
ar
X

iv
:2

31
0.

18
47

7v
1 

 [
cs

.L
G

] 
 2

7 
O

ct
 2

02
3

Understanding and Improving Ensemble

Adversarial Defense

Yian Deng
Department of Computer Science

The University of Manchester
Manchester, UK, M13 9PL

yian.deng@manchester.ac.uk

Tingting Mu
Department of Computer Science

The University of Manchester
Manchester, UK, M13 9PL

tingting.mu@manchester.ac.uk

Abstract

The strategy of ensemble has become popular in adversarial defense, which trains
multiple base classifiers to defend against adversarial attacks in a cooperative man-
ner. Despite the empirical success, theoretical explanations on why an ensemble of
adversarially trained classifiers is more robust than single ones remain unclear. To
fill in this gap, we develop a new error theory dedicated to understanding ensemble
adversarial defense, demonstrating a provable 0-1 loss reduction on challenging
sample sets in adversarial defense scenarios. Guided by this theory, we propose
an effective approach to improve ensemble adversarial defense, named interactive
global adversarial training (iGAT). The proposal includes (1) a probabilistic dis-
tributing rule that selectively allocates to different base classifiers adversarial ex-
amples that are globally challenging to the ensemble, and (2) a regularization term
to rescue the severest weaknesses of the base classifiers. Being tested over vari-
ous existing ensemble adversarial defense techniques, iGAT is capable of boosting
their performance by up to 17% evaluated using CIFAR10 and CIFAR100 datasets
under both white-box and black-box attacks.

1 Introduction

Many contemporary machine learning models, particularly the end-to-end ones based on deep neu-
ral networks, admit vulnerabilities to small perturbations in the input feature space. For instance,
in computer vision applications, a minor change of image pixels computed by an algorithm can
manipulate the classification results to produce undesired predictions, but these pixel changes can
be imperceptible to human eyes. Such malicious perturbations are referred to as adversarial attacks.
These can result in severe incidents, e.g., medical misdiagnose caused by unauthorized perturbations
in medical imaging [43], and wrong actions taken by autonomous vehicles caused by crafted traffic
images [34].

The capability of a machine learning model to defend adversarial attacks is referred to as adver-
sarial robustness. A formal way to quantify such robustness is through an adversarial risk, which
can be intuitively understood as the expectation of the worst-scenario loss computed within a local
neighborhood region around a naturally sampled data example [40]. It is formulated as below:

Radv(f) = E(x,y)∼D

[

max
z∈B(x)

ℓ (ŷ (f(z)) , y)

]

, (1)

where B(x) denotes a local neighborhood region around the example x sampled from a natural
data distribution D. The neighbourhood is usually defined based on a selected norm, e.g., a region
containing any z satisfying ‖z− x‖ ≤ ε for a constant ε > 0. In general, ℓ(ŷ, y) can be any loss
function quantifying the difference between the predicted output ŷ and the ground-truth output y. A

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

http://arxiv.org/abs/2310.18477v1


learning process that minimizes the adversarial risk is referred to as adversarially robust learning. In
the classification context, a way to empirically approximate the adversarial robustness is through a
classification error computed using a set of adversarial examples generated by applying adversarial
attacks to the model [4]. Here, an adversarial attack refers to an algorithm that usually builds on an
optimization strategy, and it produces examples perturbed by a certain strength so that a machine
learning model returns the most erroneous output for these examples [10, 24].

On the defense side, there is a rich amount of techniques proposed to improve the model robust-
ness [10, 1]. However, a robust neural network enhanced by a defense technique would mostly
result in a reduced accuracy for classifying the natural examples [52]. A relation between the adver-
sarial robustness and the standard accuracy has been formally proved by Tsipras et al. [38]: “Any
classifier that attains at least 1− δ standard accuracy on a dataset D has a robust accuracy at most
δp/(1−p) against an L∞-bounded adversary with ε ≥ 2η.”, where ε is the L∞ bound indicating the
attack strength, while η is sufficiently large and p ≥ 0.5 and they both are used for data generation.
This statement presents a tradeoff between the adversarial robustness and natural accuracy. There
has been a consistent effort invested to mitigate such tradeoff by developing defense techniques to
improve robust accuracy without sacrificing much the natural accuracy.

Ensemble defense has recently arisen as a new state of the art [4, 25]. The core idea is to train strate-
gically multiple base classifiers to defend the attack, with the underlying motivation of improving the
statistical stability and cooperation between base models. Existing effort on ensemble defense has
mostly been focused on demonstrating performance success for different algorithmic approaches. It
is assumed that training and combining multiple base models can defend better adversarial attacks
as compared to training a single model. Although being supported by empirical success, there is
few research that provides rigorous understanding to why this is the case in general. Existing results
on analyzing generalized error for ensemble estimators mostly compare the error of the ensemble
and the averaged error of the base models, through, for instance, decomposition strategies that di-
vide the error term into bias, variance, co-variance, noise and/or diversity terms [45, 7, 39]. It is not
straightforward to extend such results to compare the error of an ensemble model and the error of a
model without an ensemble structure.

To address this gap, we develop a new error theory (Theorem 4.1) dedicated to understanding en-
semble adversarial defense. The main challenge in mitigating the tradeoff between the adversarial
robustness and natural accuracy comes from the fact that adversarial defence techniques can reduce
the classifier’s capacity of handling weakly separable example pairs that are close to each other but
from different classes. To analyse how ensemble helps address this particular challenge, we derive
a provable error reduction by changing from using one neural network to an ensemble of two neural
networks through either the average or max combiner of their prediction outputs.

Although ensemble defense can improve the overall adversarial robustness, its base models can still
be fooled individually in some input subspaces, due to the nature of the collaborative design. An-
other contribution we make is the proposal of a simple but effective way to improve each base model
by considering the adversarial examples generated by their ensemble accompanied by a regulariza-
tion term that is designed to recuse the worst base model. We experiment with the proposed en-
hancement by applying it to improve four state-of-the-art ensemble adversarial defense techniques.
Satisfactory performance improvement has been observed when being evaluated using CIFAR-10
and CIFAR-100 datasets [51] under both white-box and black-box attacks.

2 Related Work

Adversarial Attack: Typical attack techniques include white-box and black-box attacks. The white-
box adversary has access to the model, e.g., the model parameters, gradients and formulation, etc,
while the black-box adversary has limited knowledge of the model, e.g., knowing only the model
output, and therefore is closer to the real-world attack setting [5]. Representative white-box at-
tacks include Deepfool [27] and the projected gradient descent (PGD) [26]. The fast gradient
sign method (FGSM) [18] is a simplified one-iteration version of PGD. The momentum iterative
method (MIM) [15] improves the FGSM attack by introducing the momentum term. Another two
commonly-used and cutting-edge white-box attacks are the Carlini-Wagner (CW) attack [8] that
computes the perturbation by optimizing the perturbation scales, and the Jacobian-based saliency
map attack (JSMA) [31] that perturbs only one pixel in each iteration. Representative black-box
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attacks include the square attack (SA) [3], the SignHunter attack [2] and the simple black-box attack
(SimBA) [19], among which SA can generate stronger attacks but is more computationally expen-
sive. A thorough survey on adversarial attacks is provided by Akhtar et al. [1]. AutoAttack [12]
encapsulates a selected set of strong white and black-box attacks and is considered as the state-of-
the-art attack tool. In general, when evaluating the adversarial robustness of a deep learning model,
it should be tested under both the white and black-box attacks.

Adversarial Defense: Adversarial training is the most straightforward and commonly used defense
technique for improving adversarial robustness. It works by simply expanding the training data with
additional adversarial examples. The initial idea was firstly adopted by Christian et al. [11] to train
robust neural networks for classification, later on, Madry et al. [26] used adversarial examples gen-
erated by the PGD attack for improvement. Overall, this strategy is very adaptive and can be used
to defend any attack, but it is on the expense of consuming more training examples. It has been
empirically observed that adversarial training can reduce loss curvatures in both the input and model
parameter spaces [17, 16], and this reduces the adversarial robustness gap between the training and
testing data [52, 47]. These findings motivate the development of a series of regularization tech-
niques for adversarial defense, by explicitly regularizing the curvature or other relevant geometric
characteristics of the loss function. Many of these techniques can avoid augmenting the training set
and are computationally cheaper. Typical regularization techniques that attempt to flatten the loss
surface in the input space include the curvature regularization (CURE) [28], local linearity regular-
ization (LLR) [32], input gradient regularization [29] and Lipschitz regularization [41]. There are
also techniques to flatten the loss in the model parameter space, such as TRADES [52], misclassifica-
tion aware adversarial training (MART) [44], robust self-training (RST) [9, 33], adversarial weight
perturbation (AWP) [47], and HAT [46], etc. Alternative to adversarial training and regularization,
other defense strategies include pruning [35], pre-training [22], feature denoising [48], domain adap-
tation [36] and ensemble defense [25, 37], etc. Croce et al. [13] has provided a summary of recent
advances.

