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Abstract

Large language models (LLMs) have exhib-
ited great potential in mathematical reasoning.
However, there remains a performance gap in
this area between existing open-source models
and closed-source models such as GPT-4. In
this paper, we introduce MathGenie, a novel
method for generating diverse and reliable math
problems from a small-scale problem-solution
dataset (denoted as seed data). We augment
the ground-truth solutions of our seed data and
train a back-translation model to translate the
augmented solutions back into new questions.
Subsequently, we generate code-integrated so-
lutions for the new questions. To ensure the
correctness of the code-integrated solutions,
we employ rationale-based strategy for solu-
tion verification. Various pretrained models,
ranging from 7B to 70B, are trained on the
newly curated data to test the effectiveness of
the proposed augmentation technique, resulting
in a family of models known as MathGenieLM.
These models consistently outperform previ-
ous open-source models across five represen-
tative mathematical reasoning datasets, achiev-
ing state-of-the-art performance. In particu-
lar, MathGenieLM-InternLM2 achieves an ac-
curacy of 87.7% on GSM8K and 55.7% on
MATH, securing the best overall score among
open-source language models.

1 Introduction

Large language models (LLMs), such as GPT-
4 (OpenAI, 2023), and others (Touvron et al., 2023;
Yue et al., 2023; Gou et al., 2023; Wang et al.,
2023), have demonstrated outstanding capabilities
in mathematical reasoning. Existing methods ex-
plored three main types of solution formats for tack-
ling the math-solving problem: text-only Chain-of-
Thought (CoT) solutions (Wei et al., 2022), code-
only Program-of-Thought (PoT) solutions (Chen
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et al., 2022), and code-integrated solutions (Zhou
et al., 2023). Among these, code-integrated solu-
tions demonstrate superior performance over both
CoT and PoT solutions (Gou et al., 2023; Wang
et al., 2023; Zhou et al., 2023), indicating their ef-
fectiveness in enhancing problem-solving abilities.

In this paper, we focus on creating diverse and
reliable augmented questions and ensuring the reli-
ability of the generated code-integrated solutions,
thereby better finetuning pretrained base models.
Existing works, such as ToRA (Gou et al., 2023)
and MathCoder (Wang et al., 2023), build code-
integrated solutions and augment math questions
using off-the-shelf GPT-4. However, scaling up
the training data with GPT-4 becomes prohibitively
expensive.

Consequently, developing a free open-source
model to generate large-scale synthetic data
presents a promising alternative, offering scala-
bility and cost-effectiveness (Yuan et al., 2023;
Singh et al., 2023). To effectively scale-up math
problem-solving data, we focus on handling two
critical challenges: (1) how to generate high-quality
and diverse math problems to aid in generaliza-
tion, and (2) how to generate accurate and reli-
able solutions for the augmented problems with-
out human-annotated ground truth, preferably in
a code-integrated format. A unified framework,
MathGenie, is proposed, which consists of three
components as shown in Fig. 1 to tackle the above-
mentioned challenges: Iterative Solution Augmen-
tation, Question Back-translation and Verification-
Based Solution Filtering.

Iterative Solution Augmentation and Question
Back-translation aims to generate diverse and re-
liable math problems. Unlike direct question aug-
mentation (Yu et al., 2023), the proposed math
problem back-translation leverages the constraints
and logical relationships inherent in mathematical
solutions to create a diverse and high-quality set
of new math problems. Specifically, we iteratively
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Step 3: Verification-Based Solution Filtering

Step 1 : Iterative Solution Augmentation
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Figure 1: Framework of MathGenie. Iterative Solution Augmentation augments human-annotated solutions in
GSM8K and MATH to create new solutions, as shown in Step 1. These solutions are then back-translated to new
questions using Question Back-translation, demonstrated in Step 2. Then reliable code-integrated solutions are
curated using Verification-Based Solution Filtering, by generating solutions and filtering them using verification
rationales, as shown in Step 3.

augment the human-annotated solutions from the
relatively small training sets of MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021),
generating a large-scale collection of augmented
new solutions, as shown in Step 1 of Fig. 1.
These solutions are then processed by a math back-
translation model, Mbacktrans, to back-translate the
augmented solutions into their corresponding math
questions, as demonstrated in Step 2 of Fig. 1. This
method draws inspiration from Instruction Back-
translation (Li et al., 2023b), which back-translates
instructions from texts in a web corpus. However,
the key difference is that our source solutions for
back-translation are augmented from existing ones
to ensure the reliability and solvability of the aug-
mented questions.

These newly generated math problems lack re-
liable ground-truth solutions, which necessitates
the proposed Verification-Based Solution Filtering.
We first build a model, Mcode, capable of generat-
ing code-integrated solutions and verifying these
solutions. Then, code-integrated solutions of the
new questions are generated with this model. To en-
hance the reliability of these code-integrated solu-
tions, we use Mcode to verify the model-generated
solutions by generating verification rationales for
them, as demonstrated in Step 3 of Fig. 1. The veri-
fication rationales use interleaved natural language
and code to verify the correctness of the solutions,

as shown in Tab. 13 and Tab. 14 in Appendix G.
Only the solutions verified to be correct are re-
tained, thus improving the accuracy and quality of
the generated data.

Based on the proposed MathGenie framework,
we obtain a large-scale model-generated math
problem-solution dataset, MathGenieData, featur-
ing diverse augmented questions and reliable code-
integrated solutions.

To evaluate the effectiveness of the question-
solution augmentation framework MathGenie, we
finetune various state-of-the-art pretrained models,
ranging from 7B to 70B. This results in Math-
GenieLM, a new family of math models with
excellent performance. Our models demonstrate
high accuracy across five diverse and representative
math datasets: MATH, GSM8K, SVAMP, Simuleq,
and Mathematics. In particular, MathGenieLM-
InternLM2 achieves an accuracy of 87.7% on
GSM8K and 55.7% on MATH, achieving the best
overall score. When enhanced by majority voting,
MathGenieLM-Llama-2-70B attains a 10-path ac-
curacy rate of 91.7% on GSM8K and 63.3% on
MATH.

