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Abstract

It has become a popular paradigm to transfer the knowledge of large-scale pre-
trained models to various downstream tasks via fine-tuning the entire model pa-
rameters. However, with the growth of model scale and the rising number of
downstream tasks, this paradigm inevitably meets the challenges in terms of com-
putation consumption and memory footprint issues. Recently, Parameter-Efficient
Fine-Tuning (PEFT) (e.g., Adapter, LoRA, BitFit) shows a promising paradigm to
alleviate these concerns by updating only a portion of parameters. Despite these
PEFTs having demonstrated satisfactory performance in natural language process-
ing, it remains under-explored for the question of whether these techniques could
be transferred to graph-based tasks with Graph Transformer Networks (GTNs).
Therefore, in this paper, we fill this gap by providing extensive benchmarks with
traditional PEFTs on a range of graph-based downstream tasks. Our empirical study
shows that it is sub-optimal to directly transfer existing PEFTs to graph-based tasks
due to the issue of feature distribution shift. To address this issue, we propose a
novel structure-aware PEFT approach, named G-Adapter, which leverages graph
convolution operation to introduce graph structure (e.g., graph adjacent matrix)
as an inductive bias to guide the updating process. Besides, we propose Bregman
proximal point optimization to further alleviate feature distribution shift by pre-
venting the model from aggressive update. Extensive experiments demonstrate that
G-Adapter obtains the state-of-the-art performance compared to the counterparts
on nine graph benchmark datasets based on two pre-trained GTNs, and delivers
tremendous memory footprint efficiency compared to the conventional paradigm.

1 Introduction

Pre-training then fine-tuning has become a prevalent training paradigm with the remarkable success of
large-scale pre-trained models in Natural Language Processing (NLP) [5, 9, 32, 37, 48, 53]. Recently,
more researchers are striving to apply this paradigm to graph-based tasks with Graph Transformer
Networks (GTNs) [4, 6, 7, 10, 25, 28, 30, 40, 41, 62, 64, 65, 68]. For instance, based on multi-layer
Transformer encoders [54], Graphormer [62] first performs the well-designed unsupervised tasks on
large-scale molecular datasets, and then fine-tunes the entire pre-trained parameters of the model
on downstream molecular tasks of interest, which is also known as full fine-tuning. However, full
fine-tuning poses several issues in practice: (i) Given that the labels of graph data from some domains
(e.g., chemistry, biology) are inaccessible without the expertise and labor-heavy annotations [60], it
is common that there are insufficient labeled samples in downstream tasks of interest. Hence, full
fine-tuning would incur serious over-fitting and catastrophic forgetting issues [15, 56]. (ii) When
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Figure 1: The comparison between PEFTs (Adapter, LoRA, BitFit, and G-Adapter) and full fine-
tuning on large- and small-scale datasets. (a) Based on the pre-trained Graphormer, we first average
the results of each PEFT on two large-scale datasets, and then compute the performance gap compared
to full fine-tuning. (b) Similarly, we calculate the performance gap of each PEFT on seven small-scale
datasets, based on another pre-trained model MAT. Refer to Sec. 3.1 for more descriptions.

handling multiple diverse downstream tasks, full fine-tuning has to duplicate a modified copy of all
parameters per task, which hinders the flexibility and applicability of large-scale models, especially
in scenarios with constrained storage resources (e.g., mobile detection devices).

Recently, Parameter-Efficient Fine-Tuning (PEFT), as an alternative to full fine-tuning, has been
proposed and widely investigated in NLP [3, 11, 14–16]. PEFT aims to achieve competitive perfor-
mance with full fine-tuning while consuming computation and storage resources as few as possible.
Instead of updating the entire parameters during the fine-tuning phase, PEFT only updates a small
fraction of parameters within the original model or additionally introduced modules, while freezing
the remaining parameters. For example, Adapter [15] inserts two compact modules in each encoder of
Transformer, while BitFit [3] only updates the bias terms in the model parameters, as shown in Fig. 3.
Despite the remarkable achievements of traditional PEFTs in natural language understanding tasks,
the question is still under-explored whether these PEFTs from the language domain are feasible for
various GTNs under graph-based tasks, given that the intrinsic discrepancy between graph and text
modalities (e.g., the graph has rich structure information). Therefore, in this paper, we shall fill this
gap by answering the following questions: Can PEFTs from the language domain be transferred
directly to graph-based tasks? If not, how to design a graph-specific PEFT method?

To start with, we comprehensively examine the performance of mainstream PEFTs (Adapter [15],
LoRA [16], and BitFit [3]) on popular molecular graph datasets based on two pre-trained GTNs
(Graphormer [62] and MAT [40]). The overall comparison is shown in Fig. 1, in which we un-
fortunately observe a significant gap between traditional PEFTs and full fine-tuning, especially on
large-scale datasets. Further, our exploration reveals the feature distribution shift issue due to the
absence of graph structure in the fine-tuning process (see Fig. 2 and Sec. 3.1 for more discussions).
To alleviate these concerns, we propose a novel structure-aware PEFT method, G-Adapter, which
leverages graph convolution operation to introduce graph structure as the inductive bias to guide the
updating process. Moreover, we apply the low-rank decomposition to the learnable weights, which
makes G-Adapter highly lightweight. Besides, we propose Bregman proximal point optimization to
further ease the feature distribution shift by preventing the model from aggressive update.

To verify the effectiveness of our approach, we conduct extensive experiments on a variety of graph-
based downstream tasks based on pre-trained GTNs. The results demonstrate that our proposed
G-Adapter can effectively address the feature distribution shift issue and significantly enhance the
performance. Specifically, (i) G-Adapter obtains the state-of-the-art performance than baselines on
both large- and small-scale datasets. Even compared to full fine-tuning, G-Adapter could achieve
competitive (or superior) results with fewer trainable parameters. For example, full fine-tuning
achieves 0.804 AUC with 100% trainable parameters on MolHIV, while G-Adapter gains 0.790
AUC with only 0.24% trainable parameters. (ii) G-Adapter enjoys remarkable advantages over full
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Figure 2: The illustration of feature distribution shift, where Full-FT denotes full fine-tuning. For
the identical input, the feature distribution of traditional PEFTs (Adapter, LoRA, and BitFit) has a
significant offset (dark region) compared to full fine-tuning. In contrast, our proposed G-Adapter has
a highly similar behavior to full fine-tuning. Here, Jensen-Shannon divergence is utilized to measure
the discrepancy between two distributions. Refer to Sec. 3.1 for more discussions.

fine-tuning in terms of memory footprint. For instance, full fine-tuning stores 161MB checkpoint per
task while G-Adapter merely requests 0.4MB2 checkpoint for each downstream task. Additionally,
the introduced G-Adapter modules barely degrade the training efficiency and inference speed, and
extensive ablation experiments also confirm the rationality of each component in our design.