Ensemble Adversarial Defense: Recently, ensemble has been actively used in adversarial defense,
showing promising results. One core spirit behind ensemble is to encourage diversity between base
models in order to achieve an improved ensemble prediction [45, 7, 39]. Therefore, the advances are
mostly focused on designing effective ensemble diversity losses in training to improve adversarial
robustness. For instance, the adaptive diversity promoting (ADP) method [30] uses Shannon en-
tropy for uncertainty regularization and a geometric diversity for measuring the difference between
the predictions made by base classifiers. The transferability reduced smooth (TRS) method [50]
formulates the diversity term based on cosine similarities between the loss gradients of base mod-
els, meanwhile increases the model smoothness via an l2-regularization of these gradients during
training. The similar idea of exploiting loss gradients was proposed earlier in the gradient align-
ment loss (GAL) method [23]. The conditional label dependency learning (CLDL) method [42] is
a latest improvement over GAL and TRS, which measures the diversity using both the predictions
and loss gradients of the base models. However, the ensemble nature of encouraging diversity can
cause vulnerability for some base models over certain subsets of adversarial examples [28]. In prac-
tice, this can limit the overall robustness of the ensemble when the other base models are not strong
enough to correct the weak ones. To address this, the diversifying vulnerabilities for enhanced robust
generation of ensembles (DVERGE) [49] proposes a vulnerability diversity to encourage each base
model to be robust particularly to the other base models’ weaknesses. The latest development for
improving ensemble defense, known as synergy-of-experts (SoE) [14], follows a different research
path. For each input, it adaptively selects a base model with the largest confidence to make the final
prediction instead of combining all, for which the supporting algorithm and theory have been devel-
oped. Some surveys on ensemble adversarial attacks and defense can be found in He et al. [21], Lu
et al. [25].

3 Notations and Preliminaries

Bold capital and lower-case letters, e.g., X and x, denote matrices and vectors, respectively, while
lower-case letters, e.g., x, denote scalars. The i-th row and column of a matrix X are denoted by

xi and x(i), respectively, while xi,j and xi the elements of X and x. A classification dataset D =
{(xi, yi)}

n
i=1 includes n examples, which are referred to as natural examples, with xi ∈ X ⊂ R

d

(feature vector) and yi ∈ [C] = {1, 2, . . . , C} (class label). We sometimes express the label of
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an example as y(x) or yx. Storing xi as a row of X ∈ R
n×d and yi an element of y ∈ R

n, we
also denote this dataset by D = (X,y). The classifier f : X → [0, 1]C outputs class probabilities
usually computed by a softmax function. Given the computed probability fc for the c-th class,

ŷf (x) = argmaxc∈[C] fc(x) predicts the class. For a neural network, we denote by W(l) the

weight matrix connecting the l-th and the (l − 1)-th layers and by w
(l)
i,j its ij-th element. The L2-

norm ‖ · ‖2 is used to compute the vector length, while the L∞-norm ‖ · ‖∞ to generate adversarial
attacks. Concatenation of two sets is denoted by the symbol ∪.

We focus on classification by minimizing a classification loss ℓ(f(x), yx), and adapt it to ℓ(f(X),y)
for the whole dataset. Also, we use ℓCE to emphasize the cross-entropy loss. The loss gradient

is ∇ℓ(f(x), yx) = ∂ℓ(f(x),yx)
∂x . A cheap way to estimate the loss curvature is by finite difference

approximation [28], e.g., the following curvature measure based on L2-norm:

λf (x, δ) =
‖∇ℓ(f (x+ δ) , yx)−∇ℓ(f(x), yx)‖2

‖δ‖2
, (2)

where δ ∈ R
d is a perturbation. It measures how a surface bends at a point by different amounts in

different directions. An adversarial example x̃ = φ(f ,x, A) is generated by attacking the classifier

f using an attack algorithm A on a natural example x. It is further adapted to X̃ = φ(f ,X, A) for
the set of adversarial examples each generated from a natural example in X. The quantity δ(f ,x, A)
= φ(f ,x, A) − x is referred to as the adversarial perturbation of x, simplified to δx = x̃ − x.
To control the perturbation strength, we restrict ‖δx‖∞ ≤ ε for some ε > 0, which results in the
following adversarial example formulation, as

φε(f ,x, A) = min(max(φ(f ,x, A),x − ε),x+ ε), (3)

where both min(·, ·) and max(·, ·) are element-wise operators comparing their inputs.

4 An Error Theory for Adversarial Ensemble Defense

In adversarial ensemble defense, a widely accepted research hypothesis is that training and com-
bining multiple base classifiers can improve adversarial defense as compared to training a single
classifier. However, this hypothesis is mostly supported by empirical successes and there is a lack of
formal theoretical justification. In this work, we seek theoretical evidence, proving that, when using
multilayer perceptrons (MLPs) for classification, classification error reduces when applying adver-
sarial defence to the base MLPs of an ensemble as compared to a single MLP, under assumptions
feasible in practice. The following theorem formalizes our main result.

Theorem 4.1. Suppose h,h0,h1 ∈ H : X → [0, 1]C are C-class L-layer MLPs satisfying Assump-
tion 4.2. Given a dataset D = {(xi, yi)}

n
i=1, construct an ambiguous pair set A(D) by Definition

4.3. Assume h,h0,h1 are acceptable classifiers for A(D) by Assumption 4.4. Given a classifier
f ∈ H : X → R

C and a dataset D, assess its classification error by 0-1 loss, as

R̂0/1(D, f) =
1

|D|

∑

x∈D

1

[

fyx
(x) < max

c 6=yx

fc(x)

]

, (4)

where 1[true] = 1 while 1[false] = 0. For an ensemble h
(0,1)
e of two base MLPs h0 and h1 through

either an average or a max combiner, i.e., h
(0,1)
e = 1

2 (h
0 + h1) or h

(0,1)
e = max(h0,h1), it has a

lower empirical 0-1 loss than a single MLP for classifying ambiguous examples, such as

Ea∼A(D)Eh0,h1∈H

[

R̂0/1

(

a,h(0,1)
e

)]

< Ea∼A(D)Eh∈H

[

R̂0/1 (a,h)
]

. (5)

We prove the result for MLPs satisfying the following assumption.

Assumption 4.2 (MLP Requirement). Suppose a C-class L-layer MLP h : R
d → [0, 1]C ex-

pressed iteratively by

a(0)(x) = x, (6)

a(l)(x) = σ
(

W(l)a(l−1)(x)
)

, l = 1, 2, ..., L− 1, (7)

a(L)(x) = W(L)a(L−1)(x) = z(x), (8)

h(x) = softmax(z(x)), (9)
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where σ(·) is the activation function applied element-wise, the representation vector z(x) ∈ R
C

returned by the L-th layer is fed into the prediction layer building upon the softmax function. Let

w
(l)
sl+1,sl denote the network weight connecting the sl-th neuron in the l-th layer and the sl+1-th neu-

ron in the (l+1)-th layer for l ∈ {1, 2 . . . , L}. Define a column vectorp(k) with its i-th element com-

puted from the neural network weights and activation derivatives, as p
(k)
i =

∑

sL

∂a(L−1)
sL

(x)

∂xk
w

(L)
i,sL

for k = 1, 2, . . . d and i = 1, 2, . . .C, also a matrix Ph =
∑d

k=1 p
(k)p(k)T and its factorization

Ph = MhM
T
h with a full-rank factor matrix Mh. For constants λ̃, B > 0, suppose the following

holds for h:

1. Its cross-entropy loss curvature measured by Eq. (2) satisfies λh(x, δ) ≤ λ̃.

2. The factor matrix satisfies ‖Mh‖2 ≤ B0 and

∥
∥
∥M

†
h

∥
∥
∥
2
≤ B, where ‖ · ‖2 denotes the vector

induced l2-norm for matrix.

We explain the feasibility of the above MLP assumptions in the end of this section.

Although adversarial defense techniques can improve adversarial robustness, new challenges arise
in classifying examples that are close to each other but from different classes, due to the flattened
loss curvature for reducing the adversarial risk. We refer to a pair of such challenging examples as
an ambiguous pair. Our strategy of proving improved performance for adversarial defense is to (1)
firstly construct a challenging dataset A(D) comprising samples from these pairs, which is referred
to as an ambiguous pair set, and then (2) prove error reduction over A(D). To start, we provide
formal definitions for the ambiguous pair and set.

Definition 4.3 (Ambiguous Pair). Given a dataset D = {(xi, yi)}
n
i=1 where xi ∈ X and yi ∈ [C],

an ambiguous pair contains two examples a = ((xi, yi), (xj , yj)) satisfying yi 6= yj and

‖xi − xj‖2 ≤
1

JB

√

C
(

λ̃2 − ξ
) , (10)

where J > 2 is an adjustable control variable, λ̃, B and ξ ≤ λ̃2 are constants associated with the
MLP under Assumption 4.2. The ambiguous pair set A(D) contains all the ambiguous pairs existing
in D, for which J is adjusted such that A(D) 6= ∅.

In Theorem 4.1, we are only interested in classifiers that do not fail too badly on A(D), e.g., having
an accuracy level above 42.5%. Comparing poorly performed classifiers is not very meaningful,
also the studied situation is closer to practical setups where the starting classifiers for improvement
are somewhat acceptable. Such a preference is formalized by the following assumption:

Assumption 4.4 (Acceptable Classifier). Suppose an acceptable classifier f : Rd → [0, 1]C does
not perform poorly on the ambiguous pair set A(D) associated with a control variable J . This means
that, for any pair a = ((xi, yi), (xj , yj)) ∈ A(D) and for any example (xi, yi) from the pair, the
following holds:

1. With a probability p ≥ 42.5%, the classifier correctly classifies (xi, yi) by a sufficiently
large predicted score, i.e., fyi

(xi) ≥ 0.5 + 1
J , while wrongly classifies the other example

xj to yi by a less score, i.e., fyi
(xj) ≤ 0.5 + 1

J .

2. When the classifier predicts (xi, yi) to class ŷi, the predicted scores for the other classes

excluding yi are sufficiently small, i.e., fc(xi) ≤
1−fŷi (xi)

C−1 for c 6= yi, ŷi.