The main contributions of this paper are sum-
marized as follows: (1) We propose the Math-
Genie pipeline, which is designed to enhance the
scale, diversity, and quality of synthetic math ques-
tions, as well as to improve the accuracy of the



Seed Question: Ann's favorite store was having a 

summer clearance. For $75 she bought 5 pairs of 

shorts for $7 each and 2 pairs of shoes for $10 

each. She also bought 4 tops, all at the same price. 

How much did each top cost?

Seed Solution: She bought 5 shorts at $7 each so 5*7=$35. She 

bought 2 pairs of shoes at $10 each so 2*10=$20. The shorts and 

shoes cost her 35+20 = $55. We know she spent 75 total and the 

shorts and shoes cost $55 which left a difference of 75-55 = $20. 

She bought 4 tops for a total of $20 so 20/4 = $5.

#### 5

Explanation: Ann bought 5 entrees at $15 each so 

5*15=75. She bought 2 desserts at $20 each so 

2*20=40. The entrees and desserts cost her 

75+40=115. This is impossible, as we know she 

spent 75$ total, which is less than 115.

So the new problem has no answer.

√

ⅹ

A pair of seed question and solution

Direct Question 

Augmentation

Iterative Solution 

Augmentation

Question

Back-translation

Augmented Solution: She bought 5 bananas at $1 each so 

5*1=$5. She bought 2 oranges at $2 each so 2*2=$4. The 

bananas and oranges cost her 5+4 = $9. We know she spent 10 

total and the bananas and oranges cost $9 which left a difference 

of 10-9 = $1. She bought 4 apples for a total of $1 so 1/4 = $0.25.

#### 0.25

Augmented Solution: She bought 5 bananas at $1 each so 

5*1=$5. She bought 2 oranges at $2 each so 2*2=$4. The 

bananas and oranges cost her 5+4 = $9. We know she spent 10 

total and the bananas and oranges cost $9 which left a difference 

of 10-9 = $1. She bought 4 apples for a total of $1 so 1/4 = $0.25.

#### 0.25

Augmented Solution: She bought 5 bananas at $1 each so 

5*1=$5. She bought 2 oranges at $2 each so 2*2=$4. The 

bananas and oranges cost her 5+4 = $9. We know she spent 10 

total and the bananas and oranges cost $9 which left a difference 

of 10-9 = $1. She bought 4 apples for a total of $1 so 1/4 = $0.25.

#### 0.25

× 𝑲

Augmented Question: Jillian bought 5 bananas, 2 

oranges, and 4 apples. She spent a total of $10. If 

bananas cost $1 each and oranges cost $2 each, how 

much does Jillian spend on each apple?

Augmented Question: Jillian bought 5 bananas, 2 

oranges, and 4 apples. She spent a total of $10. If 

bananas cost $1 each and oranges cost $2 each, how 

much does Jillian spend on each apple?

Augmented Question: Jillian bought 5 bananas, 2 

oranges, and 4 apples. She spent a total of $10. If 

bananas cost $1 each and oranges cost $2 each, how 

much does Jillian spend on each apple?

Augmented Question: Ann's favorite 

restaurant was having a winter sale. For $75 

she bought 5 entrees worth $15 each and 2 

desserts worth $20 each. She also bought 4 

appetizers, all at the same price. How much did 

each appetizer cost?

Figure 2: Comparison between Direct Question Augmentation (left) and Iterative Solution Augmentation and
Question Back-translation (right). Direct Question Augmentation damages the hidden constraints between the
conditions (cost of part of the things bought must not be more than the total cost), thus producing a question with no
answer. Question Back-translation considers the solution, and correctly augments the question.

code-integrated solutions generated for them. (2)
We conduct extensive experiments on various pre-
trained language models, demonstrating consis-
tently superior performance across multiple math
datasets.

2 MathGenie

In this section, we introduce MathGenie, a pipeline
for creating diverse and reliable math problems
through back-translation, and curating high-quality
code-integrated solutions through verification. We
begin by introducing the seed data and solution gen-
erator model. Next, we present the proposed Math-
Genie pipeline, which consists of three key steps, as
shown in Fig. 1: Iterative Solution Augmentation,
Question Back-translation, and Verification-Based
Solution Filtering.

Seed Data. The seed data consists of two
parts: (1) The first part is used for data aug-
mentation, consisting of 15K math problems and
human-annotated solutions from the training sets
of GSM8K and MATH. We denote it as Dtext =
{(qi, si)}ni=1, where qi is the i-th question, si is its
natural-language solution, and n is the total num-
ber of cases. (2) The second part is used for train-
ing our candidate solution generator model, which
serves to generate candidate solutions for the aug-
mented questions. We denote this part of the seed
data as Dcode = {(qi, sicode, vicode)}Ni=1, where qi

is the question, sicode is its code-integrated solu-
tion, and vicode is the code-integrated verification

rationales for the question-solution pair. It con-
tains 80K samples of code-integrated solutions for
problems in GSM8K and MATH, as well as code-
integrated verification rationales for these solutions.
Multiple different solutions are collected for each
question. We acquire these solutions and verifica-
tion rationales using the GPT-4 Code Interpreter,
which consist of interleaved natural language and
code.

Candidate Solution Generator. The candi-
date solution generator is a Llama-2 70B model
trained with Dcode and denoted as Mcode. The
code-integrated solutions in Dcode enables Mcode

to output candidate code-integrated solutions for
given math problems, similar to (Wang et al., 2023).
It has an accuracy of 86.4% on GSM8K and 49.5%
on MATH. The verification rationales in Dcode en-
able Mcode to effectively verify the solutions with
code-integrated rationales. The training method of
data in the code-integrated format is as described
in Wang et al. (2023).

