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Figure 1: Our method robustly produces high-quality images of human faces, regardless of the camera pose while the base-
lines (π-GAN [2] and EG3D [1]) generate blurry images at the steep pose. The images are rendered with horizontal rotation
from the frontal view to the side view.

Abstract

While recent 3D-aware generative models have shown
photo-realistic image synthesis with multi-view consistency,
the synthesized image quality degrades depending on the
camera pose (e.g., a face with a blurry and noisy boundary
at a side viewpoint). Such degradation is mainly caused by
the difficulty of learning both pose consistency and photo-
realism simultaneously from a dataset with heavily imbal-
anced poses. In this paper, we propose SideGAN, a novel
3D GAN training method to generate photo-realistic im-

∗Both authors contributed equally to this research. Also, this work was
done during an internship at Kakao Brain.

ages irrespective of the camera pose, especially for faces of
side-view angles. To ease the challenging problem of learn-
ing photo-realistic and pose-consistent image synthesis, we
split the problem into two subproblems, each of which can
be solved more easily. Specifically, we formulate the prob-
lem as a combination of two simple discrimination prob-
lems, one of which learns to discriminate whether a syn-
thesized image looks real or not, and the other learns to
discriminate whether a synthesized image agrees with the
camera pose. Based on this, we propose a dual-branched
discriminator with two discrimination branches. We also
propose a pose-matching loss to learn the pose consistency
of 3D GANs. In addition, we present a pose sampling strat-
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egy to increase learning opportunities for steep angles in
a pose-imbalanced dataset. With extensive validation, we
demonstrate that our approach enables 3D GANs to gener-
ate high-quality geometries and photo-realistic images ir-
respective of the camera pose.

1. Introduction
Generative Adversarial Networks (GANs) [9] have

shown remarkable success in photo-realistic image genera-
tion [13, 14] by learning the distributions of high-resolution
image datasets. Recent studies have taken this success one
step further by extending GANs to pose-controllable image
generation based on the guidance of a 3DMM prior [25, 5]
or a differentiable renderer [28]. However, they produce in-
consistent results across different poses and also suffer from
limited pose controllability as they learn to generate 2D im-
ages for different poses independently without considering
the 3D face structure.

Therefore, 3D-aware GANs have emerged to achieve
multi-view consistent image generation. Recent studies [19,
2, 10, 27, 1, 23, 17] have tackled this problem by modeling
the 3D structure of a face using neural radiance fields [16],
enabling explicit view control. Combining volumetric fea-
ture projection with convolutional neural networks (CNNs)
enables 3D GANs to generate photo-realistic face images in
high resolution [10, 18, 1]. Albeit their ability to synthesize
photo-realistic images with explicit view control, their re-
sults do not have a stable quality depending on the camera
pose (Fig. 1). To be specific, side-view facial images gener-
ated by such methods show degraded qualities compared to
photo-realistic images of frontal viewpoints (e.g., a blurry
and a noisy facial boundary).

This unstable image quality is caused by the chal-
lenge for 3D-aware GANs to simultaneously learn to
generate pose-consistent and photo-realistic images from
a pose-imbalanced dataset (Fig. 2) such as the FFHQ
dataset [13] where most images are frontal-view images.
Specifically, EG3D [1], the state-of-the-art 3D GAN ap-
proach, formulates the problem as a learning problem of a
pose-conditional distribution of real images. Unfortunately,
learning the distribution of real images for each pose can
be extremely challenging, especially for poses with only a
small number of real images. GRAM [6] casts the problem
as a combination of the learning of real/fake image discrim-
ination and pose estimation. Nevertheless, pose estimation
from degraded side-view images is not trivial to learn either.
As a result, images generated by the existing 3D GANs are
blurry or have noisy boundaries in the face region at steep
pose angles (Fig. 1).

To tackle this problem, we propose SideGAN, a novel
3D GAN training method to generate photo-realistic im-
ages irrespective of the viewing angle. Our key idea is as
follows. To ease the challenging problem of learning photo-
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Figure 2: Real-world face datasets generally have an imbal-
anced pose distribution, which is mainly concentrated on
the frontal viewpoint.

realistic and multi-view consistent image synthesis, we split
the problem into two subproblems, each of which can be
solved more easily. Specifically, we formulate the problem
as a combination of two simple discrimination problems,
one of which learns to discriminate whether a synthesized
image looks real or not, and the other learns to discriminate
whether a synthesized image agrees with the camera pose.
Unlike the formulations of the previous methods, which try
to learn the real image distribution for each pose, or to learn
pose estimation, our subproblems are much easier as each of
them is analogous to a basic binary classification problem.