Proof for Theorem 4.1 together with a toy illustration example is provided in supplementary mate-
rial.

Assumption Discussion. Assumption 4.2 is feasible in practice. Reduced loss curvature is a nat-
ural result from adversarial defense, particularly for adversarial training and regularization based
methods [16, 17] as mentioned in Section 2. Regarding its second part determined by neural net-
work weights and activation derivatives, common training practices like weight regularization and
normalization help prevent from obtaining overly inflated elements in Ph, and thus bound ‖Mh‖2
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and

∥
∥
∥M

†
h

∥
∥
∥
2
. Following Definition 4.3, the ambiguous pair a = ((xi, yi), (xj , yj)) is constructed to

let the classifier struggle with classifying the neighbouring example, e.g., (xj , yj), when it is able
to classify successfully, e.g., (xi, yi). Consequently, the success of classifying (xi, yi) is mostly
accompanied with a failure of classifying (xj , yj) into yi, and vice versa. In Assumption 4.4, for an
acceptable classifier, the first part assumes its failure is fairly mild, while the second part assumes
its struggle is between yi and yj . As shown in our proof of Theorem 4.1, in order for Eq. (5) to hold,
a polynomial inequality of the probability p needs to be solved, providing a sufficient condition on
achieving a reduced ensemble risk, i.e., p ≥ 42.5%. Later, we conduct experiments to examine
how well some assumptions are met by adversarially trained classifiers and report the results in
supplementary material.

5 iGAT: Improving Ensemble Mechanism

Existing ensemble adversarial defense techniques mostly base their design on a framework of com-
bining classification loss and diversity for training. The output of each base classifier contains the
probabilities of an example belonging to the C classes. For an input example x ∈ X , we denote its
output from the i-th base classifier by hi(x) =

[
hi
1(x)..., h

i
C(x)

]
for i ∈ [N ], where N denotes the

number of used base classifiers. Typical practice for combining base predictions includes the aver-

aging, i.e., h(x) = 1
N

∑N
i=1 h

i(x), or the max operation, i.e., hj(x) = maxi∈[N ]

(
hi
j(x)

)
. Without

loss of generality, we denote the combiner by h = c
(
h1, ...,hN

)
. To train the base classifiers, we

exemplify an ensemble loss function using one training example (x, yx), as below

LE(x, yx) =

N∑

i=1

ℓ(hi(x), yx)

︸ ︷︷ ︸

classification loss

+ωReg (h(x)) + γDiversity(h1(x),h2(x), . . . ,hN (x), yx)), (11)

where ω, γ ≥ 0 are hyperparameters. An example choice for regularization is the Shannon en-
tropy of the ensemble h(x) [30]. Significant research effort has been invested to diversity design,
for which it is optional whether to use the class information in diversity calculation. In the first
section of supplementary material, we briefly explain four ensemble adversarial defense techniques
highlighting their loss design strategies. These include ADP [30], CLDL [42], DVERGE [49] and
SoE [14], and they are used later in Section 6 to test our proposed enhancing approach.

Despite the effort in diversity design that encourages better collaboration between base classifiers,
it is unavoidable for some base classifiers to struggle with classifying examples from certain input
subspaces. There are intersected subspaces that all the base classifiers are not good at classifying.
To address this, we propose an interactive global adversarial training (iGAT) approach. It seeks
support from adversarial examples globally generated by the ensemble and distributes these exam-
ples to base classifiers with a probabilistic strategy empirically proven effective. Additionally, it
introduces another regularization term to improve over the severest weakness of the base classifiers.
Below we describe our proposal in detail.

5.1 Distributing Global Adversarial Examples

We aim at improving adversarial robustness over intersected feature subspaces which are hard for
all base classifiers to classify. These regions can be approximated by global adversarial examples
generated by applying adversarial attacks to the ensemble, which are

(X̃, ỹ) =
(
φε(c

(
h1, ...,hN

)
,X, A),y

)
, (12)

where rows of X̃ store the feature vectors of the generated adversarial examples. For instance, the
FGSM attack can be used as A. Instead of feeding the same full set of adversarial examples to train
each base classifier, we distribute different examples to different base classifiers, to improve perfor-
mance and to reduce training time. The generated examples are divided into N groups according to

their predicted class probabilities. The i-th group
(

X̃i, ỹi
)

is used to train the i-th base classifier,

contributing to its classification loss.

Our core distributing strategy is to encourage each base classifier to keep improving over regions
that they are relatively good at classifying. This design is motivated by our theoretical result. We
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have proved in Theory 4.1 an error reduction achieved by the ensemble of base MLPs that satisfy
the acceptability Assumption 4.4. This assumption is partially examined by whether the classifier
returns a sufficiently high prediction score for the correct class or low scores for most of the incorrect
classes for some challenging examples. By keeping assigning each base classifier new challenging
examples that they are relatively good at classifying, it encourages Assumption 4.4 to continue
to hold. In Section 6.3, we perform ablation studies to compare our proposal with a few other
distributing strategies, and the empirical results also verify our design. Driven by this strategy, we
propose one hard and one soft distributing rule.

Hard Distributing Rule: Given a generated adversarial example (x̃, y) =
((

X̃
)

k
, ỹk

)

, the follow-

ing rule determines which base classifier to assign it:

If hi
y(x̃) > max

j 6=i,j∈[N ]
hj
y(x̃), assign (x̃, y) to

(

X̃i, ỹi
)

. (13)

We refer to it as a hard distributing rule as it simply assigns examples in a deterministic way. The
example is assigned to the base classifier that returns the highest predicted probability on its ground
truth class.

Soft Distributing Rule: A hard assignment like the above can be sensitive to errors. Alternatively,
we propose a soft distributing rule that utilizes the ranking of the base classifiers based on their pre-
diction performance meanwhile introduces uncertainty. It builds upon roulette wheel selection [6],
which is a commonly used genetic operator in genetic algorithms for selecting promising candidate
solutions. Firstly, we rank in descending order the predicted probabilities {hi

y(x)}
N
i=1 by all the

base classifiers for the ground truth class, and let rx
(
hi
)
∈ [N ] denote the obtained ranking for the

i-th base classifier. Then, we formulate a ranking-based score for each base classifier as

pi =
2N−rx(hi)
∑

i∈[N ] 2
i−1

, (14)

and it satisfies
∑

i∈[N ] pi = 1. A more top ranked base classifier has higher score. Next, according to

{pi}Ni=1, we apply roulette wheel selection and distribute the example to the selected base classifier.

Specifically, the selection algorithm constructs N intervals {[ai, bi]}Ni=1 where a1 = 0, b1 = p1,
also ai = bi−1 and bi = ai + pi for i = 2, 3, . . . , N . After sampling a number q ∈ (0, 1] following
a uniform distribution q ∼ U(0, 1), check which interval q belongs to. If ai < q ≤ bi, then the
example is used to train the i-th base classifier. This enables to assign examples based on ranking
but in a probabilistic manner in order to be more robust to errors.

5.2 Regularization Against Misclassification

We introduce another regularization term to address the severest weakness, by minimizing the prob-
ability score of the most incorrectly predicted class by the most erroneous base classifier. Given an
input example (x, yx), the proposed term is formulated as

LR (x, yx) = −δ0/1
(
c
(
h1(x), ...,hN (x)

)
, yx

)
log

(

1−
C

max
i=1

N
max
j=1

hj
i (x)

)

. (15)

Here, δ0/1(f , y) ∈ {0, 1} is an error function, where if the input classifier f can predict the correct
label y, it returns 0, otherwise 1. This design is also motivated by Assumption 4.4, to encourage a
weak base classifier to perform less poorly on challenging examples so that its chance of satisfying
the acceptability assumption can be increased.

5.3 Enhanced Training and Implementation

The proposed enhancement approach iGAT, supported by (1) the global adversarial examples gener-
ated and distributed following Section 5.1 and (2) the regularization term proposed in Section 5.2,
can be applied to any given ensemble adversarial defense method. We use LE to denote the original
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ensemble loss as in Eq. (11), the enhanced loss for training the base classifiers become

min
{hi}N

i=1

E(x,yx)∼(X,y) [LE(x, yx)]
︸ ︷︷ ︸

original ensemble loss

+ α
N∑

i=1

E(x,yx)∼(X̃i,ỹi)
[
ℓCE(h

i(x), yx)
]

︸ ︷︷ ︸

added global adversarial loss

(16)

+ βE(x,yx)∼(X,y)∪(X̃,ỹ) [LR (x, yx)]
︸ ︷︷ ︸

added misclassification regularization

,

where α, β ≥ 0 are hyper-parameters. In practice, the base classifiers are firstly trained using
an existing ensemble adversarial defense technique of interest, i.e., setting α = β = 0. If some
pre-trained base classifiers are available, they can be directly used instead, and fine-tuned with the
complete loss. In our implementation, we employ the PGD attack to generate adversarial training
examples, as it is the most commonly used in existing literature and in practice.

6 Experiments and Results of iGAT

In the experiments, we compare with six state-of-the-art ensemble adversarial defense techniques
including ADP [30], CLDL [42], DVERGE [49], SoE [14], GAL [30] and TRS [50]. The CIFAR-
10 and CIFAR-100 datasets are used for evaluation, both containing 50,000 training and 10,000 test
images [51]. Overall, ADP, CLDL, DVERGE and SoE appear to be the top performing methods, and
we apply iGAT1 to enhance them. The enhanced, referred to as iGATADP, iGATCLDL, iGATDVERGE

and iGATSoE, are compared with their original versions, and additionally GAL [30] and TRS [50].