Iterative Solution Augmentation. Different
from previous works that directly augment math
questions (Luo et al., 2023), we propose to aug-
ment solutions first and then back-translate the aug-
mented solutions to their corresponding questions
to better constrain the question generation process
and enhance the reliability of machine-generated
questions. The proposed strategy is also differ-
ent from the previous Instruction Back-translation
method (Li et al., 2023b), which leverages large



amounts of texts in a web corpus. As existing
solutions are limited in number and already have
corresponding questions, it is necessary to augment
them before the back-translation.

To augment the solutions in Dtext into related
new ones, we develop a solution augmentation
model, Mtext, by finetuning the LLaMA-2 70B
model on high-quality instructional datasets, in-
cluding OpenOrca1 and Alpaca-GPT42. Mtext

takes in a solution and a prompt instructing the
model to augment it, and outputs an augmented
solution. The prompts are shown in Tab. 1. The
augmentations are carefully constrained and reli-
able. We iteratively augment each solution in Dtext.
For convenience, the set of human-annotated solu-
tions in Dtext are denoted as S0. The solutions in
S0 are augmented by Mtext to create S1. As shown
in Step 1 of Fig. 1, this process is repeated on the
previously generated solutions, with S2 being cre-
ated from S1, and so on. After K rounds, the final
set of augmented solutions, denoted as SAug, is
created by taking the union of S1,S2, . . . ,SK :

SAug = S1 ∪ S2 ∪ · · · ∪ SK . (1)

Through iterative solution augmentation, each
round produces a set of solutions that differs from
the previous, making the solutions gradually devi-
ate more from the original solutions. Consequently,
the diversity of the augmented solutions is ensured,
which leads to diverse augmented question-solution
pairs as mentioned in the following sections. The
iteration process is beneficial to the final perfor-
mance, as demonstrated in Tab. 9 of Appendix B

Question Back-translation. We introduce
Question Back-translation to translate the solutions
in SAug back to their corresponding math problems.
To enhance the accuracy of the translation, we build
a Question Back-translation Model Mbacktrans by
finetuning Llama-2 70B on the reversed pairs of
question and solution in Dtext. The format of each
sample in the finetuning data can be denoted as
(s, q), where s is a solution, serving as input, and q
is its corresponding question. Then, we present the
solutions in SAug to Mbacktrans, thereby translating
them back to a set of new questions, denoted as
QAug. An example of Question Back-translation is
presented in Tab. 2.

1https://huggingface.co/datasets/Open-Orca/
OpenOrca

2https://huggingface.co/datasets/vicgalle/
alpaca-gpt4

Prompt

Replace the objects and verbs in Solution.
Solution:
{solution}
You must replace the objects and verbs in the Solution with objects and
verbs very different from before to create a new solution.

Add an extra step to the solution so that it is more complicated.
Solution:
{solution}
You must add an extra step to the Solution to create a new solution.

Change the numbers in Solution.
Solution:
{solution}
You must change the numbers in the Solution to create a new solution.

Replace the numbers and variables in Solution with different variables
and numbers you pick randomly.
Solution:
{solution}
You must replace the numbers and variables in the Solution with different
numbers and variables you pick randomly to create a new solution.

Table 1: Different prompts for solution augmentation.
“{solution}” is replaced with the solution to be aug-
mented.

Input

Create a New Problem based on the Solution:
For the soccer practice, Jack needs 3 days * 10 soccer balls/day = 30
soccer balls. Adding the soccer balls for the Gym class, he needs to give
a total of 30 soccer balls + 10 soccer balls = 40 soccer balls.

Output

New Problem: Jack is in charge of the equipment room at his school.
He needs to gather 10 soccer balls for the gym class and also give 3 days
worth of soccer balls for the soccer team’s practice. If each practice uses
10 soccer balls, how many soccer balls does Jack need to give out?

Table 2: An example of the proposed Question Back-
translation. The solution is input to the question back-
translation model, and the model outputs its correspond-
ing question.

Question Back-translation operates on SAug,
which is less unpredictable than the texts from the
web corpus used in Instruction Back-translation (Li
et al., 2023b). By leveraging the constraints shown
in the solutions, it is possible to create new ques-
tions more reliable than what direct question aug-
mentation can produce, as validated in experiments.

Verification-based Solution Filtering. Exist-
ing open-source models such as MathCoder (Wang
et al., 2023) only has the ability to solve math prob-
lems but are unable to effectively verify their so-
lutions. We enhance Mcode’s ability to verify the
solutions by adding code-integrated verification
rationales to the finetuning data. The training sam-
ples of verification rationales in the seed data are in
the format of (q, scode, vcode), where q and scode
are a pair of question and code-integrated solution,
and vcode is the code-integrated verification. The
(q, scode) pairs are the input, while the model is
trained to output vcode. In this way, the baseline
math problem-solving model Mcode acquires the
ability to verify its solutions with rationales made

https://huggingface.co/datasets/Open-Orca/OpenOrca
https://huggingface.co/datasets/Open-Orca/OpenOrca
https://huggingface.co/datasets/vicgalle/alpaca-gpt4
https://huggingface.co/datasets/vicgalle/alpaca-gpt4


of interleaved natural language and code. This abil-
ity not only facilitates Verification-Based Solution
Filtering, but can also play a role in enhancing
inference accuracy.

To perform the proposed Verification-Based So-
lution Filtering, we first generate code-integrated
solutions for each question in QAug. Initial filtering
is performed using answer consistency (Wang et al.,
2022), removing a question if its solutions reach
different answers. We then present each question-
solution pair to Mcode, prompting it to output a
code-integrated verification rationale, from which
we can determine whether the solution is verified
as correct or wrong. Examples of the verification
process are shown in Appendix G. Candidate solu-
tions that are verified to be wrong are abandoned.
The process is demonstrated in Step 3 of Fig. 1.