To summarize, our contributions are as follows:

• To the best of our knowledge, this is the first work formally to investigate the parameter-
efficient fine-tuning of graph-based tasks and models. And, we benchmark several widely
used PEFTs from the language domain on a range of graph-based downstream tasks.

• We exhibit the phenomenon of feature distribution shift when directly applying existing
PEFTs to graph-based tasks. Further, our study empirically shows that the graph structure
and Bregman proximal point optimization could alleviate this concern well.

• We propose a structure-aware parameter-efficient method (G-Adapter) for adapting pre-
trained GTNs to various graph-based downstream tasks, in which G-Adapter introduces
graph structure as an inductive bias to guide the updating process.

• Extensive experiments demonstrate that G-Adapter outperforms the counterparts by a
significant margin. Furthermore, compared to full fine-tuning, our method yields tremendous
memory footprint benefits almost without sacrificing the efficiency of training and inference.

2 Related Work

Graph Transformer Networks. Transformer [54], as one of the most popular network architec-
tures so far, has demonstrated remarkable success in NLP [5, 9, 32, 37, 48, 53], which spurs extensive
research on transferring Transformer to graph representation learning [42, 60]. Considering the
intrinsic discrepancy between graph and text modalities, current efforts mainly focus on two aspects:
the design of pre-training tasks and the encoding of nodes and edges. For the first aspect, there are
generally three folds: (i) Supervised learning: the preset supervised task is constructed by measuring
the labels of graph data using professional tools [20, 49, 67]. (ii) Graph autoregressive modeling:
similar to the GPT-style pre-training tasks [5, 46, 47] in NLP, some nodes and edges in the graph are
randomly masked first, and then the masked elements are recovered in a step-by-step manner [21, 67].
(iii) Masked components modeling: this approach is analogous to the MLM task in BERT [9], where
all masked elements in the graph are predicted simultaneously [20, 49]. For the second aspect, each
node (e.g., an atom in the molecular graph) is regarded as a “token” in text sequence, and then the
hidden representation of the node is learned similar to Transformers in NLP [7]. Compared to the
simple sequential relationship between tokens in text sequence, the relationship between edges in the
graph could be more complex and essential [42, 60]. Therefore, substantial works focus on modeling
graph structures [4, 6, 10, 25, 28, 30, 41, 62, 64, 68]. For example, Graphormer [62] leverages the
centrality and spatial encoding as the graph structural signal, and MAT [40] augments the attention
mechanism in Transformer using inter-atomic distances and the molecular graph structure. Kreuzer

2Here, the bottleneck size r = 4, based on the pre-trained MAT. See Tab. 3 for more comparisons.
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Figure 3: An overview of existing popular PEFTs (Adapter, LoRA, and BitFit) and our proposed
G-Adapter. In the left part, we demonstrate the insertion position of PEFT blocks in a standard
encoder of Transformer. In the right part, we depict the architecture of each PEFT method. Here,
each color represents an approach, where the grey blocks are frozen during the fine-tuning process.
Our proposed G-Adapter is marked and demonstrated in purple, in which S indicates the introduced
graph structure information (e.g., the graph adjacent matrix).

et al. [30] propose the learnable structural encoding via Laplacian spectrum, which can learn the
position of each node in the graph. Moreover, Zhao et al. [68] proposes a proximity-enhanced multi-
head attention to capture the multi-hop graph structure, and Khoo et al. [27] design a structure-aware
self-attention for modeling the tree-structured graphs. Additionally, Min et al. [42] systematically
investigate the effectiveness and application of Transformers in the graph domain.

Parameter-Efficient Transfer Learning. Parameter-Efficient Fine-Tuning (PEFT) is receiving
considerably growing attention in diverse domains [11, 14, 44, 63]. Adapter [15], as the representative
work of PEFT, is proposed to tackle natural language understanding tasks by inserting the compact
blocks into Multi-Head Attention (MHA) and Feed-Forward Networks (FFN) in Transformer. Fol-
lowing this work, a series of subsequent efforts are proposed to improve the performance of Adapter.
For instance, AdapterDrop [50] removes Adapter blocks from the lower layers, and Compacter/Com-
pacter++ [38] introduce Kronecker product and weights sharing tricks to further reduce the proportion
of trainable parameters. More similar works are included [12, 26, 43, 52, 56, 57]. Based on the
hypothesis of low intrinsic rank [1], LoRA [16] tunes two low-rank learnable matrices to approximate
the updating of query and value weights in MHA. Moreover, Zhang et al. [66] enhance LoRA by
adaptively allocating the trainable parameters budget at each layer, and FacT [24] extends LoRA by
introducing a new tensorization-decomposition framework. Instead of introducing extra parameters,
BitFit [3], a simple heuristic strategy, only fine-tunes the bias terms of the model. In addition,
prompt-based tuning [31, 33, 36, 55, 58] is also an interesting direction, but we do not involve these
methods here given that the training curse of prompt-based methods [11]. In addition, substantial
works attempt to combine different PEFTs together through tailored mechanisms [8, 17, 23, 39, 69].
Finally, He et al. [14] provide a unified view of existing PEFTs, and more detailed descriptions of
PEFTs are discussed in the survey literature [11].