6.1 Experiment Setting

We test against white-box attacks including PGD with 20 inner optimization iterations and CW with
L∞ loss implemented by Wu et al. [47], and the black-box SignHunter (SH) attack [2] with 500
maximum loss queries. In accordance with Carmon et al. [9], the CW attack is applied on 1,000
equidistantly sampled testing examples. We also test against the strongest AutoAttack (AA) [12],
which encapsulates variants of the PGD attack and the black-box square attack [3]. All attack meth-
ods use the perturbation strength ε = 8/255.

For all the compared methods, an ensemble of N = 8 base classifiers with ResNet-20 [20] backbone
is experimented, for which results of both the average and max output combiners are reported. To
implement the iGAT enhancement, the soft distributing rule from Eq. (14) is used. The two hyper-
parameters are set as α = 0.25 and β = 0.5 for SoE, while α = 5 and β = 10 for ADP, CLDL
and DVERGE, found by grid search. Here SOE uses a different parameter setting because its loss
construction differs from the others, thus it requires a different scale of the parameter range for tuning
α and β. In practice, minor adjustments to hyper-parameters have little impact on the results. The
iGAT training uses a batch size of 512, and multi-step leaning rates of {0.01, 0.002} for CIFAR10
and {0.1, 0.02, 0.004} for CIFAR100. Implementation of existing methods uses either their pre-
trained models or their source code for training that are publicly available. Each experimental run
used one NVIDIA V100 GPU plus 8 CPU cores.

6.2 Result Comparison and Analysis

We compare different defense approaches by reporting their classification accuracies computed us-
ing natural images and adversarial examples generated by different attack algorithms, and report the
results in Table 1. The proposed enhancement has lifted the performance of ADP and DVERGE to
a state-of-the-art level for CIFAR-10 under most of the examined attacks, including both the white-
box and black-box ones. The enhanced DVERGE by iGAT has outperformed all the compared
methods in most cases for CIFAR-100. In addition, we report in Table 2 the accuracy improvement
obtained by iGAT for the studied ensemble defense algorithms, computed as their accuracy differ-
ence normalised by the accuracy of the original algorithm. It can be seen that iGAT has positively
improved the baseline methods in almost all cases. In many cases, it has achieved an accuracy boost
over 10%.

1The source codes and pre-trained models can be found at https://github.com/xqsi/iGAT.
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Table 1: Comparison of classification accuracies in percentage reported on natural images and adversarial
examples generated by different attack algorithms under L∞-norm perturbation strength ε = 8/255. The
results are averaged over five independent runs. The best performance is highlighted in bold, the 2nd best
underlined.

Average Combiner (%) Max Combiner (%)

Natural PGD CW SH AA Natural PGD CW SH AA

C
IF

A
R

1
0

TRS 83.15 12.32 10.32 39.21 9.10 82.67 11.89 10.78 37.12 7.66

GAL 80.85 41.72 41.20 54.94 36.76 80.65 31.95 27.80 50.68 9.26

SoE 82.19 38.54 37.59 59.69 32.68 82.36 32.51 23.88 41.04 18.37
iGATSoE 81.05 40.58 39.65 57.91 34.50 81.19 31.98 24.01 40.67 19.65

CLDL 84.15 45.32 41.81 55.90 37.04 83.69 39.34 32.80 51.63 15.30
iGATCLDL 85.05 45.45 42.00 58.22 37.14 83.73 40.84 34.55 51.70 17.03

DVERGE 85.12 41.39 43.40 57.33 39.20 84.89 41.13 39.70 54.90 35.15
iGATDVERGE 85.48 42.53 44.50 57.77 39.48 85.27 42.04 40.70 54.79 35.71

ADP 82.14 39.63 38.90 52.93 35.53 80.08 36.62 34.60 47.69 27.72
iGATADP 84.96 46.27 44.90 58.90 40.36 80.72 39.37 35.00 48.36 29.83

C
IF

A
R

1
0
0 TRS 58.18 10.32 10.12 15.78 6.32 57.21 9.98 9.23 14.21 4.34

GAL 61.72 22.04 21.60 31.97 18.01 59.39 19.30 13.60 24.73 10.36

CLDL 58.09 18.47 18.01 29.33 15.52 55.51 18.89 13.07 22.14 4.51
iGATCLDL 59.63 18.78 18.20 29.49 14.36 56.91 20.76 14.09 20.43 5.20

SoE 62.60 20.54 19.60 36.35 15.90 62.62 16.00 11.40 24.25 8.62
iGATSoE 63.19 21.89 19.70 35.60 16.16 63.02 16.02 11.45 23.77 8.95

ADP 60.46 20.97 20.55 30.26 17.37 56.20 17.86 13.70 21.40 10.03
iGATADP 60.17 22.23 20.75 30.46 17.88 56.29 17.89 14.10 21.47 10.09

DVERGE 63.09 20.04 20.01 32.74 17.27 61.20 20.08 15.30 27.18 12.09
iGATDVERGE 63.14 23.20 22.50 33.56 18.59 61.54 20.38 17.80 27.88 13.89

Table 2: Accuracy improvement in percentage by iGAT, i.e.
iGAT- original

original
× 100%, reported on natural images

and adversarial examples generated by different attack algorithms under L∞-norm perturbation strength ε =

8/255.

Average Combiner Max Combiner

Natural PGD CW SH AA Natural PGD CW SH AA

C
IF

A
R

1
0 ADP +3.43 +16.75 +15.42 +11.28 +13.59 +0.80 +7.51 +1.16 +1.40 +7.61

DVERGE +0.42 +2.75 +2.53 +0.77 +0.71 +0.45 +2.21 +2.52 −0.20 +1.59

SoE −1.39 +5.29 +5.48 −2.98 +5.57 −1.42 −1.63 +0.54 −0.90 +6.97

CLDL +1.07 +0.29 +0.45 +4.15 +0.27 +0.05 +3.81 +5.34 +0.14 +11.31

C
IF

A
R

1
0
0 ADP −0.48 +6.01 +0.97 +0.66 +2.94 +0.16 +0.17 +2.92 +0.33 +0.60

DVERGE +0.08 +15.77 +12.44 +2.50 +7.64 +0.56 +1.49 +16.34 +2.58 +14.89

SoE +0.94 +6.57 +0.51 −2.06 +1.64 +0.64 +0.13 +0.44 −1.98 +3.83

CLDL +2.65 +1.68 +1.05 +0.55 −7.47 +2.52 +9.90 +7.80 −7.72 +15.30

Here are some further discussions on the performance. We observe that DVERGE and its iGAT en-
hancement perform proficiently on both CIFAR10 and CIFAR100, while ADP and its enhancement
are less robust on CIFAR100. We attempt to explain this by delving into the algorithm nature of
DVERGE and ADP. The ADP design encourages prediction disparities among the base models. As
a result, each base model becomes proficient in classifying a subset of classes that the other base
models may struggle with. However, a side effect of this is to discourage base models from be-
coming good at overlapping classes, which may become ineffective when having to handle a larger
number of classes. The reasonably good improvement achieved by iGAT for ADP in Table 2 in-
dicates that an addition of global adversarial examples is able to rescue such situation to a certain
extent. On the other hand, in addition to encouraging adversarial diversity among the base models,
DVERGE also aims at a stable classification so that each example is learned by multiple base models.
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Table 3: Results of ablation studies based on iGATADP using CIFAR-10 under the PGD attack. The results are
averaged over five independent runs. The best performance is highlighted in bold.

Opposite Distributing Random Distributing Hard Distributing β = 0 iGATADP

Natural (%) 82.45 83.05 83.51 83.45 84.96
PGD (%) 41.31 42.60 44.21 42.32 46.25

This potentially makes it suitable for handling both large and small numbers of classes. Moreover,
we also observe that the average combiner provides better performance than the max combiner in
general. The reason can be that an aggregated prediction from multiple well-trained base classifiers
is more statistically stable.

6.3 Ablation Studies

The key designs of iGAT include its distributing rule and the regularization term. We perform
ablation studies to examine their effectiveness. Firstly, we compare the used soft distributing rule
with three alternative distributing rules, including (1) a distributing rule opposite to the proposed,
which allocates the adversarial examples to the base models that produce the lowest prediction score,
(2) a random distributing rule by replacing Eq. (14) by a uniform distribution, and (3) the hard
distributing rule in Eq. (13). Then, we compare with the setting of β = 0 while keeping the others
unchanged. This change removes the proposed regularization term. Results are reported in Table 3
using iGATADP with the average combiner, evaluated by CIFAR-10 under the PGD attack. It can be
seen that a change or removal of a key design results in obvious performance drop, which verifies
the effectiveness of the design.

7 Conclusion, Limitation and Future Work

We investigate the challenging and crucial problem of defending against adversarial attacks in the in-
put space of a neural network, with the goal of enhancing ensemble robustness against such attacks
while without sacrificing much the natural accuracy. We have provided a formal justification of
the advantage of ensemble adversarial defence and proposed an effective algorithmic improvement,
bridging the gap between theoretical and practical studies. Specifically, we have proven a decrease
in empirical 0-1 loss calculated on data samples challenging to classify, which is constructed to sim-
ulate the adversarial attack and defence scenario, under neural network assumptions that are feasible
in practice. Also, we have proposed the iGAT approach, applicable to any ensemble adversarial
defense technique for improvement. It is supported by (1) a probabilistic distributing rule for selec-
tively allocating global adversarial examples to train base classifiers, and (2) a regularization penalty
for addressing vulnerabilities across all base classifiers. We have conducted thorough evaluations
and ablation studies using the CIFAR-10 and CIFAR-100 datasets, demonstrating effectiveness of
the key designs of iGAT. Satisfactory performance improvements up to 17% have been achieved by
iGAT.