The pipeline proposed above results in 170K
samples of question and code-integrated solu-
tion pairs, denoted as AugData. AugData con-
sists of two parts: the 110K samples augmented
from GSM8K dataset, denoted as AugGSM8K,
and the 60K samples augmented from MATH
dataset, denoted as AugMATH. We denote the
above mentioned seed data for training Mcode as
SeedData. Combining SeedData and AugData, we
present the final dataset, MathGenieData, which
can be used to finetune various pretrained mod-
els, such as Llama-2 (Touvron et al., 2023) and
CodeLlama (Roziere et al., 2023), enhancing their
problem-solving ability and solution verification
skills. The resulting family of mathematical rea-
soning models is named MathGenieLM.

3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our models on two in-
domain datasets: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021), whose train-
ing sets are used for finetuning. Additionally,
we evaluate the final models on three out-of-
domain datasets: SVAMP (Patel et al., 2021),
Simuleq (Koncel-Kedziorski et al., 2016), and
Mathematics (Davies et al., 2021), to evaluate the
generalization ability of our proposed method.

Models. We perform full-parameter finetuning
on various pretrained models, including Llama-2
7B, 13B, and 70B (Touvron et al., 2023), CodeL-
lama 7B, 13B, and 34B (Roziere et al., 2023),
Llemma 7B and 34B (Azerbayev et al., 2023), Mis-
tral 7B (Jiang et al., 2023), Mixtral-8x7B (Jiang

et al., 2024), and InternLM2 20B (Team, 2023).
Finetuning details are described in Appendix E.

Compared methods. We compare Math-
GenieLM with closed-source models such as
ChatGPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI,
2023), and PaLM-2 (Anil et al., 2023), as well as
open-source models such as Mammoth (Yue et al.,
2023), MathCoder (Wang et al., 2023), ToRA (Gou
et al., 2023), and WizardMath (Luo et al., 2023).

3.2 Main Results
Tab. 3 shows the accuracy of MathGenieLM across
five datasets. Based on the results, we make the fol-
lowing observations: (1) For open-source models
with parameters ranging from 7B to 70B, MathGe-
nieLM achieves state-of-the-art performance. (2)
MathGenieLM demonstrates particularly high per-
formance on the three out-of-domain datasets com-
pared to previous open-source models, showcas-
ing the superior generalization capability of our
method. (3) MathGenieLM’s accuracy exceeds that
of ChatGPT-3.5 and PaLM-2. However, there re-
mains a noticeable gap when compared to GPT-4’s
performance. (4) MathGenieLM-Llemma-34B and
MathGenieLM-InternLM2-20B reach over 55% ac-
curacy on the challenging MATH dataset. This
might be attributed to the high-quality math-related
data they used in pretraining. (5) Mixtral-8x7B
achieves excellent performance, demonstrating the
potential of Mixture of Experts (MoE) models. The
results in Tab. 3 are all obtained using greedy de-
coding.

Apart from the results obtained with greedy de-
coding, we also report the results of majority vot-
ing using multiple sampled paths (Wang et al.,
2022), conducted on MathGenieLM-Llama-2-70B,
compared with ToRA-Llama-2-70B. The results
are shown in Tab. 4, where “k” represents the
number of solutions generated for majority vot-
ing. We observe that, with k = 10, majority vot-
ing significantly increases the accuracy across all
five datasets, yielding an average gain of 7.9%.
Specifically, at k = 10, MathGenieLM-Llama-2-
70B achieves an accuracy of 91.5% on GSM8K
and 63.3% on MATH, significantly outperforming
ToRA-70B at k = 50. This demonstrates the supe-
rior performance of our model.

3.3 Ablation Study
The following are some ablation studies. All fine-
tuning in the ablation studies has been conducted
using Mistral-7B as the base model.



Model Base Size In-Domain Out-of-Domain
GSM8K MATH SVAMP Simuleq Mathematics Average

Colsed-Source Models

ChatGPT-3.5 - - 80.8 35.5 83.0 - - -
GPT-4 - - 92.0 42.5 97.0 - - -

GPT-4 Code - - 97.0 69.7 - - - -
PaLM-2 - - 80.7 34.3 - - - -

Open-Source Models

Mammoth CodeLlama 7B 59.4 33.4 71.4 45.9 55.4 53.1
MathCoder CodeLlama 7B 67.8 30.2 70.7 49.6 55.8 54.8

ToRA CodeLlama 7B 72.6 44.6 70.4 36.0 68.1 58.3
MathGenieLM CodeLlama 7B 71.5 39.7 80.2 69.1 69.5 66.0

Mammoth Llama-2 7B 53.6 31.5 67.7 41.2 46.3 48.1
MathCoder Llama-2 7B 64.2 23.3 71.5 47.5 46.9 50.7

ToRA Llama-2 7B 68.8 40.1 68.2 29.2 58.3 52.9
MathGenieLM Llama-2 7B 71.7 33.0 78.5 61.4 65.0 61.9
MathGenieLM Llemma 7B 76.0 48.3 81.3 85.0 76.6 73.4
MathGenieLM Mistral 7B 80.5 45.1 83.3 79.4 71.8 72.0

Mammoth CodeLlama 13B 64.7 36.3 73.7 47.1 61.5 56.7
MathCoder CodeLlama 13B 74.1 35.9 78.0 60.7 62.5 62.2

ToRA CodeLlama 13B 75.8 48.1 75.7 37.9 70.3 61.6
MathGenieLM CodeLlama 13B 78.5 40.3 84.5 76.7 65.7 69.1

Mammoth Llama-2 13B 62.0 34.2 72.4 43.2 49.2 52.2
MathCoder Llama-2 13B 72.6 29.9 76.9 62.3 54.7 59.3

