to t = T rapidly reduce high frequencies. In contrast, Multi-Expert composed of
the same architecture shows that the frequency characteristics of features for the same time-step input
are not significantly distinguished from each other.

6.2 Fourier Analysis of MEME

In this section, unlike the analysis shown in Fig. 3, we investigate whether the experts in MEME
possess the ability to capture the corresponding frequency characteristics that are advantageous for
their respective intervals as illustrated in Fig. 6. MEME, composed of various architectures, exhibits
different characteristics for each expert; experts responsible for intervals closer to t = T quickly
reduce high frequencies. In contrast, the Multi-Expert, composed of the same architecture, fails to
significantly differentiate the frequency characteristics of features when the same time-step input is
provided. Particularly for t = 875, which requires the ability to capture low-frequency components,
it is difficult to distinguish the features of all experts.

6.3 MEME on Top of the Other Diffusion Baseline

CelebA 64× 64
Model #Param↓ FID↓

ADM-S 90M 49.56
iU-ADM-S 82M(1.1×) 50.08(−0.52)

Multi-Expert 90M ×4 47.29(+2.27)
MEME 82M ×4(1.1×) 43.09(+6.47)

Table 2: Results when applied to ADM baseline
MEME outperforms ADM-S baseline [5]. Note
that ADM-S already has a much smaller parameter
than the original ADM (552.8M).

In order to explore the generalizability of
MEME, we adopted the experimental setup used
for architecture validation in [5]. We trained a
lightweight version of ADM [7] (referred to as
ADM-S) on the CelebA-64 dataset with batch
size 8 and 200,000 iterations. The FID measure-
ment was conducted from 10,000 samples from
DDIM [50] with 50 steps. The results demon-
strate that our MEME exhibits effective perfor-
mance (FID +6.47) even in the context of ADM.
Furthermore, the consistent trend is in line with
the results observed in the LDM experiments.

9



7 Conclusion

In this paper, we studied the problem of enhancing diffusion models, with the distinction of adopting
multiple architectures to suit the specific frequency requirements at different time-step intervals. By
incorporating the iU-Net architecture, we provide a more flexible and efficient solution for handling
the complex distribution of frequency-specific components across time-steps. Our experiments
validated that the proposed method, named MEME, outperforms existing baselines in terms of
both generation performance and computational efficiency, making it a more practical solution for
real-world applications.
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A Experimental Details

In this section, we provide the details of experiments in Section 6. All experiments are conducted
with a single A100 GPU.

A.1 Experimental Details for LDM Baseline

Commonly used hyperparameters of the models involved in image generation experiments on
FFHQ [26] and CelebA [25] datasets are presented in Table. 3. Additionally, the hyperparameters
specific to our expert models within the Multi-architecturE Multi-Expert (MEME) framework,
employing the iU-Net, are outlined in Table. 4. Our implementation for the models in experiments is
based on the official Latent Diffusion Models (LDM [42]) repository7.

In the FFHQ experiments, all models generate 50K samples for evaluation via the Denoising Diffusion
Implicit Models (DDIM [50]) with a 200-step sampling process. The Fréchet Inception Distance
(FID [18]) is computed utilizing the Clean-FID [38] official code8, with the entire 70K FFHQ dataset
serving as the reference image set. The constancy of this reference set bolsters the reproducibility of
the Clean-FID computations. The LDM-L model, trained for 635K iterations, is incorporated with
pretrained weights obtained from the LDM [42] official repository. In contrast, another model is
independently trained for 540K iterations to provide a comparable measure against Multi-Expert and
MEME, specifically in terms of GPU memory and time costs. For both Multi-Expert and MEME, the
batch size is set twice that of the large model, equating the GPU memory costs when using a single
A100 GPU. This configuration leads to an approximate usage of 50GB VRAM in the given system.
The process of sequentially training four small experts, each for 135k iterations on a single A100
GPU, exhibits similar time costs to training a large model for 520K iterations.

For experiments involving the CelebA-HQ [25] dataset, all models are subject to a DDIM 50-step
sampling process to generate 50K samples. To align experimental settings with the FFHQ dataset,
the Clean-FID score is computed with the entire 30K CelebA-HQ dataset employed as the reference
image set.