However, there is limitation in our work. For instance, our theoretical result is developed for only
two base MLPs. We are in progress of broadening the scope of Theorem 4.1 by further relaxing the
neural network assumptions, researching model architectures beyond MLPs and beyond the aver-
age/max combiners, and more importantly generalizing the theory to more than two base classifiers.
Additionally, we are keen to enrich our evaluations using large-scale datasets, e.g., ImageNet. So
far, we focus on exploiting curvature information of the loss landscapes to understand adversarial
robustness. In the future, it would be interesting to explore richer geometric information to improve
the understanding. Despite the research success, a potential negative societal impact of our work is
that it may prompt illegal attackers to develop new attack methods once they become aware of the
underlying mechanism behind the ensemble cooperation.
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1 Studied Ensemble Adversarial Defense Techniques

We briefly explain four ensemble adversarial defense techniques including ADP [5], CLDL [6],
DVERGE [7] and SoE [1]. They are used to test the proposed enhancement approach iGAT. In gen-
eral, an ensemble model contains multiple base models, and the training is conducted by minimizing
their classification losses together with a diversity measure. The output of each base model contains
the probabilities of an example belonging to the C classes. For an input example x ∈ X , we denote
its output from the i-th base classifier by hi(x) =

[
hi
1(x)..., h

i
C(x)

]
for i ∈ [N ], where N denotes

the base model number.

1.1 ADP Defense

ADP employs an ensemble by averaging, i.e., h(x) := 1
N

∑N
i=1 h

i(x). The base classifiers are
trained by minimizing a loss that combines (1) the cross entropy loss of each base classifier, (2)
the Shannon entropy of the ensemble prediction for regularization, and (3) a diversity measure to
encourage different predictions by the base classifiers. Its formulation is exemplified below using
one training example (x, yx):

LADP(x, yx) =

N∑

i=1

ℓCE(h
i(x), yx)

︸ ︷︷ ︸

classification loss

−αH (h(x))
︸ ︷︷ ︸

uncertainty
regularization

+ β log(D(h1(x),h2(x), . . . ,hN (x), yx))
︸ ︷︷ ︸

prediction diversity

,

(17)

where α, β ≥ 0 are hyperparameters, the Shannon entropy is H(p) = −∑C
i=1 pi log(pi), and

D(h1,h2, . . .hN , y) measures the geometric diversity between N different C-dimensional proba-

bility vectors. To compute the diversity, a normalized (C − 1)-dimensional vector h̃i
\y is firstly ob-

tained by removing from hi the element at the position y ∈ [C], the resulting
{

h̃i
\y

}N

i=1
are stored

as columns of the (C− 1)×N matrix H̃\y, and then it has D(h1,h2, . . .hN , y) = det
(

H̃T
\yH̃\y

)

.

1.2 CLDL Defense

CLDL provides an alternative way to formulate the diversity between base classifiers, considering
both the base classifier prediction and its loss gradient. Its loss for the training example (x, yx) is
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given by

LCLDL(x, yx) =
1

N

N∑

i=1

DKL

(
si(x)||hi(x)

)

︸ ︷︷ ︸

classification loss

−α log




2

N(N − 1)

N∑

i=1

N∑

j=i+1

e
JSD

(

si\(x)||s
j

\
(x)

)





︸ ︷︷ ︸

prediction diversity

+
2β

N(N − 1)

N∑

i=1

N∑

j=i+1

cos(∇DKL(s
i(x)||hi(x)),∇DKL

(
sj(x)||hj(x)

)

︸ ︷︷ ︸

gradient diversity

, (18)

where si(x) is a soft label vector computed for (x, yx) by a label smoothing technique called label
confusion model [3]. The vector si\ is defined as a (C − 1)-dimensional vector by removing from si

its maximal value. The Kullback–Leibler (KL) divergence is used to examine the difference between
the soft label vector and the prediction vector, serving as a soft version of the classification loss.
The other used divergence measure is Jensen–Shannon divergence (JSD), given as JSD (p||q) =
1
2 (DKL (p||g) + DKL (q||g)) with g = 1

2 (p+ q).

1.3 DVERGE Defense

DVERGE proposes a vulnerability diversity to help training the base classifiers with improved ad-
versarial robustness. For training the i-th base classifier, it minimizes

L
original

DVERGE(x, yx) = ℓCE(h
i(x), yx)

︸ ︷︷ ︸

classification loss

+α
∑

j 6=i

E(xs,yxs)∼D,l∈[L]

[

ℓCE

(

hi
(

x̃

(

h
j
(l),x,xs

))

, yxs

)]

︸ ︷︷ ︸

adversarial vulnerability diversity

,

(19)

where α ≥ 0 is a hyperparameter. Given an input example x, x̃
(

h
j
(l),x,xs

)

computes its distilled

non-robust feature vector proposed by Ilyas et al. [4]. This non-robust feature vector is computed

with respect to the l-th layer of the j-th base classifier with its mapping function denoted by h
j
(l) and

a randomly sampled natural example xs, by

x̃
(

h
j
(l),x,xs

)

= arg min
z∈Rd

∥
∥
∥h

j
(l)(z)− h

j
(l)(x)

∥
∥
∥

2

2
, (20)

s.t. ‖z− xs‖∞ ≤ ǫ.

When x and xs belong to different classes, x̃ can be viewed as an adversarial example that is visually
similar to xs but is classified by the j-th base classifier into the same class as x. This represents a
weakness of hj , and as a correction, the i-th base classifier is trained to correctly classify x̃ into
the same class as xs. But when x and xs come from the same class, (x̃, yxs

) is just an example
similar to the natural one (xs, yxs

) ∈ D, for which the first and second loss terms play similar roles.
Therefore, DVERGE simplifies the above loss in practice, and trains each base classifier by

min
hi

LDVERGE(x, yx) = E(xs,yxs )∼D,l∈[L]




∑

j 6=i

ℓCE

(

hi
(

x̃
(

h
j
(l),x,xs

))

, yxs

)



 . (21)

It removes the classification loss on the natural data.

1.4 SoE Defense

SoE proposes a version of classification loss using adversarial examples and a surrogate loss that acts
similarly to the vulnerability diversity loss as in DVERGE. For each base classifier hi, an auxiliary

2



scalar output head gi is used to approximate its predicted probability for the true class. Its overall
loss exemplified by the training example (x, yx) is given as

LSoE(x, yx) =

N∑

j=1

ℓBCE

(
hj
yx

(
x̃i
)
, gj
(
x̃i
))

︸ ︷︷ ︸

adversarial classification loss

− σ ln

N∑

j=1

exp

(

−ℓCE

(
hj
(
x̃i
)
, yx
)

σ

)

︸ ︷︷ ︸

surrogate loss for vulnerability diversity

, (22)

where ℓBCE is the binary cross entropy loss, and σ > 0 is the weight parameter. Adversarial
examples are generated to compute the losses by using the PGD attack. For the j-th base classifier,
the attack is applied to each i-th (i 6= j) base classifer to generate training data, resulting in x̃i =
φ(hi,x, PGD). SoE has two training phases and in the second training phase, rather than using x̃i,

a different adversarial example is generated by x̃ = φ(hk,x, PGD) where k = argmaxi∈[N ] g
i(x),

aiming at attacking the best-performing base classifier.

2 Proof of Theoretical Results

Given a C-class L-layer MLP h : X → [0, 1]C described in Assumption ??, we study its cross-
entropy loss for one example (x, yx), i.e., ℓCE(h(x), yx) = − loghyx

(x), where its partial deriva-
tive with respect to the k-th element of x is given by

∂ℓCE(x)

∂xk
=

C∑

i=1

(hi(x)−∆i,yx
)
∂zi
∂xk

, (23)

where ∆i,yx
=

{
1, if i = yx,
0, otherwise.

Perturbing the input x to x + δ, sometimes we simplify the

notation of the perturbed function output, for instance, ℓ̃(x) = ℓ(x+ δ), h̃(x) = h(x+ δ), z̃(x) =
z(x + δ) and σ̃(x) = σ(x+ δ).

Our main theorem builds on a supporting Lemma 2.1. In the lemma, we derive an upper bound for
the difference between the predictions h(x) and h(z) for two examples, computed by an MLP h :
R

d → [0, 1]C satisfying Assumption ??. Before proceeding to prove the main theorem, we provide a
proof sketch. For each ambiguous pair, we firstly analyse its 0/1 risk under different situations when
being classified by a single classifier, and derive its empirical 0/1 risk as r1 = 1 − p + 1

2p
2. Then

we analyse the 0/1 risk for this pair under different situations when being classified by an ensemble
classifier, where both max and average combiners are considered. We derive the ensemble empirical
0/1 risk as r2 = 1− 3p2 + 3p3 − 3

4p
4. Finally, we prove the main result in Eq. (43) by obtaining a

sufficient condition for achieving a reduced ensemble risk, i.e., p > 0.425 which enables r2 ≤ r1.

2.1 Lemma 2.1 and Its Proof

Lemma 2.1. Suppose a C-class L-layer MLP h : R
d → [0, 1]C with softmax prediction layer

satisfies Assumption ??. For any x, z ∈ R
d and c = 1, 2 . . . , C , the following holds

|hc(x)− hc(z)| ≤ ‖x− z‖2B
√

C
(

λ̃2 − ξ
)

(24)

for some constant ξ ≤ λ̃2, where λ̃ and B are constants associated with the MLP family under
Assumption ??.