ToRA Llama-2 13B 72.7 43.0 72.9 45.7 62.6 59.4
MathGenieLM Llama-2 13B 80.4 43.8 83.5 78.4 72.7 71.8

Mammoth CodeLlama 34B 72.7 43.6 84.3 51.8 65.4 63.6
MathCoder CodeLlama 34B 81.7 45.2 82.5 65.8 75.9 70.2

ToRA CodeLlama 34B 80.7 50.8 80.5 50.2 77.9 68.0
MathGenieLM CodeLlama 34B 86.2 51.4 86.9 85.8 78.4 77.7
MathGenieLM Llemma 34B 84.1 55.1 87.4 89.3 82.9 79.8

WizardMath Llama-2 70B 81.6 22.7 - - - -
Mammoth Llama-2 70B 76.9 41.8 82.4 51.4 55.6 61.6
MathCoder Llama-2 70B 83.9 45.1 84.9 77.0 74.4 73.1

ToRA Llama-2 70B 84.3 49.7 82.7 73.3 72.6 72.5
MathGenieLM Llama-2 70B 88.4 51.2 87.7 89.1 76.0 78.5

MathGenieLM Mixtral 8x7B 87.0 53.7 88.9 89.9 81.7 80.2
MathGenieLM InternLM2 20B 87.7 55.7 87.3 88.5 85.1 80.9

Table 3: Results of MathGenieLM, compared to various open-source and closed-source models on 2 in-domain
datasets (GSM8K, MATH), and 3 out-of-domain datasets (SVAMP, Simuleq, Mathematics). The results of closed-
source models are from Yue et al. (2023) and Gou et al. (2023).

Model Base Voting k-path In-Domain Out-of-Domain
GSM8K MATH SVAMP Simuleq Mathematics Average

ToRA Llama-2 70B ✓ 50 88.3 56.9 - - - -

MathGenieLM Llama-2 70B ✗ - 88.4 51.2 87.7 89.1 76.0 78.5

MathGenieLM Llama-2 70B ✓ 10 91.7(+3.3) 63.3(+12.1) 94.0(+6.3) 95.9(+6.8) 87.2(+11.2) 86.4(+7.9)

Table 4: Results of naive majority voting. k-path represents the number of solutions generated for majority voting.

Analysis of different data composition. We
analyze the effect of adding and subtracting differ-
ent parts of our training data to observe the impact
of each component. As shown in the upper half
of Tab. 5, when only AugGSM8K is added, the
performance on GSM8K, SVAMP, and Simuleq
improves, while adding AugMATH leads to more
notable improvements in MATH and Mathematics.
This is consistent with the types of questions in

each dataset: GSM8K, SVAMP, and Simuleq con-
tain grade-school level math word problems with
relatively easy calculations, whereas MATH and
Mathematics feature more complex math computa-
tions. When both AugGSM8K and AugMATH are
added, the improvements in the datasets are com-
pounded as well, which shows the effectiveness of
our augmented data.

Analysis of different amounts of augmented



Data In-Domain Out-of-Domain
Seed Verification AugGSM8K AugMATH GSM8K MATH SVAMP Simuleq Mathematics Average

✓ ✗ ✗ ✗ 73.5 41.8 73.1 68.5 66.6 64.7
✓ ✓ ✗ ✗ 74.2 42.2 76.5 71.0 65.5 65.9
✓ ✓ ✓ ✗ 78.2 42.2 84.3 78.8 69.1 70.5
✓ ✓ ✗ ✓ 74.9 43.5 81.6 73.3 73.2 69.3
✓ ✓ ✓ ✓ 80.5 45.1 83.3 79.4 71.8 72.0

Seed + Verification 74.2 42.2 76.5 71.0 65.5 65.9
Seed + Verification + 1

8 (AugGSM8K + AugMATH) 75.6 41.6 80.7 75.3 67.7 68.2
Seed + Verification + 1

4 (AugGSM8K + AugMATH) 77.9 42.7 82.6 77.0 67.8 69.6
Seed + Verification + 1

2 (AugGSM8K + AugMATH) 79.2 44.0 82.1 80.2 68.8 70.9
Seed + Verification + (AugGSM8K + AugMATH) 80.5 45.1 83.3 79.4 71.8 72.0

Table 5: Effect of different data composition and amounts of augmented data with Mistral-7B as the base model.

Data GSM8K MATH Average

w/ verification filtering 79.3 43.8 61.6

w/o verificatioin filtering 80.5(+1.2) 45.1(+1.3) 62.8(+1.2)

Table 6: Effect of using or not using code-integrated
verification rationales to filter the training data.

data. We analyze the scaling quality of the aug-
mented data we generated by training a model with
{0, 18 ,

1
4 ,

1
2 , 1} times the amount of augmented data.

The results, as shown in the bottom half of Tab. 5
and Fig. 3, indicate that, with an increase in the
amount of augmented data, the performance on
all five datasets consistently improves, with very
few exceptions. This demonstrates the high scaling
quality of our data.

Analysis of Verification-Based Solution Filter-
ing. We analyze the effectiveness of Verification-
Based Solution Filtering by using data before and
after filtering with the help of verification to fine-
tune the model. As demonstrated in Tab. 6, finetun-
ing the model with augmented question-solution
pairs filtered by verification results in noticeable
accuracy increases in both GSM8K and MATH, in-
dicating the superior quality of the augmented data
after filtering and the effectiveness of Verification-
Based Solution Filtering. Further analysis of the
verification ability of Mcode is shown in Tab. 11 of
Appendix D.

Comparison with other question augmenta-
tion methods. We compare our method with
three other question augmentation methods: Meta-
Math (Yu et al., 2023), direct question augmen-
tation without solution, and direct question aug-
mentation with solution. The two direct question
augmentation methods both utilize Mtext as the
question augmentation model. The former presents
only the seed question to the model during ques-
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Figure 3: Performance of the Mistral 7B model fine-
tuned with {0, 1

8 ,
1
4 ,

1
2 , 1} times the amount of aug-

mented data.

tion augmentation, while the latter presents both
the question and its solution. The results, as shown
in Tab. 7, indicate that our augmented solution-
to-question back-translation method yields better
performance than existing augmentation methods.