Based on this key idea, we propose a dual-branched
discriminator, which has two branches for learning photo-
realism and pose consistency, respectively. As these
branches are supervised explicitly for their respective pur-
poses, high-quality images with pose consistency can be
produced at each viewing angle, and consequently, the gen-
erator creates high-quality images and shapes. In addition,
we propose a pose-matching loss to give supervision to
the discriminator for the pose consistency, by considering
a positive pose (i.e., rendering pose or ground truth pose)
and a negative pose (i.e., irrelevant pose) for a given image.
For example, the frontal viewpoint is one of the irrelevant
poses for a side-view image. As reported in the experiments,
this loss helps improve image and shape quality. Com-
pared to the previous pose estimation strategy [6], our pose-
matching loss provides a more effective way to learn pose-
consistent image generation, as the pose-matching loss casts
the learning of pose-consistent image generation as the
learning of simple binary classification that is much easier
than the learning of accurate pose regression.

Additionally, we suggest a simple but effective train-
ing strategy to alleviate the degradation caused by in-
sufficient semantic knowledge at steep poses in a pose-
imbalanced dataset. As shown in Fig. 2, most in-the-wild
face datasets [13, 12, 3] usually have pose distributions
concentrated on the frontal angle, causing the degradation
of generated images at steep poses. While we may con-



struct a pose-balanced dataset in a controlled environment,
it requires a significant amount of effort, and is also hard
to guarantee the diversity like in the in-the-wild datasets.
Instead, we present an additional uniform pose sampling
(AUPS) strategy that draws camera poses from both a uni-
form distribution and the actual camera pose distribution
to enhance learning opportunities for steep angles during
training. Our experiments show that this simple pose sam-
pling strategy substantially improves the generation quality
for side-view images.

Our contributions are summarized as follows:

• We split the problem of learning of 3D GANs into
two easier subproblems: real/fake image discrimina-
tion and pose-consistency discrimination.

• We propose a dual-branched discriminator and a pose-
matching loss to effectively learn the pose consistency
by considering both positive and negative poses of a
given image.

• We also present a simple but effective pose sampling
strategy to compensate for the insufficient amount
of side-view images in pose-imbalanced in-the-wild
datasets.

• With extensive evaluations, SideGAN shows the state-
of-the-art image and shape quality irrespective of the
camera pose, especially at steep view angles.

2. Related work
Extending 2D GANs to have pose controllability.
GANs [9] have achieved significant success in photo-
realistic 2D image generation [13, 14]. Extending 2D GANs
to provide pose controllability has been addressed by dis-
entangling 3D information from GAN’s latent space. Find-
ing meaningful directions for editing pose in the latent
space can be done with supervision from pre-trained clas-
sifiers [20] or in an unsupervised manner [21]. Editing the
camera pose can be implemented by disentangling the pose
factor from the latent space with guidance from a 3DMM
prior [25, 5]. Zhang et al. [28] utilize inverse graphics with
a differentiable renderer for pose-controllable image gener-
ation by fine-tuning StyleGAN to have disentangled pose
attributes. Shi et al. [7] exploit a depth prior to disentangle
the latent codes of geometry and appearance for RGBD gen-
eration with pose controllability. Unfortunately, these stud-
ies based on 2D GANs fundamentally lack multi-view con-
sistency or accurate pose controllability since they do not
consider the 3D structure of faces.
3D-aware GANs. Recent work incorporating neural 3D
representations into GANs enables multi-view consistent
image generation with explicit camera control. GRAF [19]
and π-GAN [2] adopt fully implicit volumetric fields with
differentiable volumetric rendering for 3D scene genera-
tion. However, these methods suffer from a large memory