Table 3: Hyperparameters for the LDMs producing the numbers shown in Table. 1. All models are
trained on a single NVIDIA A100. Further details for iU-LDM-S and MEME architectures are shown
in 4

Large Small

CelebA-HQ 256× 256 FFHQ 256× 256 CelebA-HQ 256× 256 FFHQ 256× 256

f 4 4 4 4
z-shape 64× 64× 3 64× 64× 3 64× 64× 3 64× 64× 3
|Z| 8192 8192 8192 8192
Diffusion steps 1000 1000 1000 1000
Noise Schedule linear linear linear linear
Nparams 274M 274M 89.5M 89.5M
Channels 224 224 128 128
Depth 2 2 2 2
Channel Multiplier 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8
Head Channels 32 32 32 32
Batch Size 48 42 96 84
Iterations∗ 410k 520k, 635k 85k 135k
Learning Rate 8.4e-5 9.6e-5 1.68e-4 1.92e-4

A.2 Experimental Details for ADM-S Baseline

In an effort to investigate the potential for employing MEME within the scope of pixel-level diffusion
models other than LDM, we incorporate the specific experimental configurations previously utilized
by Choi et al. [5]. These configurations are originally devised for the purpose of validating p2-
weighting [5] model architecture. In this particular experimental context, we have implemented the
small ADM model[7], termed ADM-S, equipped with a total of 90 million parameters. Fundamentally,

7https://github.com/CompVis/latent-diffusion
8https://github.com/GaParmar/clean-fid
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Table 4: Configurations of the proposed expert models with iU-Net. † denotes the architecture used
for iU-LDM-S

Stage Layer expert† Θ1 expert Θ2 expert Θ3 expert Θ4

enc#1

iFormer
Block

3× 3, stride 1, 128{
dh/d = 3/4
dl/d = 1/4
pool stride 2

} × 2

3× 3, stride 1, 128{
dh/d = 3/4
dl/d = 1/4
pool stride 2

} × 2

3× 3, stride 1, 128{
dh/d = 3/4
dl/d = 1/4
pool stride 2

} × 2

3× 3, stride 1, 128{
dh/d = 3/4
dl/d = 1/4
pool stride 2

} × 2

Res
Block 3× 3, stride 1, 128 3× 3, stride 1, 128 3× 3, stride 1, 128 3× 3, stride 1, 128

enc#2

iFormer
Block

3× 3, stride 1, 256{
dh/d = 5/8
dl/d = 3/8
pool stride 2

} × 2

3× 3, stride 1, 256{
dh/d = 1/2
dl/d = 1/2
pool stride 2

} × 2

3× 3, stride 1, 256{
dh/d = 3/8
dl/d = 5/8
pool stride 2

} × 2

3× 3, stride 1, 256{
dh/d = 1/4
dl/d = 3/4
pool stride 2

} × 2

Res
Block 3× 3, stride 1, 256 3× 3, stride 1, 256 3× 3, stride 1, 256 3× 3, stride 1, 256

enc#3

iFormer
Block

3× 3, stride 1, 384{
dh/d = 1/2
dl/d = 1/2
pool stride 2

} × 2

3× 3, stride 1, 384{
dh/d = 3/8
dl/d = 5/8
pool stride 2

} × 2

3× 3, stride 1, 384{
dh/d = 1/4
dl/d = 3/4
pool stride 2

} × 2

3× 3, stride 1, 384{
dh/d = 1/8
dl/d = 7/8
pool stride 2

} × 2

Res
Block 3× 3, stride 1, 384 3× 3, stride 1, 384 3× 3, stride 1, 384 3× 3, stride 1, 384

enc#4 iFormer
Block

3× 3, stride 1, 512{
dh/d = 1/4
dl/d = 3/4
pool stride 2

} × 2

3× 3, stride 1, 512{
dh/d = 1/8
dl/d = 7/8
pool stride 2

} × 2

3× 3, stride 1, 512{
dh/d = 1/16
dl/d = 15/16
pool stride 2

} × 2

3× 3, stride 1, 512{
dh/d = 1/16
dl/d = 15/16
pool stride 2

} × 2

#Param. (M) 82.56 82.85 83.11 83.32

our experimental model implementation is based on the official repository9 of Choi et al. [5]. The
hyperparameters pertaining to this experiment can be found in Table. 5.