3.4 Accuracy of Verified Inference
Our models have the ability to verify its own so-
lutions when presented with prompts as shown in
Tab. 10. This represents a mathematical reasoning
ability that can be applied during inference.

A simple way to do this is to verify the solu-
tions generated and solve the problem again if the
solution is verified to be incorrect. We limit the
number of verification to two times. As shown
in Tab. 8, applying verification twice consistently
enhances accuracy across all five datasets, with no-
table improvements in the MATH and Mathematics
datasets. The average generation (N×) presented
in Tab. 8 measures the cost of verified inference,
which is 2.3× on average. When compared to 3-



Augmentation Method In-Domain Out-of-Domain
GSM8K MATH SVAMP Simuleq Mathematics Average

MetaMath 79.5 44.6 78.4 79.6 67.9 70.0

Direct question augmentation (w/o sol.) 78.8 43.0 84.0 77.0 70.2 70.6

Direct question augmentation (w/ sol.) 79.2 44.2 83.6 72.0 68.6 69.5

MathGenie (ours) 80.5 45.1 83.3 79.4 71.8 72.0

Table 7: Comparison of different question augmentation methods. Direct question augmentation (w/o sol.)
presents Mtext with only the seed questions to generate new questions. Direct question augmentation (w/ sol.)
presents Mtext with pairs of question-solution to generate new questions.

In-Domain Out-of-Domain
GSM8K MATH SVAMP Simuleq Mathematics Average

Baseline Accuracy 88.4 51.2 87.7 89.1 76.0 78.5
N× 1× 1× 1× 1× 1× 1×

Verify (twice) Accuracy 88.6 55.8 88.7 91.2 81.1 81.1
N× 2.1× 2.8× 2.1× 2.1× 2.3× 2.3×

Voting (3-path) Accuracy 88.6 53.8 92.0 90.9 81.5 81.4
N× 3× 3× 3× 3× 3× 3×

Table 8: Result of MathGenieLM-Llama-2-70B using verified inference. Verify (twice) means that, when testing
the model, the solutions are verified and those verified as incorrect are solved again. This process is repeated twice.
Each verification or solution is counted as 1 generation, and N× is the average generation count of each question.

path majority voting, verified inference achieves
almost identical accuracy but at a significantly re-
duced cost. The results of more rounds of verifica-
tion are analyzed in Tab. 12 of Appendix F.

4 Related Works

Large Language Models for Mathematical Rea-
soning. LLMs have demonstrated remarkable
performance in mathematical reasoning tasks.
CoT (Wei et al., 2022) enhances LLMs’ capability
for multistep reasoning. Self-Consistency (Wang
et al., 2022) selects the final answer through major-
ity voting. CSV (Zhou et al., 2023) introduces code-
based self-verification. Other research efforts focus
on pretraining or finetuning LLMs, thereby produc-
ing math-specific LLMs, such as Llemma (Azer-
bayev et al., 2023), WizardMath (Luo et al., 2023),
Mammoth (Yue et al., 2023), ToRA (Gou et al.,
2023), and MathCoder (Wang et al., 2023). It is
noted that code-integrated models (Wang et al.,
2023; Gou et al., 2023) have shown superior capa-
bilities over CoT-style models. This paper develops
synthetic math problems and solutions using free
models to enhance mathematical reasoning.
Instruction-following Datasets for LLMs. Re-
cent studies (Taori et al., 2023; Peng et al., 2023;
Mukherjee et al., 2023; Li et al., 2023b) have be-
gun to utilize synthetic instructions generated by

LLMs, such as GPT-4 or GPT-3.5, to distill into
smaller models. WizardLM (Xu et al., 2023) pro-
poses complex instructions to enrich the seed data
for general chat models. This paper, however, fo-
cuses on math problem augmentation, particularly
for code-integrated math-specific models.
Data Augmentation for Mathematical Reason-
ing. To upscale the number of math problems,
various works (Yu et al., 2023; Liu and Yao, 2024;
Li et al., 2023a) directly augment existing prob-
lems. Differing from these approaches, our method
utilizes information in the solutions through math
question back-translation, thereby enhancing the
reliability of the augmented questions. We also cre-
ate code-integrated solutions for the questions and
use verification rationales to filter the solutions.

5 Conclusion

In this paper, we propose a coordinated pipeline
consisting of Iterative Solution Augmentation and
Question Back-translation to produce large-scale
synthetic math questions, and Verification-Based
Solution Filtering to filter the generated code-
integrated solutions. Combined, these three compo-
nents effectively create new questions and ensure
the reliability of the corresponding code-integrated
solutions. Experiments show that MathGenieLM
achieves superior performance across five math



problem-solving benchmarks and on six different
pretrained base models, offering insights into the
development of math problem-solving models and
providing hope for extension to other reasoning
tasks.

Limitations

Our method requires significant GPU resources,
involving the full-parameter finetuning of large lan-
guage models with up to 70B parameters. There-
fore, it is crucial for future studies to explore ways
to reduce the required resources. Another limi-
tation is that our models cannot process images
as input, and thus lack the ability to solve prob-
lems that involve images, as discussed in (Lu et al.,
2023). Additionally, our models are constrained
by a limited context length, having been finetuned
with a context length of 4096. These limitations
are significant and merit further investigation.