burden due to fully implicit networks, restricting image res-
olution and expressiveness. To enable high-resolution im-
age synthesis, GRAM [6] restricts point sampling to re-
gions near the learned implicit surface. StyleNeRF [10],
StyleSDF [18] and GIRAFFE [17] combine CNN-based up-
samplers with volumetric feature projection in their multi-
view consistent image generation. EG3D [1], which is the
most recent and related to our work, achieves photo-realistic
image synthesis based on their tri-plane representation and
StyleGAN feature generator. While previous 3D GAN stud-
ies have made significant progress in 3D-aware image syn-
thesis, they have a limitation that the image quality degrades
as the viewpoint shifts from frontal angles to steeper angles.
To the best of our knowledge, our work is the first one to
tackle the ineffectiveness of training 3D GANs from a pose-
imbalanced dataset for photo-realistic multi-view consistent
image generation irrespective of the camera pose.

3. SideGAN Framework
Our framework generates photo-realistic images irre-

spective of the camera pose even though most images in
the training dataset are frontal-view images. As shown in
Fig. 3, the main architecture is composed of two compo-
nents. The first component is a generator Gθ for generat-
ing images from latent vectors zfg and zbg for the fore-
ground and background regions, respectively, and a render-
ing camera parameter ξ+. The second component is a dual-
branched discriminator Dϕ for discriminating a generated
image Î from a real image I and for discriminating whether
a generated image agrees with a camera pose ξ. In the fol-
lowing, we describe each component. More details on our
framework are provided in Sec. B.

3.1. Generator

Existing 3D GAN models [1, 2] mainly render the back-
ground and foreground together by a single network. This
causes the 3D structures in the background region to mingle
with the 3D structures in the foreground region and makes it
difficult to create photo-realistic side-view images (Fig. 4).
To address this issue, we design our generator Gθ to sep-
arately produce the foreground and background regions
to avoid mingled foreground and background structures.
Specifically, our generator Gθ is composed of two com-
ponents: an image generator and a background network,
inspired by EpiGRAF [23]. The image generator has two
roles: it produces features for the foreground region (i.e.,
the facial region), and produces a final high-resolution im-
age using both foreground and background features. Mean-
while, the background network produces features for the
background region, which are used by the image generator.

For the image generator, we adopt the generator of a
state-of-the-art 3D GAN model [1]. The image generator
forms tri-plane features from the latent code zfg and the
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Figure 3: Illustration of main architecture. The generator takes latent codes zfg and zbg , camera parameters ξ+, and 3D
position x as inputs and synthesizes an image Î. The dual-branched discriminator takes either a real image I or a generated
image Î and camera parameters ξ and outputs separably logits for image distribution and image-pose consistency.

camera parameter ξ+ ∈ R25. Then, the generator samples
3D positions according to ξ+, then obtains features for the
sampled positions from the tri-plane. After that, the fore-
ground feature maps are obtained through a decoder and
volume rendering. Then, the feature maps are integrated
with the background feature maps according to the transmit-
tance of the foreground to generate a low-resolution feature
map. Finally, a high-resolution image is obtained from the
low-resolution features through a super-resolution module
in the image generator.

For the background network, we adopt the background
network of EpiGRAF [23]. The background network is a
multi-layer perceptron (MLP) that takes a latent code zbg
and a 3D position x as inputs and outputs a feature vec-
tor. To generate background features, we first sample 3D
positions according to the camera pose ξ+, and feed them
to the background network to obtain feature vectors for the
sampled 3D positions. After aggregating all the background
features, we feed them to the image generator.

3.2. Dual-Branched Discriminator

As shown in Fig. 3, the dual-branched discriminator Dϕ

takes an image and a camera pose as inputs. The input pose
can be either positive (ξ+) or negative (ξ−), where a posi-
tive pose means that the pose agrees with the input image,
while a negative pose means it does not. From the inputs,
the discriminator predicts whether the input image is real
or fake, and whether the input image agrees with the input
camera pose using two output branches.

The discriminator Dϕ comprises four components: a
shared block Ds

ϕ, a pose encoder Eϕ, an image branch Di
ϕ,

and a pose branch Dp
ϕ. The shared block extracts features

from an input image, which will be used by the image and
pose branches, while the pose encoder Eϕ projects an in-
put camera parameter ξ to an embedding space. The image
branch Di

ϕ predicts whether the input image is real or fake
using the output of the shared block Ds

ϕ. The pose branch
Dp

ϕ extracts pose features of the input image from the out-

put of shared block Ds
ϕ, which are then combined with the

features from the pose encoder to discriminate whether the
input image agrees with the input camera pose.