3 Methodology

3.1 Pilot Experiments

To answer the first question: Can PEFTs from the language domain be transferred directly to graph-
based tasks? We evaluate the performance of three mainstream PEFTs (Adapter [15], LoRA [16],
and BitFit [3]) on large- and small-scale graph-based downstream tasks, respectively. To be specific,
on the large-scale datasets, i.e., MolHIV (41K) and MolPCBA (437K) [19], we first average the
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results of each PEFT based on the pre-trained Graphormer [62], and then subtract the average result
of full fine-tuning. Here, we refer to the final result as Performance Gap, as shown in Fig. 1. Similar
operations are also conducted on seven small-scale datasets (0.6 ∼ 2.4K), i.e., FreeSolv, ESOL,
BBBP, Estrogen-α, Estrogen-β, MetStablow, and MetStabhigh [13, 45, 59], based on another pre-
trained model MAT [40]. From the comparison in Fig. 1, we can observe that the performance of
traditional PEFTs is far from full fine-tuning on graph-based tasks, especially on large-scale datasets,
across varying degrees of the ratio of trainable parameters.

To shed light on why there is such a significant gap between traditional PEFTs and full fine-tuning,
we investigate the feature distribution of different methods inspired by Lian et al. [34]. Specifically,
based on BBBP and pre-trained MAT, we first take the hidden representation of a virtual node (similar
to the [CLS] token in NLP [9]) in the last layer as the entire graph representation. Then, for the
identical input, the graph feature representations from diverse methods are visualized in Fig. 2. More
results are shown in Appendix A.4. Given that full fine-tuning updates all parameters of the model,
its performance can be seen as an “upper bound” for PEFT3. Therefore, a good PEFT is believed that
it should have similar behavior with full fine-tuning, such as the encoding of features. However, from
the comparison in Fig. 2, we can observe that the feature distributions encoded by traditional PEFTs
are shifted compared to full fine-tuning, which here is called feature distribution shift.

To understand the reason underlying this phenomenon, we revisit the relationship between GTNs
and vanilla Transformers. For the encoding of node/token, they have highly similar operations, e.g.,
encoding the representation of node/token through an embedding layer. However, there are significant
discrepancies in terms of the encoding of position (or edge in the graph). Specifically, only the
position embedding layer is utilized within vanilla Transformers in NLP, while most existing GTNs
extract diverse graph structure information as the inductive bias and then inject them into the model
[40, 49, 62, 65, 68], since the graph structure contains rich edge semantic information. In addition,
recent researches also demonstrate the significant effectiveness of graph structure in learning graph
representation [6, 10, 30]. Motivated by these observations, in this paper, we attempt to introduce
graph structure as the inductive bias to alleviate the feature distribution shift issue.

3.2 Structure-Aware Parameter-Efficient Fine-Tuning

For the parameter-efficient module, we believe that the following principles should be taken into
consideration: (i) it can explicitly encode graph structure during the fine-tuning process; (ii) it should
satisfy the main property of PEFT — lightweight [15, 16, 38]; (iii) it should be easy to implement
and can be integrated into diverse GTNs.

The design of parameter-efficient module. Inspired by the design of Graph Convolutional Net-
works (GCN) [29, 35], which can model both graph structure and node representation simultaneously,
we leverage this operation to explicitly introduce graph structure into the model. Here, we give the
following definition:

X ′ = GraphConv(S,X;W ) = σ(SXW ) (1)
where X,X ′ ∈ Rn×d (n: the sequence length, d: the hidden representation dimension) refer to
the input, output of the module, respectively. S ∈ Rn×n indicates the introduced graph structure
information (e.g., the adjacency matrix of graph), W ∈ Rd×d is the learnable weight, and σ(·)
indicates the nonlinear activation function. Further, following the lightweight principle, we decompose
W into two low-rank matrices to reduce the number of learnable parameters, i.e., W = WdownWup,
where Wdown ∈ Rd×r,Wup ∈ Rr×d and r is called the bottleneck size. Moreover, to stabilize
the training process of PEFT, we insert two LayerNorm layers [2] before and after GraphConv(·),
respectively, as depicted in Fig. 3.

Overall, the pipeline of our PEFT module is as follows: firstly, the input (X) goes through the first
LayerNorm layer, then passes GraphConv(·) by absorbing the graph structure information (S). Next,
we construct a skip connection between the output of GraphConv(·) and the normalized input (X ′).
Lastly, the final output (X ′′) is obtained through the second LayerNorm layer, i.e.:

X ′ = LN(X), X ′′ = LN
(
X ′ + σ(SX ′WdownWup)

)
(2)

where LN(·) represents the LayerNorm layer. In Fig. 3, we describe in detail the architecture of
our proposed PEFT (G-Adapter) and compare it with traditional PEFTs. In addition, thanks to the

3Note that this claim is not rigorous, since PEFTs might outperform full fine-tuning on small-scale datasets.
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modular and lightweight properties, G-Adapter can be seamlessly integrated into diverse GTNs. We
also provide some general pseudo-code to execute our approach in Appendix A.3.

The selection of graph structure information. To start with, we consider the adjacency matrix
(with self-connections) of the graph: S1 = A + In, where A, In ∈ Rn×n refer to the adjacency
matrix and identity matrix, respectively. Then, following Kipf and Welling [29], we introduce the
degree matrix of nodes to normalize the adjacency matrix: S2 = D̃−

1
2 ÃD̃−

1
2 , where Ã = S1, D̃ is

the diagonal matrix and D̃ii =
∑
j Ãij . In addition, we propose a distance-based graph structure

information: S3 = [dis(vi, vj)]n×n, where dis(vi, vj) refers to the distance of the shortest path (or
the inter-atomic distance in the molecular graph) between two nodes vi and vj . Last, we combine
the adjacency and distance to construct a hybrid structure information: S4 = α · D̃− 1

2 ÃD̃−
1
2 + β ·

[dis(vi, vj)]n×n, where α, β are scalar hyper-parameters to balance the impacts of the adjacency and
distance terms. We evaluate the proposed graph structure information (S1, S2, S3, S4) on a range of
graph-based tasks, and the detailed comparisons are presented in Sec. 4.2.

3.3 Bregman Proximal Point Optimization

Full-FT Original

Figure 4: Comparison of feature dis-
tribution between full fine-tuning and
the original model parameters, where
Jensen-Shannon divergence is 0.27%.

It is expected that the feature distribution encoded by PEFT
should be aligned with full fine-tuning as much as possible,
as discussed in Sec. 3.1. However, the feature distribution
of full fine-tuning is unavailable during the training pro-
cess of PEFT. Interestingly, we observe that the feature
distribution encoded by the original model parameters has
a high similarity with full fine-tuning, as shown in Fig. 4.
It indicates that full fine-tuning only slightly modulates
the value of model parameters but does not change the
ability of the model to encode features.