Table 5: Hyperparameters for the ADM-S [7] producing the numbers shown in Table. 2. All models
are trained on a single NVIDIA A100. ‡ denotes: average value across four architectures.

ADM-S iU-ADM-S Multi-Expert MEME
T 1000 1000 1000 1000
βt linear linear linear linear
Model Size 90 82 90 ×4 82‡ ×4
Channels 128 128 128 128
Blocks 1 1 2 2
Self-attn bottle bottle bottle bottle
Heads Channels 64 32 64 64
BigGAN Block yes yes yes yes
Dropout 0.1 0.1 0.1 0.1
Learning Rate 2e-5 2e-5 2e-5 2e-5

Images (M) 1.6 1.6 1.6 1.6

A.3 Practical Benefits and Limitations

The foremost benefit derived from the multi-expert strategy is the considerable reduction in compu-
tational time costs. This mirrors the empirical observations made by Balaji et al. [1], who found
that within a practical setting, the total inference speed of the model does not vary with the number
of experts, N . The inference speed stays constant with increasing N , as it’s defined by the average
model size of the experts.

However, a potential limitation of this approach lies in the associated memory cost. If all the expert
models are loaded into the GPU system memory, the memory cost increases proportionally with the
number of experts, N . Despite this, the multi-expert strategy for diffusion models provides an option
to prioritize memory efficiency over computational time costs under memory-critical circumstances.
This can be achieved by loading only the expert model responsible for inference at each time-step
into the GPU system memory, thereby reducing memory cost at the expense of computation time.

9https://github.com/jychoi118/P2-weighting
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Moreover, in situations where there is a demand to process large sample inferences simultaneously,
the multi-expert strategy can offer drastic reductions in both system memory cost and computational
time costs. This is possible by loading one expert model into the GPU system memory and processing
features up to its limit. Intermediary outputs can then be stored in disk memory before unloading the
current expert from the GPU system memory. The same procedure is then sequentially repeated for
each subsequent expert, resulting in significant overall savings.

B The Effects of Expertization Probability in Soft-Expert

FFHQ 256× 256
Expert Strategy Multi-Expert MEME

[1.0, 1.0, 1.0, 1.0] 10.42 9.20
[0.6, 0.6, 0.6, 0.6] 10.13 9.08
[0.8, 0.4, 0.2, 0.1] 9.58 8.52

Table 6: FID values on the FFHQ dataset de-
pending on how the expertization probability is
assigned. The ‘Expert Strategy’ column represents
[p1, p2, p3, p4]. In this context, [1.0, 1.0, 1.0, 1.0]
denotes the hard-expert [13], [0.6, 0.6, 0.6, 0.6] de-
notes the soft-expert with a constant expertization
probability, and [0.8, 0.4, 0.2, 0.1] denotes the soft-
expert with decreasing expertization probabilities.

In establishing the soft-expert strategy, we hy-
pothesize that experts dealing with more highly
diffused inputs suffer from learning meaningful
semantics. Therefore, we posit that setting the
expertization probabilities, pn, to decrease as n
increases (p1 ≥ · · · ≥ pN ) would be more effec-
tive than maintaining them all constant. We con-
ducted an experimental comparison to test this
hypothesis, contrasting hard-expert [13], soft-
expert with constant pn, and soft-expert with
decreasing pn.

The results of this comparative study are pre-
sented in Table. 6. The elements in the Expert
Strategy column represent [p1, p2, p3, p4]. Thus,
[1.0, 1.0, 1.0, 1.0] denotes the hard-expert [13],
[0.6, 0.6, 0.6, 0.6] denotes the soft-expert with
a constant expertization probability, and [0.8, 0.4, 0.2, 0.1] denotes the soft-expert with decreasing
expertization probability. The training and evaluation process details followed those outlined in
Section. 6.1 and Section. A.1.