Ethics Statement

Our work, by enhancing the mathematical abili-
ties of language models, can potentially contribute
to the cause of math education. Still, our models
can output untrue hallucinations, just like any lan-
guage model. We have utilized various open-source
models such as LLaMA-2, CodeLLaMA, Mistral,
and Mixtral-8x7B, as well as open-source software
such as Hugging Face and PyTorch. We adhere
to the policies and licenses of these resources and
acknowledge the role they have played in our work.
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A Example of Iterative Solution
Augmentation and Question
Back-translation

Fig. 4 (b) shows an example of three rounds of Iter-
ative Solution Augmentation and Question Back-
translation. The seed solution is iteratively aug-
mented, and the augmented solutions are back-
translated into new questions. Compared to Fig. 4
(a), where augmentation is conducted directly on
the question, Iterative Solution Back-translation
demonstrates greater diversity in question phrasing,
as the original question is not directly provided to
the model.
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In-Domain Out-of-Domain
GSM8K MATH SVAMP Simuleq Mathematics Average

w/ iteration 80.5 45.1 83.3 79.4 71.8 72.0

w/o iteration 78.7(-1.8) 45.0(-0.1) 82.9(-0.4) 76.1(-3.3) 70.9(-0.9) 70.7(-1.3)

Table 9: Comparison between with iteration or without iteration when conducting solution augmentation. The
models are finetuned on Mistral 7B.

Prompt

**Question**:
{question}
**Solution**:
{solution}
Above is a math problem and its solution. Please use code to verify the
solution above.

Table 10: Prompt used for back-translation. {question}
is replaced with a math question, while {solution} is
replaced with the its code-integrated solution.

B Analysis of Iterative Solution
Augmentation

To effectively demonstrate the impact of iteration
on enhancing solution quality, we generated an
equal number of augmented solutions without em-
ploying iteration, by directly augmenting new so-
lutions from the original set. As illustrated in Ta-
ble 9, the outcomes of the experiment conducted
without iteration in solution augmentation were sig-
nificantly inferior compared to those with iteration.
This underscores the beneficial role of iteration in
solution augmentation, primarily attributed to its
potential to enhance the diversity of the solutions.

C Prompt of Verification

Tab. 10 presents the prompt format used in fine-
tuning and generating code-integrated verification
rationales.

D Analysis of Code-integrated
Verification

To understand the reason behind the improved qual-
ity of the data, we quantify the ability of Mcode to
conduct code-integrated verification by testing it
on the solutions generated by Mcode across the five
testing datasets. We utilize these testing datasets
because they contain ground truth, which enables
us to assess the actual correctness of the solutions.

We define two metrics below to demonstrate the
Mcode’s ability to verify its solutions: Precision
and Recall.

Precision =
TP

TP + FP

Recall =
TP

TP + TN
TP represents the cases in which the verification

proves the solution correct and the solution’s an-
swer is actually correct. FP represents the cases
in which the verification proves the solution cor-
rect, yet the solution’s answer is actually wrong.
TN represents the cases in which the verification
proves the solution wrong, yet the solution’s an-
swer is actually correct. In short, Precision an-
swers the question, “What proportion of verified
TRUE answers are actually correct?”, while Re-
call answers the question, “What proportion of ac-
tual correct answers were verified TRUE?”. Given
these definitions, Precision reflects the reliability of
the retained code-integrated solutions, while Recall
reflects the efficiency of the filtering step.

Tab. 11 shows that Precision is significantly
higher than Accuracy across all datasets, underscor-
ing the effectiveness and generalization capabilities
of code-integrated verification.

E Finetuning Details

In this work, we finetune all models using the
HuggingFace library. We employ a cosine weight
scheduler with a learning rate of 2e−5, designating
the first 50 steps as warm-up steps. All models are
optimized using AdamW (Loshchilov and Hutter,
2017) with a batch size of 64. The 70B and 34B
models are fine-tuned on 32 NVIDIA A800 80GB
GPUs. Mistral-8x7B is fine-tuned on 16 NVIDIA
A800 80GB GPUs, while the 7B, 13B, and 20B
models are all fine-tuned on 8 NVIDIA A800 80GB
GPUs.

F Analysis of Verification Rounds in
Verified Inference

In verified inference, we verify the solutions of the
test questions and re-solve only those questions
whose solutions are verified as incorrect. Conse-
quently, the number of questions that need solving
decreases with each round. Theoretically, this pro-
cess can continue until all questions have solutions



Metrics GSM8K MATH SVAMP Simuleq Mathematics Average

Accuracy 86.4 49.5 86.0 88.1 73.6 76.7

Precision 89.3(+2.9) 64.5(+15.0) 88.3(+2.3) 90.8(+2.7) 79.9(+3.2) 82.6(+5.9)
Recall 98.5 94.7 97.4 98.2 97.1 97.2

Table 11: Accuracy, Precision and Recall of Mcode with and without verification. Accuracy is the percent of
solutions that are correct. Precision is the percent of solutions actually correct among the solutions verified to be
correct. Recall is the percent of solutions verified to be correct among the solutions actually correct.

GSM8K MATH SVAMP Simuleq Mathematics Average

Baseline Accuracy 88.4 51.2 87.7 89.1 76.0 78.5
N× 1× 1× 1× 1× 1× 1×

Verify (k=1) Accuracy 88.4 54.2 88.4 90.9 79.2 80.2
N× 2.0× 2.3× 2.0× 2.0× 2.1× 2.1×

Verify (k=2) Accuracy 88.6 55.8 88.7 91.2 81.1 81.1
N× 2.1× 2.8× 2.1× 2.1× 2.3× 2.3×

Verify (k=3) Accuracy 88.6 56.3 88.8 91.2 81.3 81.2
N× 2.1× 3.1× 2.1× 2.1× 2.3× 2.3×

Verify (k=4) Accuracy 88.6 56.3 89.0 91.4 81.4 81.3
N× 2.1× 3.3× 2.1× 2.1× 2.4× 2.4×

Verify (k=5) Accuracy 88.6 56.5 88.9 91.4 81.4 81.4
N× 2.1× 3.4× 2.1× 2.1× 2.4× 2.4×