Therefore, to maintain consistency with the feature distri-
bution of the original parameters, we propose Bregman
proximal point optimization strategy [22] to prevent the model from aggressive update. Specifically,
for the pre-trained model f(·; θ) with trainable parameters θ, at the (t+ 1)-th iteration, we have

θt+1 = arg min
θ

(1− µ) · Lvanilla(θ) + µ · Lbregman(θ, θt) (3)

where µ > 0 is a hyper-parameter, Lvanilla is a common classification or regression loss function,
and Lbregman is the Bregman divergence defined as:

Lbregman(θ, θt) = Ex∼D
[
`
(
f(x; θ), f(x; θt)

)]
(4)

where the input x is derived from the training set D, and here we leverage the symmetric KL-
divergence, i.e., `(p, q) = KL(p||q) + KL(q||p). Intuitively, Lbregman serves as a regularizer and
prevents θt+1 from deviating too much from the previous iteration θt, therefore can effectively retain
the capacity of encoding feature in the pre-trained model f(·; θ).

4 Experiments

4.1 Setup

Datasets & Evaluation Protocols. We conduct our experiments on nine benchmark datasets:
MolHIV, MolPCBA, FreeSolv, ESOL, BBBP, Estrogen-α, Estrogen-β, MetStablow and MetStabhigh
[13, 19, 45, 59], where MolHIV (41K) and MolPCBA (437K) are two large-scale molecular property
prediction datasets and the others are small-scale molecular datasets (0.6 ∼ 2.4K). We provide more
descriptions of datasets in Appendix A.2. Following the previous settings [40, 62], we employ the
scaffold split on MolHIV, MolPCBA, BBBP, and Estrogen-α/β, and then the random split on the
rest of datasets. For the evaluation protocols, MolPCBA is evaluated by Accuracy Precision (AP),
FreeSolv and ESOL are evaluated by RMSE, and the others are evaluated by AUC.
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Table 1: Comparison of PEFTs and full fine-tuning on small-scale datasets. The results are averaged
from six seeds, and the subscript is the standard deviation, where bold indicates the best results in
PEFTs. ∗ represents the mean ratio of trainable parameters over seven datasets.

Method Ratio∗ RMSE (↓) AUC (↑)
(γ) FreeSolv ESOL BBBP Estrogen-α Estrogen-β MetStablow MetStabhigh

Full Finetunig 100% 0.286±0.035 0.270±0.037 0.764±0.008 0.979±0.002 0.778±0.005 0.863±0.025 0.878±0.032

Adapter 2.52% 0.327±0.011 0.320±0.072 0.724±0.009 0.978±0.024 0.768±0.021 0.846±0.034 0.859±0.028
Hyperformer 2.43% 0.310±0.020 0.321±0.045 0.727±0.012 0.977±0.027 0.770±0.013 0.842±0.022 0.853±0.023
Compacter 1.56% 0.314±0.028 0.316±0.038 0.730±0.022 0.971±0.034 0.764±0.027 0.832±0.019 0.860±0.046
MAM 1.28% 0.302±0.019 0.292±0.022 0.743±0.014 0.980±0.011 0.776±0.022 0.851±0.023 0.872±0.054
LoRA 1.01% 0.309±0.032 0.284±0.054 0.726±0.012 0.979±0.007 0.781±0.039 0.839±0.022 0.878±0.027
BitFit 0.10% 0.321±0.048 0.314±0.031 0.739±0.005 0.977±0.019 0.770±0.035 0.848±0.031 0.805±0.045

G-Adapter (S1) 0.71% 0.280±0.012 0.279±0.018 0.750±0.012 0.976±0.033 0.791±0.022 0.865±0.036 0.881±0.023
G-Adapter (S2) 0.71% 0.282±0.014 0.286±0.022 0.751±0.009 0.981±0.017 0.788±0.031 0.870±0.013 0.874±0.025
G-Adapter (S3) 0.71% 0.291±0.008 0.289±0.017 0.744±0.011 0.973±0.015 0.786±0.034 0.860±0.031 0.861±0.018
G-Adapter (S4) 0.71% 0.298±0.011 0.282±0.019 0.747±0.006 0.975±0.011 0.775±0.024 0.858±0.025 0.869±0.037

Pre-trained Models & Baselines. Two widely used pre-trained GTNs are leveraged as our back-
bones: Graphormer [62] and MAT [40]. In our experiments, we employ the base version of
Graphormer, which has 12 layers Transformer encoders and is pre-trained on large-scale molecular
dataset PCQM4M-LSC [18]. MAT is built on 8 encoders of Transformer, where the dimension
of hidden representation is set to 1024. And, the node-level self-supervised learning serves as a
pre-training task for MAT on ZINC15 [51]. For the baselines, we include full fine-tuning as a strong
counterpart and six popular traditional PEFTs: Adapter [15], LoRA [16], BitFit [3], Hyperformer
[26], Compacter [38], and MAM [14]. More descriptions per baseline are presented in Appendix A.1.

Implementation. Before fine-tuning, we begin by reusing the official released pre-trained check-
points4 to initialize our backbones, while the introduced modules are randomly initialized, and then
use AdamW optimizer to fine-tune the models. We set fair hyperparametric search budgets for various
PEFTs, and the detailed configurations per method on diverse datasets are shown in Appendix A.3.

4.2 Main Results

Table 2: The comparison on two large-scale
datasets MolHIV and MolPCBA.