Proof. Define the perturbation vector δ ∈ R
d such that z = x + δ and denote its strength by

ǫ = ‖δ‖2, these will be used across the proof. We start from the cross-entropy loss curvature
measured by Eq. (??), given as

λ2
h(x, δ) =

1

ǫ2
‖∇ℓCE(h(x), yx)− ℓCE(h(x + δ), yx)‖22 =

1

ǫ2

∑

k

(

∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2

.

(25)
Below we will expand this curvature expression, where we denote a perturbed function f(x) by

using f̃(x) and f(x+ δ) interchangeably.

3



By Eq. (23), it has
∣
∣
∣
∣
∣

∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

C∑

c=1

(hc(x) −∆i,yx
)
∂zi
∂xk

−
C∑

c=1

(

h̃c(x)−∆i,yx

) ∂z̃i
∂xk

∣
∣
∣
∣
∣
. (26)

Working with the MLP formulation, it is straightforward to express the quantity ∂zi
∂xk

in terms of the

derivatives of the activation functions and the neural network weights, as

∂zi
∂xk

=
∂
∑

sL
w

(L)
i,sL

a
(L−1)
sL (x)

∂xk
=
∑

sL

w
(L)
i,sL

∂a
(L−1)
sL (x)

∂xk
. (27)

For the convenience of explanation, we simplify the notation by defining g(L−1),sL(x) =
∂a(L−1)

sL
(x)

∂xk
,

and we have

∂zi
∂xk

=
∑

sL

w
(L)
i,sL

g(L−1),sL(x), (28)

∂z̃i
∂xk

=
∑

sL

w
(L)
i,sL

g̃(L−1),sL(x). (29)

Applying multivariate Taylor expansion [2], we obtain

g̃(L−1),sL(x) = g(L−1),sL(x) +

d∑

k=1

∂g(L−1),sL(x)

∂xk
δk +

∑

n≥2










∑

ak∈Z0,
k∈[d],

∑d
k=1 ak=n

C(a1,...,ad)
n δa1

1 ...δad

d










,

(30)
where Z0 denotes the set of nonnegative integers, δk is the k-th element of the perturbation vector δ,

and C
(a1,...,ad)
n denotes the coefficient of each higher-order term of δa1

1 ...δad

d . Combining the above
equations, we have

∑

k

(

∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2

(31)

=
∑

k

(
C∑

i=1

∑

sL

(

hi(x)g(L−1),sL(x) − h̃i(x)g̃(L−1),sL(x)
)

w
(L)
i,sL

−

∑

sL

(
g(L−1),sL(x)− g̃(L−1),sL(x)

)
w(L)

yx,sL

)2

=
∑

k

(
C∑

i=1

∑

sL

(

hi(x) − h̃i(x)
)

g(L−1),sL(x)w
(L)
i,sL

)2

︸ ︷︷ ︸

T (x)

+
∑

n≥1










∑

ak∈Z0,
k∈[d],

∑d
k=1 ak=n

D(a1,...,ad)
n δa1

1 ...δad

d










︸ ︷︷ ︸

S(x)

,

where D
(a1,...,ad)
n denotes the coefficient of δa1

1 ...δad

d , computed from the terms like hi(x), h̃i(x),

C
(a1,...,ad)
n and the neural network weights. Define a C-dimensional column vector p(k) with its

i-th element computed by p
(k)
i =

∑

sL
g(L−1),sL(x)w

(L)
i,sL

and a matrix Ph =
∑

k p
(k)p(k)T , the

term T (x) can be rewritten as

T (x) =
∑

k

((

h(x) − h̃(x)
)T

pk

)2

=
(

h(x) − h̃(x)
)T

Ph

(

h(x)− h̃(x)
)

. (32)
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The factorization Ph = MhM
T
h can be obtained by conducting singular value decomposition of

Ph. The above new expression of T (x) helps bound the difference between h(x) and h̃(x).

According to the norm definition, we have

‖Mh‖2 = max
q∈Rd 6=0

‖Mhq‖2
‖q‖2

= max
q∈RC 6=0

‖qTMh‖2
‖q‖2

, (33)

‖M†
h‖2 = max

q∈RC 6=0

‖M†
hq‖2

‖q‖2
= max

q∈Rd 6=0

‖qTM
†
h‖2

‖q‖2
. (34)

Subsequently, the following holds for any nonzero q ∈ R
C and p ∈ R

d

‖qTMh‖2 ≤ ‖Mh‖2‖q‖2, (35)

‖pTM
†
h‖2 ≤ ‖M†

h‖2‖p‖2. (36)

Letting q = h(x) − h̃(x) and using the fact that each element in h(x) and h̃(x) is a probability
value less than 1, it has

T (x) =

∥
∥
∥
∥

(

h(x)− h̃(x)
)T

Mh

∥
∥
∥
∥

2

2

≤ ‖Mh‖22
∥
∥
∥h(x) − h̃(x)

∥
∥
∥

2

2
≤
(

sup
h

‖Mh‖2
)2

C, (37)

which results in the fact that T (x) is upper bounded by Assumption ?? where ‖Mh‖2 ≤ B0. Letting

p = MT
h

(

h(x) − h̃(x)
)

and using the Assumption ?? where

∥
∥
∥M

†
h

∥
∥
∥
2
≤ B, it has

‖h(x)− h̃(x)‖2 =

∥
∥
∥
∥

(

h(x) − h̃(x)
)T

MhM
†
h

∥
∥
∥
∥
2

≤
∥
∥
∥M

†
h

∥
∥
∥
2

∥
∥
∥
∥

(

h(x)− h̃(x)
)T

Mh

∥
∥
∥
∥
2

≤ B
√

T (x). (38)

Now we focus on analyzing T (x). Working with Eq. (31) and considering the fact that
∑

k

(
∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2

is a positive term and T (x) is upper bounded, S(x) has to be lower

bounded. We express this lower bound by ξǫ2 using a constant ξ for the convenience of later deriva-
tion, resulting in

S(x) ≥ ξǫ2. (39)

Given the perturbation strength ǫ2 = ‖δ‖22, applying the curvature assumption in Assumption ??,

i.e., λh(x, δ) ≤ λ̃, also Eqs. (25), (31) and (39), it has

T (x) + ξǫ2 ≤ λ̃2ǫ2 ⇒ T (x) ≤ (λ̃2 − ξ)ǫ2. (40)

Incorporating this into Eq. (38), it has

‖h(x)− h̃(x)‖2 ≤ ǫB

√

λ̃2 − ξ. (41)

Applying the inequality of
∑m

i=1 a
2
i ≥ 1

m (
∑m

i=1 ai)
2
, also the fact

∑C
c=1 hc(x) =

∑C
c=1 h̃c(x) =

1, the following holds for any class c ∈ {1, 2, . . . , C}:

‖h(x)− h̃(x)‖22 ≥
∑

j 6=c

∣
∣
∣hj(x) − h̃j(x)

∣
∣
∣

2

≥ 1

C − 1




∑

j 6=c

∣
∣
∣hj(x) − h̃j(x)

∣
∣
∣





2

≥ 1

C

∣
∣
∣
∣
∣
∣

∑

j 6=c

(

hj(x) − h̃j(x)
)

∣
∣
∣
∣
∣
∣

2

=
1

C

∣
∣
∣hc(x)− h̃c(x)

∣
∣
∣

2

. (42)

Incorporating Eq. (41) to the above, we have

∣
∣
∣hc(x) − h̃c(x)

∣
∣
∣ ≤

√
C‖h(x)− h̃(x)‖2 ≤ ǫB

√

C
(

λ̃2 − ξ
)

. (43)
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Inserting back z = x+ δ and ǫ = ‖δ‖2 into Eq. (43), we have

|hc(x) − hc(z)| ≤ ‖x− z‖2B
√

C
(

λ̃2 − ξ
)

. (44)

This completes the proof.

2.2 Proof of Theorem ??

Single Classifier. We analyse the expected 0/1 risk of a single acceptable classifier h ∈ H for
a small dataset D2 = {(xi, yi), (xj , yj)} containing the two examples from the ambiguous pair
a = ((xi, yi), (xj , yj)). The risk is expressed by

Eh∈H[R̂0/1(D2,h)] = Eh∈H

[
1

2

(

1

[

hyi
(xi) < max

c 6=yi

hc(xi)

]

+ 1

[

hyj
(xj) < max

d 6=yj

hc(xj)

])]

.

(45)
We consider three cases.