Verify (k=6) Accuracy 88.6 56.8 88.9 91.4 81.4 81.4
N× 2.1× 3.6× 2.1× 2.1× 2.4× 2.5×

Verify (k=7) Accuracy 88.6 56.8 88.9 91.4 81.4 81.4
N× 2.1× 3.7× 2.1× 2.1× 2.4× 2.5×

Verify (k=8) Accuracy 88.6 57.1 88.9 91.4 81.4 81.5
N× 2.1× 3.7× 2.1× 2.1× 2.4× 2.5×

Verify (k=9) Accuracy 88.6 57.1 88.9 91.4 81.4 81.5
N× 2.1× 3.8× 2.1× 2.1× 2.4× 2.5×

Table 12: Results of MathGenieLM-Llama-2-70B with varying numbers of verification rounds during inference.
Here, “k” represents the maximum number of verification rounds.

verified as correct. However, in practice, verify-
ing too many rounds can lead to additional costs
without any improvement in accuracy, as some
questions may be beyond the model’s problem-
solving and verification capabilities. To determine
the trade-off between cost and accuracy, we in-
creased the number of verification rounds to 9. The
results are shown in Tab. 12. As can be seen, the
increase in average accuracy becomes small after 2
rounds of verification.

G Examples of Code-Integrated
Verification Rationales

Two examples of code-integrated verification ra-
tionales are presented in Tab. 13 and Tab. 14. In
Tab. 13, the solution is verified as correct by using
the answer to calculate the condition and compar-
ing it with the actual condition. In Tab. 14, the
solution is verified as incorrect by solving the ques-
tion through an alternative method and comparing

the answers.



Seed Question: During April, the baker sold 453 cakes at $12 and 126 pies at $7. 

How much did the baker earn?

Round 1 Question: In June, the painter painted 453 houses at $12 each and 126 

paintings at $7 each. How much did the painter earn?

Round 2 Question: In June, the chef cooked 453 dishes at $12 each and 126 

desserts at $7 each. How much did the chef earn?

Round 3 Question: In June, the zoologist observed 453 species at $12 each and 

126 species at $7 each. How much did the zoologist earn?

Seed Solution: The baker sold cakes for 453 * 12 

= $5436. And pies for 126 * 7 = $882. In total the 

baker earned 5436 + 882 = $6318. #### 6318

Round 1 Solution: The florist sold bouquets for 88 

* 8 = $704. And wreaths for 98 * 9 = $882. In total 

the florist earned 704 + 882 = $1586. #### 1586

Round 2 Solution: The chef prepared soups for 20 

* 2 = $40. And cookies for 40 * 4 = $160. In total, 

the chef earned $200. #### 200

Round 3 Solution: The farmer harvested fruits for 

10 * 3 = $30. And vegetables for 5 * 5 = $25. In 

total, the farmer earned $55.

Seed Question: During April, the baker sold 453 

cakes at $12 and 126 pies at $7. How much did 

the baker earn?

Round 1 Question: A florist is selling bouquets for 

$8 and wreaths for $9. If the florist sold 88 

bouquets and 98 wreaths, how much did he earn?

Round 2 Question: A chef made 20 soups and 40 

cookies. Each soup costs $2 and each cookie 

costs $4. How much did the chef earn?

Round 3 Question: A farmer harvested 10 baskets 

of fruits and 5 baskets of vegetables. If a basket 

of fruits costs $3 and a basket of vegetables 

costs $5, how much did the farmer get paid for 

his harvest?

Seed Question and Solution

(a)

(b)

Figure 4: An example of three iterations of (a) Direct Question Augmentation and (b) Iterative Solution Augmenta-
tion and Question Back-translation.



Input:
**Question**:
Express 0.54 as a fraction in lowest terms.
**Solution**:
To express the repeating decimal 0.54 as a fraction in lowest terms, we can use algebraic manipula-
tion.
Let x = 0.54.
Step 1: Multiply x by 100 to shift the decimal point.
......
Therefore, 0.54 can be expressed as 6

11 in lowest terms.
Above is a math problem and its solution. Please use code to verify the solution above.

Output:
Now, let’s verify the answer by converting 6

11 back to a decimal.
# Convert the fraction 6/11 to a decimal
decimal_value = float(simplified_fraction)

decimal_value

Result:
0.5454545454545454
The decimal representation of 6

11 is approximately 0.5454545454545454, which matches the repeat-
ing decimal 0.54
Thus, our answer is verified and correct.

Table 13: An example of code-integrated verification rationale in which the solution is verified as correct.



Input:
**Question**:
What is 21213 − 2123? Express your answer in base 3.
**Solution**:
Alright, let’s solve this step by step.
To subtract these numbers, we’ll start from the rightmost digit (least significant) and move to the left,
just like we do in base 10 subtraction.
......
The result of 21213 − 2123 is 2223 .
Above is a math problem and its solution. Please use code to verify the solution above.

Output:
Now, let’s verify our answer by converting both numbers to base 10, performing the subtraction, and
then converting the result back to base 3 to see if it matches our answer.
# Convert the numbers from base 3 to base 10
def base3_to_base10(num_str):

num_str = num_str [::-1] # reverse the string for easy processing
base10_value = 0
for i, digit in enumerate(num_str):

base10_value += int(digit) * (3 ** i)
......

# Convert 2121_3 and 212_3 to base 10
num1_base10 = base3_to_base10("2121")
num2_base10 = base3_to_base10("212")

# Perform the subtraction in base 10
result_base10 = num1_base10 - num2_base10

# Convert the result back to base 3
result_base3 = base10_to_base3(result_base10)

result_base3

Result:
1202
It seems there was an error in our calculations. The correct result for 21213 − 2123 is 12023, not
2223. I apologize for the oversight.

Table 14: An example of code-integrated verification rationale in which the solution is verified as wrong.