Method MolHIV MolPCBA

Ratio (γ) AUC (↑) Ratio (γ) AP (↑)
Full Finetunig 100% 0.804±0.006 100% 0.272±0.013

Adapter 1.24% 0.743±0.010 4.69% 0.235±0.009
Hyperformer 1.13% 0.740±0.012 4.37% 0.246±0.012
Compacter 0.64% 0.752±0.023 3.42% 0.230±0.023
MAM 0.57% 0.758±0.017 2.66% 0.251±0.016
LoRA 0.34% 0.763±0.014 2.42% 0.246±0.012
BitFit 0.16% 0.709±0.008 0.16% 0.184±0.011

G-Adapter (S1) 0.24% 0.790±0.011 1.89% 0.269±0.008
G-Adapter (S2) 0.24% 0.788±0.006 1.89% 0.264±0.012
G-Adapter (S3) 0.24% 0.772±0.008 1.89% 0.250±0.011
G-Adapter (S4) 0.24% 0.781±0.012 1.89% 0.262±0.011

We report the comparison results on Mol-
HIV and MolPCBA based on the pre-trained
Graphormer in Tab. 2, and more results are
shown in Tab. 1 on small-scale datasets based on
the pre-trained MAT. From these comparisons,
we can draw the following observations:

Observation I: Simple graph structure could
deliver significant performance benefits. For
instance, based on graph adjacent information,
G-Adapters (S1, S2) obtain better results com-
pared to G-Adapters (S3, S4) with distance-
based structure information in Tab. 1. Moreover,
in Tab. 2, G-Adapter (S1) achieves the optimal performance among all PEFTs. We speculate that this
may be because the graph adjacency matrix (S1) is the complete information of graph structures, that
is, the distance-based structure (S3) can be derived from S1. Therefore, this suggests that our model
is not only remarkably expressive but also insensitive to the graph structure, which means that we do
not have to design tailored graph structures except for graph adjacency information. In the following
statement, we take G-Adapter (S1) as our baseline unless otherwise specified.

Observation II: Our proposed G-Adapter consistently outperforms traditional PEFTs and offers
a better trade-off between the ratio of trainable parameters (γ) and performance. For instance,
Adapter, LoRA, and BitFit lag far behind G-Adapter on MolHIV and MolPCBA in Tab. 2. Although
BitFit updates the fewest number of parameters (γ = 0.16%), it also yields the worst performances
(0.709 AUC, 0.184 AP). In comparison, our proposed G-Adapter achieves 79.0 AUC, 0.269 AP with
γ = 0.24%, γ = 1.89%, respectively, which is also the optimal solution compared to other PEFTs.

4https://github.com/microsoft/Graphormer; https://github.com/ardigen/MAT
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Figure 5: The comparison of training efficiency between PEFTs (Adapter, LoRA, BitFit, and our
proposed G-Adapter) and full fine-tuning on diverse scale datasets.

Table 3: The comparison of PEFTs and full fine-tuning in terms of inference speed (the millisecond
per sample) and memory footprint across different bottleneck sizes.

Method MolPCBA(r=32) MolHIV(r=16) FreeSolv(r=8) Estrogen-α(r=4)

Mem. (MB) Infer (ms) Mem. (MB) Infer (ms) Mem. (MB) Infer (ms) Mem. (MB) Infer (ms)

Full Finetunig 185 0.81 185 1.39 161 0.42 161 1.11

Adapter 5.0 0.99 2.4 1.46 1.1 0.46 0.7 1.15
LoRA 5.0 0.97 2.4 1.43 1.1 0.47 0.7 1.13
BitFit 0.3 0.81 0.3 1.39 0.2 0.42 0.2 1.11

G-Adapter 2.9 0.93 1.4 1.41 0.7 0.44 0.4 1.12

Observation III: Compared to full fine-tuning, G-Adapter could achieve competitive and (most)
superior performances on large- and small-scale datasets, respectively. For example, G-Adapter
outperforms full fine-tuning by a significant margin (1.3% AUC) on Estrogen-β. We believe that the
improvement on small-scale datasets is understandable, there are several reasons: (i) With decreasing
the scale of the training set, it might meet serious over-fitting and catastrophic forgetting issues if the
entire parameters are updated in full fine-tuning, whereas our method eases these concerns by only
tuning G-Adapter blocks while freezing the original parameters. (ii) G-Adapter restricts the drastic
updating of parameters via Bregman proximal point optimization strategy, which acts as a regularizer
during the training process and therefore boosts the generalization capacity.

5 Analysis

5.1 Efficiency of Training, Inference and Memory Footprint

In this subsection, we mainly investigate the following questions: Does G-Adapter seriously affect
the training (or convergence) efficiency and inference speed compared to full fine-tuning? And,
can G-Adapter bring significant benefits to the storage of model weights, as we claimed before?
Specifically, for the training efficiency, we evaluate PEFTs and full fine-tuning on three datasets
with different scales5: MolPCBA (437K), MolHIV (41K), and Estrogen-α (2K). The experimental
results are shown in Fig. 5, in which we observe that: (i) For the large-scale dataset, the convergence
of PEFTs lags behind full fine-tuning by about 4 ∼ 5 epochs. However, this gap is significantly
narrowed as the amount of training data decreases. (ii) Compared to traditional PEFTs, G-Adapter
not only achieves faster convergence but also higher performance over datasets of varying scales.

For the inference efficiency and memory footprint, we adopt different bottleneck sizes (r =
32, 16, 8, 4) on MolPCBA, MolHIV, FreeSolv, and Estrogen-α, respectively. The experimental
results are shown in Tab. 3, where we observe that: (i) Compared to full fine-tuning, the extra intro-
duced modules result in a trivial inference delay, which is almost negligible with the bottleneck size
decreasing. Note that BitFit does not introduce additional modules but merely tunes the bias terms,
therefore it theoretically has the same inference efficiency as full fine-tuning. (ii) For the storage
requirements, the distinction between PEFTs and full fine-tuning is remarkably significant. For an
example on Estrogen-α (r = 4), full fine-tuning requires storing a complete checkpoint (161MB)

5The experiments are conducted on single NVIDIA GeForce RTX 3090 GPU (24G), where CPU is AMD
EPYC 7763 64-Core Processor.
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for each downstream task, while Adapter (LoRA), BitFit and G-Adapter only need to store 0.7MB,
0.2MB and 0.4MB checkpoint per task, respectively, which greatly reduces the storage requirements.