4. Training for a Wider Range of Angles

In this section, we describe our training strategy includ-
ing the pose-matching loss and AUPS.

4.1. Pose-Matching Loss

To promote pose consistency between the input pose to
the generator and its corresponding synthesized image, the
pose-matching loss is computed between a pair of an im-
age and a camera pose. The pose-matching loss considers
both positive and negative pairs of an image and a camera
pose to more strongly guide the generator to produce pose-
consistent images. In the case of a positive pair whose im-
age and camera pose are supposed to agree with each other,
the pose-matching loss penalizes the generator if the im-
age does not agree with the pose. On the other hand, in the
case of a negative pair whose image and camera pose are
supposed to not agree, the pose-matching loss penalizes the
generator if the image agrees with the pose.

Formally, we define the pose-matching loss Lgen
pose for the

generator as:

Lgen
pose(θ) = Lgen,+

pose (θ) + Lgen,−
pose (θ)

= Eξ+∼pξ
[h(−(Dsp

ϕ (Î)⊗ Eϕ(ξ
+)))]

+ Eξ−∼pξ
[h(Dsp

ϕ (Î)⊗ Eϕ(ξ
−))],

(1)

where ⊗ is an element-wise multiplication, Dsp
ϕ (·) =

Dp
ϕ(D

s
ϕ(·)), Î = Gθ(z, ξ

+), and z = (zfg, zbg). h is the
softplus activation function and pξ is the pose distribution,
whose details will be given in Sec. 4.3 A negative pose ξ−

is randomly sampled so as not to be the same as the positive
pose ξ+. For a generated image Î, its positive pose ξ+ is the
rendering pose used in the generator.



We also define a pose-matching loss to train the discrim-
inator as:

Ldis
pose(ϕ) = Ldis,+

pose (ϕ) + Ldis,−
pose (ϕ), (2)

where the terms on the right-hand-side are computed us-
ing positive and negative pairs, respectively. Both Ldis,+

pose (ϕ)

and Ldis,−
pose (ϕ) are defined using both real and synthesized

images for positive and negative pairs. Specifically, Ldis,+
pose

is defined as:

Ldis,+
pose (ϕ) = E(I,ξ+)∼(pr,pξ)[h(−(Dsp

ϕ (I)⊗ Eϕ(ξ
+)))]

+ Eξ+∼pξ
[h(−(Dsp

ϕ (Î)⊗ Eϕ(ξ
+)))],

(3)
where pr is the distribution of real images and I is a real
image. The first and second terms on the right-hand side
use real and synthesized pairs as positive pairs, respectively.
For the first term, we sample a real image I and its corre-
sponding ground-truth pose ξ+ as a positive sample. The
pose-matching loss Ldis,−

pose (ϕ) for a negative pose is defined
as:

Ldis,−
pose (ϕ) = EI∼pr,ξ−∼pξ

[h(Dsp
ϕ (I)⊗ Eϕ(ξ

−))]

+ Eξ−∼pξ
[h(Dsp

ϕ (Î)⊗ Eϕ(ξ
−))].

(4)

Note that both positive and negative pairs of the pose-
matching loss for the discriminator are defined using both
real and synthesized images. Thanks to this, the pose branch
of the discriminator is trained to focus only on the pose con-
sistency regardless of whether an image looks real or fake,
and subsequently, resulting in the generator being trained to
produce pose-consistent images.

4.2. Final Loss

In addition to the pose-matching loss, we adopt other
loss terms in our final loss as described in the following.
Non-Saturating GAN Loss. In the dual-branched discrimi-
nator, the image branch Di

ϕ is optimized by a non-saturating
GAN loss to learn the entire target image distribution. The
non-saturating GAN loss for the generator is defined as

Lgen
adv(θ) = Ez∼pz,ξ+∼pξ

[h(−Dsi
ϕ(Gθ(z, ξ

+)))], (5)

where Dsi
ϕ(·) = Di

ϕ(D
s
ϕ(·)). The non-saturating GAN loss

for the discriminator with R1 regularization [1] is defined
as

Ldis
adv(ϕ) = Ez∼pz,ξ+∼pξ

[h(Dsi
ϕ(Gθ(z, ξ

+)))]