C The Effects of The Number of Experts

FFHQ 256× 256
#Expert N FID

LDM-S Multi-Expert
N = 2 10.97
N = 4 10.42
N = 6 10.28

Table 7: Changes in FID according to the number
of experts N in LDM-S Multi-Expert training. All
results were trained under the hard-expert experti-
zation probability setting.

As noted in Section. A.3, the total inference time
in the multi-expert strategy does not increase as
the number of experts N increases. However,
the cost of GPU memory may increase propor-
tionally with N . To understand the performance
difference based on the number of experts, we
varied the number of experts in a multi-expert
setting with hard expertization probability and
measured the FID [18] value.

In Table. 7, we show the FID values obtained
from training the multi-expert model with differ-
ent values of N : 2, 4, and 6. The performance
improvement from N = 2 to N = 4 is substantial, but there is not a large increase from N = 4 to
N = 6. Hence, we have set N = 4 as our default value. The details of the training and evaluation
process followed those outlined in Section. 6.1 and Section. A.1.

D Experimental Details for Fourier Analysis

Following Park et al. [37], we analyze the feature maps in the Fourier space to confirm what
frequency the pretrained large diffusion models focus on at each time-step (as shown in Fig. 3), or to
verify that our proposed MEME learns the characteristics of the responsible intervals more effectively
than a single architecture multi-expert (as shown in Fig. 6).

We perform a Fourier transformation on the feature maps, converting them into a two-dimensional
frequency domain. These converted feature maps are then represented in a normalized frequency
domain, where the highest frequency components correspond to f = −π,+π, while the lowest
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frequency components coincide with f = 0. To enhance the clarity of our visualizations, we focus on
presenting only the half-diagonal components. The features required for conducting Fourier analysis
are calculated based on the average of features derived from 10,000 randomly sampled input data
from the FFHQ [26] dataset.

The approach of Park et al. [37] involves visualizing the ∆ log amplitude for all layers within a
single model. However, in our analysis, we incorporate multi-expert diffusion models which add two
additional dimensions: the time-step and expert models. This necessitates a different visualization
approach, where instead of plotting values corresponding to multiple layers within one model, we
chart values per time-step (Fig. 3), or alternatively, per expert model (Fig. 6). This enables a more
nuanced understanding of how each time-step is handled across the denoising process, or how each
expert model performs.

E Societal Impacts

Generative models, including diffusion models, have the potential to significantly impact society,
particularly in the context of DeepFake applications [12] and biased data [24, 59]. One of the
key concerns lies in the amplification of misinformation and the erosion of trust in visual media.
Furthermore, if generative models are trained on biased data or intentionally manipulated content,
they can inadvertently perpetuate and exacerbate social biases [24], leading to the dissemination of
misleading information and the manipulation of public perception.

F Limitations

Our research highlights the significance of customizing architectural designs to align with the specific
timestep of diffusion models. In order to achieve this, our primary focus lies in tuning the operations
within each layer through the modulation of the mixing ratio between convolution and self-attention.
However, there are two limitations that can be addressed in future work.

Firstly, our research recognizes the yet unexplored territory of determining the optimal mixing ratio
between convolution and self-attention. Although we demonstrate that increased convolution leads
to enhanced performance in latent spaces with lower noise, the precise optimization of the mixing
ratio remains a task yet to be accomplished, similar to the advancements achieved through neural
architecture search [71]. To address this, introducing a neural architecture scheme that adapts to
varying timesteps can hold significant potential for advancing diffusion models.

Secondly, our research does not delve into exploring other architectural design factors, such as
pooling techniques. Future work can focus on investigating the impact of different pooling techniques
on the performance of diffusion models. Additionally, exploring the combination of convolution, self-
attention, and other architectural elements, such as residual connections [17] or skip connections [43],
could provide further insights into optimizing the overall architecture for diffusion models.

G Qualitative Resutls

We provide additional qualitative results for our MEME models for the CelebA-HQ [25], and FFHQ
datasets (Fig. 7 - 8).
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Random samples on the CelebA-HQ dataset

Figure 7: Random samples of our MEME on the CelebA-HQ dataset. Sampled with 50 DDIM steps
and η = 0.

Random samples on the FFHQ dataset

Figure 8: Random samples of MEME on the FFHQ dataset. Sampled with 200 DDIM steps and
η = 1.
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