5.2 The Impact of Insertion Position and Components

We discuss the impact of potential designs on performance from two perspectives: (i) The insertion
position. First, we insert G-Adapter block into the front and back of MHA, denoted as pre_mha and
post_mha, respectively. Similarly, G-Adapter block is plugged before and after FFN, denoted as
pre_ffn and post_ffn, respectively. Note that our baseline can be regarded as inserting the G-Adapter
block in the middle of FFN. Finally, like the insertion position of Adapter in Fig. 3, we insert two G-
Adapter blocks into MHA and FFN, denoted as mha + ffn. (ii) Importance of each component. First,
we remove the adjacency matrix (denoted as w/o. S) to explore the importance of graph structure.
Then, we separately remove the first, second, and both LayerNorm layers to explore individual effects
denoted as w/o. pre_ln, w/o. post_ln and w/o. ln. We also explore the role of nonlinear activation
function by removing it, denoted as w/o. act_fn. In addition, the effect of Bregman proximal point
optimization is evaluated by only using the vanilla loss function, denoted as w/o. breg.

Table 4: The impact of insertion position
and components on performance.

Method MolHIV MolPCBA

G-Adapter 0.790 0.269

G-Adapter (pre_mha) 0.752 0.246
G-Adapter (post_mha) 0.747 0.232
G-Adapter (pre_ffn) 0.781 0.258
G-Adapter (post_ffn) 0.770 0.260
G-Adapter (mha + ffn) 0.763 0.245

G-Adapter (w/o. S) 0.728 0.214
G-Adapter (w/o. pre_ln) 0.762 0.247
G-Adapter (w/o. post_ln) 0.755 0.250
G-Adapter (w/o. ln) 0.745 0.237
G-Adapter (w/o. act_fn) 0.766 0.240
G-Adapter (w/o. breg) 0.754 0.234

The experimental results are shown in Tab. 4, in which
we can obtain that: (i) Plugging G-Adapter block into
the front, middle, or back of FFN could yield better per-
formance than MHA, and more blocks seem not to give
better results, which is also consistent with the previous
conclusion in NLP [14]. An intuitive explanation is that,
in each encoder of Transformer, FFN concentrates most
of the parameters (∼ 67%), while MHA only accounts for
∼ 33%. Therefore, tweaking the weights of FFN may be
a more efficient way for fine-tuning. (ii) Removing any
of LayerNorm layers or the nonlinear activation function
will hurt the performance. Moreover, removing the graph
structure or Bregman proximal point optimization strategy
would also significantly degrade the performance.

5.3 Can Graph Structure Information Benefit Traditional PEFTs?

Table 5: The impact of graph structure
information on traditional PEFTs.

Method MolHIV MolPCBA BBBP MetStablow
Adapter 0.743 0.235 0.724 0.839
Adapter + S 0.749 0.242 0.733 0.844

LoRA 0.763 0.246 0.739 0.858
LoRA + S 0.766 0.252 0.742 0.861

One of the major contributions of G-Adapter is the intro-
duction of graph structure, therefore a natural question is:
can the graph structure enhance the traditional PEFTs as
well? Given that the adjacency matrix (S) has performed
well as graph structure information in previous experi-
ments, we directly introduce S into Adapter and LoRA.
Their modified updating formulas are presented in Appendix A.1. We conduct the experiments on
four datasets: MolHIV, MolPCBA, BBBP, and MetStablow. The results are reported in Tab. 5, in
which we could observe a slight improvement in the modified methods compared to the original
Adapter and LoRA. However, there is still a significant gap with our proposed G-Adapter, which
further justifies that the traditional PEFT architectures are not suitable for handling graph-based tasks.

6 Conclusion & Limitations

In this paper, we propose a novel structure-aware PEFT method, G-Adapter, for graph-based tasks
based on pre-trained GTNs. Unlike the traditional PEFTs, which lead to the issue of feature
distribution shift, G-Adapter leverages the graph structure and Bregman proximal point optimization
strategy to mitigate this concern. Extensive experiments on a variety of graph-based downstream
tasks demonstrate the effectiveness of our proposed method. Although our approach demonstrates
satisfactory performance, there are still some limitations: (i) Considering that the applicable scenarios
of PEFT are large-scale models, our method is not tested on conventional graph network architectures
(e.g., GCN [29], GIN [61]). Because these models are already quite lightweight, resulting in the
advantages of PEFT not being sufficiently exploited. (ii) Limited by computational resources, we
only evaluate two pre-trained GTNs (Graphormer and MAT). Nevertheless, thanks to the simplicity
and generality of our proposed method, it can be applied to various graph Transformer-based models.
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A Appendix

A.1 More Detailed Preliminaries

Transformer Transformer [54], as one of the most popular network architectures so far, has been
widely employed in diverse domains, such as NLP, computer vision and graph. In a standard encoder
of Transformer, Multi-Head self-Attention (MHA) and Feed-Forward Networks (FFN) are two core
components. Given the input X ∈ Rn×d, where n is the length of input sequence and d refers
to the hidden size of representation, the query Q and key-value pairs K,V are first obtained by:
Q = XWq + bq,K = XWk+ bk, V = XWv + bv , where three projection matrices Wq/k/v ∈ Rd×d
and the bias bq/k/v ∈ Rd. Then, they are split into Nh heads (Qi,Ki, Vi ∈ Rd×dk , dk = d/Nh) to
pass the self-attention operation:

Attn(Qi,Ki, Vi) = softmax
(QiK>i√

dk

)
Vi (5)

After that, all head outputs are concatenated by a linear projection transformation (Wo ∈ Rd×d, bo ∈
Rd), then we can attain the final output of MHA:

MAH(X) = Concat(head1,head2, · · · ,headh)Wo + bo (6)

where headi = Attn(Qi,Ki, Vi). Another important module is FFN, which consists of two linear
layers with a ReLU nonlinear activation function (where we still take X as the input for simplicity):

FFN(X) = ReLU(XWf1 + bf1)Wf2 + bf2 (7)

where Wf1 ∈ Rd×dff ,Wf2 ∈ Rdff×d, bf1 ∈ Rdff , bf2 ∈ Rd. Note that dff = d in some GTNs,
such as Graphormer [62] and MAT [40]. In the following demonstration, for simplicity, we take
X,X ′ ∈ Rd×d as the input, output of a certain module, respectively.