Case I: Suppose the example (xi, yi) is correctly classified, thus, according to Assumption ?? for
acceptable classifiers, it has hyi

(xi) ≥ 0.5 + 1
J . As a result, its prediction score for a wrong class

(c 6= yi) satisfies

hc(xi) ≤ 1− hyi
(xi) ≤ 1− (0.5 +

1

J
) = 0.5− 1

J
< 0.5 < hyi

(xi). (46)

Applying Lemma 2.1 for c = yi and Eq. (??) in Definition ?? for ambiguous pair, it has

hyi
(xi)− hyi

(xj) ≤ |hyi
(xi)− hyi

(xj)| ≤ ‖xi − xj‖2B
√

C
(

λ̃2 − ξ
)

≤ 1

J
. (47)

Combining the above with the Case I assumption of hyi
(xi) ≥ 0.5 + 1

J , it has

hyi
(xj) ≥ hyi

(xi)−
1

J
≥ (0.5 +

1

J
)− 1

J
= 0.5, (48)

and hence, for any c 6= yi, it has

hc(xj) < 1− hyi
(xj) ≤ 0.5 ≤ hyi

(xj), (49)

which indicates that the example (xj , yj) is wrongly predicted to class yi in Case I. Therefore,

R̂(I)
0/1(D2,h) =

0 + 1

2
=

1

2
. (50)

Case II: Suppose the example (xj , yj) is correctly classified. Following exactly the same deriva-
tion as in Case I, this results in the wrong classification of the other example (xi, yi) into class yj .
Therefore,

R̂(II)
0/1(D2,h) =

1 + 0

2
=

1

2
. (51)

Case III: Suppose both examples are misclassified, which simply results in

R̂(III)
0/1 (D2,h) =

1 + 1

2
= 1. (52)

Note that these three cases are mutually exclusive. Use E1, E2 and E3 to represent the three events
corresponding to Case I, Case II and Case III, respectively. Letting p denote the probability of
correctly classifying an example by an acceptable classifier, it is straightforward to obtain p(E3) =
(1 − p)2, while p(E1) = p(E2) =

1
2

(
1− (1− p)2

)
= p− 1

2p
2. Therefore, it has

Eh∈H

[

R̂0/1(D2,h)
]

(53)

= R̂(I)
0/1(D2,h)p(E1) + R̂(II)

0/1(D2,h)p(E2) + R̂(III)
0/1 (D2,h)p(E3),

=
1

2
p(E1) +

1

2
p(E2) + p(E3) = p− 1

2
p2 + (1 − p)2 = 1− p+

1

2
p2.
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Ensemble Classifier. We next analyse using D2 the expected 0/1 risk of an ensemble of two accept-
able base classifiers (h0,h1 ∈ H) with a max or average combiner, in five cases.

Case I: Suppose the example (xi, yi) is correctly classified by both base classifiers. According to
Assumption ?? for acceptable classifiers, it has h0

yi
(xi) ≥ 0.5+ 1

J and h1
yi
(xi) ≥ 0.5+ 1

J . Following
exactly the same derivation as in the earlier Case I analysis for a single classifier, i.e., Eqs. (46) and
(49), the following holds for any c 6= yi, as

h0
c(xi) < h0

yi
(xi), h

0
c(xj) < h0

yi
(xj), (54)

h1
c(xi) < h1

yi
(xi), h

1
c(xj) < h1

yi
(xj). (55)

As a result, for any c 6= yi, the ensemble prediction satisfies the following

h(0,1)
e,yi

(xi) = max
(
h0
yi
(xi), h

1
yi
(xi)

)
> max(h0

c(xi), h
1
c(xi)) = h(0,1)

e,c (xi), (56)

h(0,1)
e,yi

(xi) =
1

2

(
h0
yi
(xi) + h1

yi
(xi)

)
>

1

2
(h0

c(xi) + h1
c(xi)) = h(0,1)

e,c (xi), (57)

each corresponding to the max and average combiners, respectively. This indicates a correct ensem-
ble classification of (xi, yi). Also, it satisfies

h(0,1)
e,yj

(xj) = max
(

h0
yj
(xj), h

1
yj
(xj)

)

< max(h0
yi
(xj), h

1
yi
(xj)) = h(0,1)

e,yi
(xj), (58)

h(0,1)
e,yj

(xj) =
1

2

(

h0
yj
(xj) + h1

yj
(xj)

)

<
1

2
(h0

yi
(xj) + h1

yi
(xj)) = h(0,1)

e,yi
(xj), (59)

when using the max and average combiners, respectively. This indicates a wrong classification of
(xj , yj). Finally, for Case I, we have

R̂(I)
0/1

(

D2,h
(0,1)
e

)

=
1

2
(0 + 1) =

1

2
, (60)

Case II: Suppose the example (xj , yj) is correctly classified by both base classifiers. By following
exactly the same derivation as in Case I as above, the ensemble correctly classifies (xj , yj), while
wrongly classifies (xi, yi). As a result, it has

R̂(II)
0/1

(

D2,h
(0,1)
e

)

=
1

2
(1 + 0) =

1

2
. (61)

Case III: Suppose the example (xi, yi) is correctly classified by h0, while the other example (xj , yj)
is correctly classified by h1, i.e., h0

yi
(xi) ≥ 0.5+ 1

J and h1
yj
(xj) ≥ 0.5+ 1

J according to Assumption

??. Following a similar analysis as in Case I for a single classifier, we know that h0 consequently
misclassifies (xj , yj) into yi, while h1 misclassifies (xi, yi) into yj . Also, by Assumption ??, it is

assumed that the misclassification happens with a less score than 0.5 + 1
J , thus, h0

yi
(xj) ≤ 0.5 + 1

J

and h1
yj
(xi) ≤ 0.5 + 1

J . Combining all these, for any c 6= yi and d 6= yj , we have

h1
d(xi) < 0.5 ≤ h1

yj
(xi) ≤ 0.5 +

1

J
≤ h0

yi
(xi), (62)

h0
c(xj) < 0.5 ≤ h0

yi
(xj) ≤ 0.5 +

1

J
≤ h1

yj
(xj), (63)

and according to the second condition in Assumption ??, it has

h0
c(xi) ≤

1− h0
yi
(xi)

C − 1
≤ h0

yi
(xi), (64)

h1
d(xj) ≤

1− h1
yj
(xj)

C − 1
≤ h1

yj
(xj). (65)

Subsequently, the ensemble prediction by a max combiner satisfies

h(0,1)
e,yi

(xi) =max
(
h0
yi
(xi), h

1
yi
(xi)

)
= h0

yi
(xi) > max(h0

c(xi), h
1
c(xi)) = h(0,1)

e,c (xi), (66)

h(0,1)
e,yj

(xj) =max
(

h0
yj
(xj), h

1
yj
(xj)

)

= h1
yj
(xj) > max(h0

d(xj), h
1
d(xj)) = h

(0,1)
e,d (xj), (67)
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which indicates a correct classification of both examples.

Now we consider the slightly more complex situation of ensemble by averaging. According to the
previous analysis, we know that xi is classified by h1 to yj , and xi is classified byh0 to yi. Applying

the second condition in Assumption ??, we analyse the quantity 1− h1
yj
(xi)− h1

yi
(xi) as

1− h1

yj
(xi)− h1

yi
(xi) =

∑

c 6=yi,yj

h1

c(xi) ≤ (C − 2)
1− h1

yj
(xi)

C − 1
= 1− h1

yj
(xi)−

(

1− h1

yj
(xi)

C − 1

)

, (68)

resulting in

h1
yi
(xi) ≥

1− h1
yj
(xi)

C − 1
. (69)

Combining Eq. (62), Eq. (64) and Eq. (69), it has

h1
yi
(xi) ≥

1− h1
yj
(xi)

C − 1
>

1− h0
yi
(xi)

C − 1
≥ h0

c(xi). (70)

On the other hand, from Eq. (62), one can obtain

h0
yi
(xi) ≥ h1

c(xi). (71)

As a result, the ensemble prediction by an average combiner satisfies

h(0,1)
e,yi

(xi) =
1

2

(
h0
yi
(xi) + h1

yi
(xi)

)
>

1

2
(h0

c

(
xi) + h1

c(xi)
)
= h(0,1)

e,c (xi), (72)

for any c 6= yi. Following the same way of deriving Eqs. (70) and (71), but for xj , we can

obtain another two inequalities h1
yj
(xj) ≥ h0

d(xj) and h0
yj
(xj) ≥ h1

d(xj), for any d 6= yj , and

subsequently,

h(0,1)
e,yj

(xj) =
1

2

(

h0
yj
(xj) + h1

yj
(xj)

)

>
1

2

(
h0
d(xj) + h1

d(xj)
)
= h

(0,1)
e,d (xj). (73)

Putting together Eqs. (72) and (73), a correct ensemble classification is achieved for both examples.
Finally, we conclude the following result

R̂(III)
0/1

(

D2,h
(0,1)
e

)

= 0, (74)

which is applicable to both the max and average combiners.

Case IV: Suppose the example (xi, yi) is correctly classified by h1 while the other example (xj , yj)
is correctly classified by h0. This is essentially the same situation as in Case III, and the same result

R̂(IV)
0/1

(

D2,h
(0,1)
e

)

= 0 is obtained.

Case V: This case represents all the remaining situations, where, for instance, the example (xi, yi)
and/or (xi, yi) is misclassified by both base classifiers. Here, we do not have sufficient information
to analyse the error in detail, and also it is not necessary to do so for our purpose. So we just simply

leave it as R̂(V)
0/1

(

D2,h
(0,1)
e

)

≤ 1.

These five cases are mutually exclusive, and we use {Hi}5i=1 to denote them accordingly. The first
four cases represent the same situation that each example is correctly classified by a single base

classifier, therefore p(H1) = p(H2) = p(H3) = p(H4) = p(E1)p(E2) =
(
p− 1

2p
2
)2

, while

p(H5) = 1 −∑4
i=1 p(Hi) = 1 − 4

(
p− 1

2p
2
)2

= 1 − (2p − p2)2. Incorporating the result of

R̂0/1

(

D2,h
(0,1)
e

)

regarding to the five cases, we have

Eh0,h1∈H

[

R̂0/1

(

D2,h
(0,1)
e

)]

(75)

≤ 1

2
p(H1) +

1

2
p(H2) + 0(p(H3) + p(H4)) + p(H5)

=

(

p− 1

2
p2
)2

+ 1− (2p− p2)2 = 1− 3p2 + 3p3 − 3

4
p4.
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Risk Comparison. We examine the sufficient condition for achieving a reduced ensemble loss for
this dataset D2, i.e.,

Eh0,h1∈H

[

R̂0/1

(

D2,h
(0,1)
e

)]

< Eh∈H

[

R̂0/1 (D2,h)
]

. (76)

Incorporating Eqs. (53) and (75), this requires to solve the following polynomial inequality, as

1− 3p2 + 3p3 − 3

4
p4 < 1− p+

1

2
p2, (77)

for which p > 0.425 provides a solution. Applying the expectation Ea∼A(D) over the data samples,
where the ambiguous pair a is equivalent to D2, Eq. (??) from the theorem is obtained. This
completes the proof.