Adapter Houlsby et al. [15] insert two compact modules (i.e., Adapter blocks in Fig. 3) into
the encoders of Transformer. Specifically, an Adapter block is composed of the down-projection
transformation Wdown, the up-projection transformation Wup, the nonlinear activation function σ(·),
and the skip connection:

X ′ = X + σ(XWdown)Wup (8)

where Wdown ∈ Rd×r,Wup ∈ Rr×d and r is the bottleneck size of Adapter, which satisfies the
condition r � d for reducing the number of learnable parameters. To introduce the graph structure
information (S ∈ Rn×n) in Sec. 5.3, we modify Eq. (8) as follows:

X ′ = X + σ(SXWdown)Wup (9)

LoRA Based on the low intrinsic rank hypothesis [1], LoRA [16] reparametrizes the updating of
pre-trained weight W by the low-rank decomposition, i.e., W + ∆W = W + WdownWup. For
the practice in Transformer, LoRA injects two low-rank modules into the query and value weights
(Wq,Wv) in a parallel connection manner. For the weight W∗ ∈ {Wq,Wv}, we can obtain:

X ′ = X(W∗ + s ·WdownWup) (10)

where s ≥ 1 is a scalar hyper-parameter, and X ′ can be regarded as the new query or value. For an
example of query Q = XWq, the updated query Q′ = Q+ s ·XWdownWup, which has a similar
updating formulation with Adapter. To introduce the graph structure information (S ∈ Rn×n) in
Sec. 5.3, we modify Eq. (10) as follows:

X ′ = XW∗ + s · SXWdownWup (11)

BitFit Ben-Zaken et al. [3] employ a straightforward strategy to expose knowledge of the pre-
trained models for downstream tasks via tuning the bias terms (b) of the model. To be specific, for
the linear operation, the updated output is equal to:

X ′ = XW + b (12)

where W refers to the pre-trained weights of the linear layer, and b ∈ {bq, bk, bv, bo, bf1, bf2}
(including the parameters of LayerNorm layers). Note that only b is updated during fine-tuning.
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Hyperformer This method can be regarded as a variant of Adapter via using shared hypernetworks
in multi-task scenarios. Specifically, Hyperformer [26] leverages the task conditioned hypernetworks
to obtain the parameters of Adapter modules, i.e.:

X ′ = X + LN
(
σ(XWdown)Wup

)
(13)

where Wdown = WDIτ ,Wup = WUIτ , WD ∈ R(d×r)×t,WU ∈ R(r×d)×t, and Iτ ∈ Rt is task
embedding for each individual task (τ ). Similar operations are also conducted on the parameters of
LayerNorm layer LN(·).

Compacter Mahabadi et al. [38] introduce the Kronecker product and weights sharing tricks to
reduce the ratio of trainable parameters in Adapter. Specifically, for the learnable weight W ∈ Rd×r,
we can decompose W into multiple “small” matrices via Kronecker product (⊗):

W =

n∑
i=1

Ai ⊗Bi (14)

where Ai ∈ Rn×n, Bi ∈ R d
n×

r
n . This decomposition method can be applied to the trainable weights

Wdown and Wup in Adapter. Besides, Compacter also shares the Ai across all Adapter blocks.

MAM He et al. [14] investigate the traditional PEFTs from three perspectives: updated functional
form, insertion form, and modified representation, and then offer a unified view to understand existing
PEFTs: X ′ = X + ∆X , where ∆X is learned by PEFT modules. Furthermore, based on their
findings (e.g., FFN can better utilize modification than MHA at larger capacities), they propose a new
PEFT method (MAM) by combining the most optimal choices.

A.2 More Descriptions about Datasets

We evaluate our proposed method and other baselines on nine benchmark datasets: MolHIV,
MolPCBA, FreeSolv, ESOL, BBBP, Estrogen-α, Estrogen-β, MetStablow, and MetStabhigh

[13, 19, 45, 59]. Following the previous settings [40, 62], we split the dataset into the training
set, the validation set, and the test set in the ratio of 8 : 1 : 1, and the statistical information is
shown in Tab. 6. Specifically, for each of dataset, MolHIV and MolPCBA are two molecular property
prediction datasets, which are derived from the popular graph benchmark OGB. The target of this
task is to predict the binary labels for each molecule, which indicates whether it has a particular
property or not. FreeSolv and ESOL are regression tasks for predicting water solubility in terms
of hydration free energy and log solubility. BBBP is a binary classification task for predicting the
ability of a molecule to penetrate the blood-brain barrier. The aim of Estrogen-α and Estrogen-β
is to predict whether a compound is active towards a given target based on experimental data from
the ChEMBL database. Last, MetStablow and MetStabhigh are also binary classification tasks for
predicting whether a compound has high or low metabolic stability.

Table 6: Statistics for different datasets. “# Train”, “# Valid”, and “# Test” indicate the number of
training, validation, and test sets, respectively. Here, “Clf.” and “Reg.” refer to the classification and
regression tasks, respectively.

Datasets MolHIV MolPCBA FreeSolv ESOL BBBP Estrogen-α Estrogen-β MetStablow MetStabhigh
# Train 32,901 350,343 513 902 1,631 1,918 1,568 1,701 1,701
# Valid 4,113 43,793 64 113 204 240 196 213 213
# Test 4,113 43,793 65 113 204 240 197 213 213
Task Type Clf. Clf. Reg. Reg. Clf. Clf. Clf. Clf. Clf.
Metric AUC AP RMSE RMSE AUC AUC AUC AUC AUC

A.3 Detailed Experimental Configurations and Implementations

For a variety of methods, we perform a relatively fair hyper-parameter search in terms of learn-
ing rate and batch size from {1e − 3, 2e − 3, 1e − 4, 1e − 4, 1e − 5, 2e − 5} and {32, 64, 128},
respectively. For the PEFTs with bottleneck architecture, we select the bottleneck size (r) from
{4, 8, 16, 32, 48, 64, 128} on various datasets. The detailed configurations are reported in Tab. 7.
In addition, we also provide some general pseudo-code to illustrate how to integrate our proposed
method into existing GTNs in Alg. 1.
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Table 7: The detailed experimental configurations (batch size, learning rate, and bottleneck size) of
various methods on a range of datasets, where Full-FT denotes full fine-tuning.