3 A Toy Example for Theorem ??
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��
�

��������
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h0
yi

h1
yj

Figure 1: Illustration for Theorem ??.

Guided by Theorem ??, we aim to verify the difference between the single-branch and ensemble
mechanisms using 1-dimensional 2-class data. Suppose D = {(xi = 0.3, yi = 0), (xj = 0.7, yj =
1)}, we use it to construct an ambiguous pair a = ((xi, yi), (xj , yj)) as presented in Fig. 1. We

select two base models h0,h1 ∈ H such that h0 classifies xi well and h1 classifies xj well. W.l.o.g,

let h = h0. For the classifiers h, h0 and h1, we analyze the 0-1 loss defined in Eq. (??). Then, we
have

R̂0/1(a,max(h0,h1)) =
1

2

(
1 [max(0.9, 0.37) < max(0.1, 0.63)]

+ 1 [max(0.89, 0.36) < max(0.11, 0.64)]
)
= 0,

R̂0/1(a,
(
h0 + h1

)
/2) =

1

2

(
1 [(0.9 + 0.37)/2 < (0.1, 0.63)/2]

+ 1 [(0.89 + 0.36)/2 < (0.11 + 0.64)/2]
)
= 0,

R̂0/1(a,h) =
1

2

(
1 [0.9 < 0.63] + 1 [0.36 < 0.64]

)
= 0.5.

Hence, it has R̂0/1(a,max(h0,h1)) < R̂0/1(a,h) and R̂0/1(a,
(
h0 + h1

)
/2) < R̂0/1(a,h),

which matches the resulting inequality in Theorem ??.

4 Additional Experiments and Results

Extra Black-box Attacks: We conduct more experiments to test the effectiveness of iGAT, by evalu-
ating against another two time-efficient and commonly used black-box attacks, using the CIFAR-10
dataset. Results are reported in Table 1. It can be seen that, in most cases, a robustness improvement
has been achieved by the enhanced defence.
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Table 1: Results on two additional black-box attacks.

Simple Attack (%) Bandits Attack (%)

ADP 75.91 59.21
iGATADP 79.43 64.55

DVERGE 79.43 63.80
iGATDVERGE 79.61 64.89

CLDL 76.82 63.80
iGATCLDL 78.84 65.25

SoE 76.22 66.10
iGATSoE 75.18 66.50

Table 2: Comparison of the ensemble robustness (%) to adversarial attacks of various perturbation
strengths, using the AutoAttack on CIFAR-10. The results are averaged over five independent runs.

❍
❍
❍
❍❍

ǫ
2/255 4/255 6/255 8/255 10/255

C
IF

A
R

1
0 CLDL 71.16 60.36 48.89 37.06 26.00

iGATCLDL 72.69 61.19 49.07 37.12 25.96

DVERGE 76.01 64.80 51.92 39.22 27.72
iGATDVERGE .76.19 65.14 52.52 39.48 28.59

ADP 71.93 59.53 47.27 35.52 25.01
iGATADP 76.02 64.76 52.44 40.38 29.46

C
IF

A
R

1
0

0 SoE 46.55 33.89 23.77 15.92 10.49
iGATSoE 45.72 33.18 23.28 16.09 10.52

DVERGE 48.87 35.81 25.35 17.26 11.18
iGATDVERGE 49.43 37.11 26.78 18.60 12.13

ADP 45.67 33.90 24.42 17.36 12.27
iGATADP 46.33 34.33 24.85 17.86 12.53

Varying Perturbation Strengths: In addition to the perturbation strength ǫ = 8/255 tested in the
main experiment, we compare the defense techniques under AutoAttack with different settings of
perturbation strength. Table 2 reports the resulting classification accuraccies, demonstrating that the
proposed iGAT is able to improve the adversarial robustness of the studied defense techniques in
most cases.

Comparison Against Single Classifiers: To observe how an ensemble classifier performs with
specialized ensemble adversarial training, we compare iGATADP based on the average combiner
against a single-branch classifier. This classifier uses the ResNet-18 architecture, and is trained
using only the standard adversarial training without any diversity or regularization driven treatment.
Table 3 reports the results. It can be seen that the specialized ensemble adversarial training technique
can significantly improve both the natural accuracy and adversarial robustness.

Experiments Driven by Assumption ??: To approximate empirically the probability p that a
trained base classifier can correctly classify a challenging example, we generate a set of globally

adversarial examples X̃ by attacking the ensemble h (average combiner) using the PGD and then
estimate p on this dataset by p = Ei∈[N ],(x,yx)∼(X̃,y)1[h

i
yx
(x) > maxc 6=yx

hi
c(x)]. From Table 4,

we can see that all the enhanced ensembles contain base models with a higher probability for correct
classifications.

We then examine the distributions of predicted scores by base models when classifying correctly
the globally adversarial data generated in the same as in Table 4. It can be seen that the case exists,
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Table 3: Comparison between iGATADP (average combiner) and a baseline single classifier, eval-
uated using CIFAR-10 data and the PGD attack (ǫ = 8/255). The results are averaged over five
independent runs.

Natural (%) PGD (%) Model size

Single Classifier 81.23 38.33 43M
iGATADP 84.95 46.25 9M

Table 4: Probabilities of base models classifying correctly adversarial examples from the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

p 41.92% 45.98% 46.25% 47.82% 50.37% 51.02%

Table 5: Distributions of predicted scores by base models correctly classifying adversarial examples
from the CIFAR-10.

Interval <0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

iGATADP 43.55% 13.30% 11.15% 10.20% 10.62% 11.19%
iGATDVERGE 20.07% 13.15% 12.20% 12.46% 14.44% 27.69%
iGATCLDL 49.50% 14.12% 12.26% 13.53% 9.77% 0.81%

Table 6: Expectations of the maximum predicted scores on incorrect classes among base models
when tested on adversarial examples from the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

0.390 0.323 0.476 0.396 0.320 0.281

where a base model correctly classifies a challenging example with a sufficiently large predicted
score.

Next, we compute the quantity, i.e., the largest incorrectly predicted score
Ei∈[N ],(x,yx)∼(X̃,y)maxc 6=yx

hi
c(x), to indirectly estimate whether the small-incorrect-prediction

condition, i.e., fc(x) ≤ 1−fŷ(x)
C−1 in Assumption ??, can be satisfied better after enhancement. Note

that yi 6= ŷi indicates the incorrect classification while yi = ŷi indicates the opposite, both of which
are uniformly measured by the defined quantity. This quantity, which is expected to be small, can
also be used to evaluate the effect of the proposed regularization term in Eq. (??) on the training.
Table 6 shows that the largest wrongly predicted scores by the base models have significantly
dropped for all the enhanced ensemble models.

Note that small values of hi
c 6=yx

(x) is equivalent to the high values of hi
yx
(x), and in the theorem,

when ŷ 6= yx, hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1 is the actual condition expected to be satisfied. Therefore, to

examine the second item (the case of misclassification) in Assumption ??, we measure the proba-

bility Ei∈[N ],(x,yx)∼(X̃,y)1
[

hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1

]

instead. Table 7 shows that after enhancement, the

probability of satisfying the condition increases.

As shown in Figure 1, as long as the peaks of two curves are above the line x = 0.5 and at similar
heights (in which case, are 0.89 and 0.90), whether their height are changed slightly to a higher or
lower position will not increase the 0-1 loss. Elevating the low predicted scores to the same level
as the high scores serves the crucial factor in fulfilling the cooperative function. Hence, we choose
to examine the effect of our distributing rule by checking whether the predicted scores by the best-
performing base models on incorrectly classified examples have been increased after enhancement,
using the quantity E(x,yx)∼(X̃,y),ŷh(x) 6=yx

[maxi∈[N ] h
i
yx
(x)]. It can be seen from Table 8 that base

models were kept improved on the examples they are already good at classifying.
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Table 7: Probabilities of hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1 for yx 6= ŷ when tested on adversarial examples from

the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

68.74% 73.12% 78.99% 80.19% 78.39% 80.87%

Table 8: Predicted scores on incorrectly classified adversarial examples by the best-performing base
model using the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

0.264 0.291 0.231 0.240 0.235 0.241

Time Efficiency of iGAT: (1) On distributing rule: We expect the distributing rule to reduce the
training data size to 1

N for training each base classifier, where N is the number of base classifiers,
and therefore to improve the training time. We add an experiment by comparing the training time
on N = 1000 training samples required by a full version of iGATADP and that by a modified version
with this distributing rule removed. CIFAR-10 data is used for Evaluation. The observed time for
iGATADP without the distributing design is 5.63 seconds, while with the distributing design is 5.42
seconds, indicating a slightly reduced training time. (2) On overall training: We illustrate the training
epochs between the ADP defense and its enhancement iGATADP. ADP necessitates 691 epochs for
ADP, whereas iGATADP only requires 163 epochs. Based on these, we can conclude that iGATADP

trains faster than ADP.

Observation of Curvature: We investigated empirically the value of the network curvature λ̃ using

neural networks trained by the ADP defense techniques, and recorded a λ̃ value around 0.06. The

smaller value of λ̃ indicates a looser upper bound in Eq. (??). According to our Definition ??, a
looser upper bound allows to define an ambiguous pair containing two intra-class examples that are
less close to each other, thus less challenging to classify.
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