Method MolHIV MolPCBA FreeSolv ESOL BBBP Estrogen-α Estrogen-β MetStablow MetStabhigh
Batch Size / Learning Rate

Full-FT 128 / 2e-5 128 / 2e-5 32 / 1e-5 32 / 1e-5 32 / 1e-5 32 / 1e-5 32 / 1e-5 32 / 1e-5 32 / 1e-5
Adapter 128 / 2e-3 128 / 2e-3 64 / 1e-3 64 / 2e-3 64 / 2e-3 32 / 1e-3 64 / 1e-3 32 / 2e-3 64 / 2e-3
Hyperformer 128 / 2e-3 128 / 1e-3 64 / 2e-3 32 / 1e-3 32 / 2e-3 32 / 1e-3 32 / 2e-3 64 / 1e-3 32 / 1e-3
Compacter 128 / 1e-3 128 / 2e-3 32 / 1e-3 32 / 1e-3 32 / 2e-3 64 / 2e-3 32 / 2e-3 64 / 2e-3 32 / 2e-3
MAM 128 / 2e-3 128 / 1e-3 32 / 1e-3 64 / 1e-3 32 / 1e-3 64 / 2e-3 32 / 1e-3 32 / 2e-3 64 / 2e-3
LoRA 128 / 1e-3 128 / 2e-3 32 / 2e-3 32 / 1e-3 64 / 2e-3 64 / 2e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3
BitFit 128 / 1e-3 128 / 1e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3 32 / 1e-3
G-Adapter 128 / 2e-3 128 / 1e-3 32 / 1e-3 64 / 2e-3 64 / 1e-3 32 / 2e-3 32 / 2e-3 32 / 2e-3 32 / 2e-3

Bottleneck Size (r)

Adapter 16 64 16 8 16 4 32 128 64
Hyperformer 8 48 16 4 16 8 16 64 48
Compacter 16 48 32 8 16 4 16 48 32
MAM 8 32 8 16 32 4 8 32 32
LoRA 4 32 16 8 32 8 4 4 16
G-Adapter 4 48 4 16 4 4 4 16 64

A.4 More Experimental Results

Here, we conduct more experiments to demonstrate the feature distribution shift issue on different
datasets (MolHIV, Estrogen-β, and MetStablow) with two pre-trained GTNs (Graphormer and MAT).
The experimental results are shown in Fig. 8, 9, and 10. In addition, we depict the relationship
between Jensen-Shannon divergence (which measures the degree of discrepancy in feature distribution
between PEFT and full fine-tuning) and performance across various datasets and methods in Fig. 6.
We also supplement more comparisons in terms of the training efficiency, the impact of different
designs, and the effect of graph structure information for traditional PEFTs on more datasets. The
results are shown in Fig. 7, Tab. 8, 9, where we could draw the consistent conclusion as before.
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Figure 6: The relationship between Jensen-Shannon divergence and performance.

Table 8: The impact of graph structure information on traditional PEFTs.

Method FreeSolv ESOL Estrogen-α Estrogen-β MetStabhigh
Adapter 0.327 0.320 0.978 0.768 0.859
Adapter + S 0.311 0.314 0.980 0.773 0.866

LoRA 0.309 0.284 0.979 0.781 0.878
LoRA + S 0.297 0.280 0.978 0.789 0.880
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Table 9: The impact of insertion position and components on performance.

Method FreeSolv ESOL BBBP Estrogen-α Estrogen-β MetStablow MetStabhigh
G-Adapter 0.280 0.279 0.750 0.976 0.791 0.865 0.881

G-Adapter (pre_mha) 0.317 0.312 0.739 0.966 0.772 0.832 0.865
G-Adapter (post_mha) 0.304 0.298 0.733 0.963 0.787 0.847 0.863
G-Adapter (pre_ffn) 0.291 0.281 0.741 0.973 0.789 0.873 0.875
G-Adapter (post_ffn) 0.289 0.284 0.739 0.974 0.788 0.869 0.872
G-Adapter (mha + ffn) 0.294 0.296 0.735 0.972 0.777 0.864 0.869

G-Adapter (w/o. S) 0.351 0.335 0.706 0.950 0.737 0.823 0.832
G-Adapter (w/o. pre_ln) 0.321 0.319 0.711 0.962 0.745 0.852 0.841
G-Adapter (w/o. post_ln) 0.314 0.323 0.713 0.955 0.751 0.846 0.845
G-Adapter (w/o. ln) 0.343 0.328 0.705 0.956 0.726 0.833 0.839
G-Adapter (w/o. act_fn) 0.331 0.301 0.713 0.962 0.755 0.844 0.855
G-Adapter (w/o. breg) 0.346 0.325 0.704 0.951 0.743 0.849 0.834
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Figure 7: More comparisons of training efficiency between PEFTs and full fine-tuning on more
datasets. Note that the evaluation protocol for FreeSolv and ESOL is RMSE (the lower, the better),
while the others are AUC (the higher, the better).
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Figure 8: Illustration of feature distribution shift on MolHIV with pre-trained Graphormer.
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Figure 9: Illustration of feature distribution shift on Estrogen-β with pre-trained MAT.
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Figure 10: Illustration of feature distribution shift on MetStablow with pre-trained MAT.

Algorithm 1 Pseudo-code of G-Adapter in a PyTorch-like style.

# Define the G-Adapter block
class GAdapter(nn.Module):

def __init__(self , hidden_size , bottleneck_size)
super(GAdapter , self).__init__ ()
self.down = nn.Linear(hidden_size , bottleneck_size)
self.up = nn.Linear(bottleneck_size , hidden_size)
self.pre_ln = nn.LayerNorm(hidden_size)
self.post_ln = nn.LayerNorm(hidden_size)
self.act_fn = nn.ReLU()

def forward(self , x, s):
# x: batch_size * sequence_length * hidden_size
# s: batch_size * sequence_length * sequence_length
x = self.pre_ln(x)
x = self.act_fn(self.up(self.down(torch.matmul(s, x)))) + x
x = self.post_ln(x)
return x

# Apply the G-Adapter block into the built -in module
class Encoder(nn.Module):

def __init__(self , hidden_size , bottleneck_size , *args , ** kwargs)
super(Encoder , self).__init__ ()
...
# +++ #
self.gadapter = GAdapter(hidden_size , bottleneck_size)
# +++ #
...

def forward(self , x, s):
...
# +++ #
x = self.gadapter(x, s)
# +++ #
...
return x
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