+ EI∼pr
[h(−Dsi

ϕ(I)) + λR1|∇Dsi
ϕ(I)|2],

(6)

where λR1 is a balancing weight.
Identity Regularization. To encourage the generator to
create semantically various images, we train the genera-
tor with an additional identity regularization term Lid =

λzLz + λcLc, where Lz is a loss term to promote images
with diverse identities, and Lc is a term to prevent the iden-
tity of a generated image from being affected by the camera
parameter ξ. λz and λc are balancing weights. Lz is defined
as

Lz(θ) = Ez1,z2∼pz,ξ+∼pξ
[⟨Eid(Î1), Eid(Î2)⟩], (7)

where Î1 = Gθ(z1, ξ
+), Î2 = Gθ(z2, ξ

+), and Eid is a face
identity network [4]. ⟨·, ·⟩ calculates the cosine similarity.
Lc is defined as:

Lc(θ) = Ez∼pz,ξ
+
1 ,ξ+

2 ∼pξ

[
1− ⟨Eid(Î1), Eid(Î2)⟩

∥ Î1 − Î2 ∥1

]
, (8)

where Î1 = Gθ(z, ξ
+
1 ), and Î2 = Gθ(z, ξ

+
2 ). The identity

regularization Lid helps the generator faithfully learn
semantic information from the dataset, enabling image
synthesis with high fidelity (Sec. 5.2).

Final Loss. The final losses for training the generator
and the discriminator are then defined as:

Lgen
total = Lgen

adv + λposeLgen
pose + Lid + λdLd, and

Ldis
total = Ldis

adv + λposeLdis
pose,

(9)

where Ld is an additional L1-based density regularization
term [24]. λpose and λd are weights to balance the terms.
More details on the losses can be found in Sec. 5.

4.3. Additional Uniform Pose Sampling

As previous methods mostly focus on learning frontal-
view images in their training because of the pose-
imbalanced dataset, they lack opportunities for learning
side-view images, resulting in degenerate side-view im-
age quality. To increase the opportunities of learning side-
view images in pose-imbalanced datasets, our AUPS strat-
egy samples camera poses for rendering fake images from
the training dataset like EG3D [1] and additionally sam-
ple poses from a uniform distribution in training. Specifi-
cally, for computing the non-saturating GAN loss with the
image branch of the discriminator, we use camera poses
sampled from the training dataset and the uniform distri-
bution together. For computing the pose-matching loss and
the identity regularization with the pose branch of the dual-
branched discriminator, on the other hand, we simply use
camera poses sampled only from the training dataset like
EG3D as we found that the pose branch can already be ef-
fectively trained without AUPS.

While sampling camera poses solely from the uniform
distribution may seem straightforward to increase the learn-
ing opportunities at steep angles, it can lead to a significant
discrepancy between the real and fake image distributions,
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Figure 4: Qualitative comparison among π-GAN [2], EG3D [1] and ours. All the models are trained without transfer learning.
Unlike blurry images and noisy geometry of baselines at the steep pose, our method generates high-quality images and shapes
on the target datasets. (Columns 1-4, 6-9 : the results of a 30-degree rotation from the frontal to the side view. Columns 5, 10
: the side views of the shape obtained using the marching cube.)

which may harm the training process. To mitigate this, we
use both pose distribution of the training dataset and uni-
form distribution together to decrease the distribution dis-
crepancy while increasing learning opportunities for steep
angles. More details on the AUPS can be found in Sec. B.3.

5. Experiments
Implementation Details. Most of the experimental se-
tups and preprocessing methods are the same as those of
EG3D [1] except for the following. We set the dimensions
of the background latent vector zbg to 512. The final image
resolution of our model is 256× 256 and the neural render-
ing resolution is fixed as 64×64. The neural rendering result
is bilinearly upsampled to 128 × 128 and fed to the super-
resolution module in the image generator. The batch size
is set to 64 in all the experiments. The balancing weights
for the loss terms are set as follows: λpose = 1, λz = 0.5,
λc = 0.25, λd = 0.25 and λR1 = 1.

Datasets. We validate our method on real-world human
face datasets (CelebAHQ [12] and FFHQ [13]) and a real-
world cat face dataset (AFHQ Cats [3]). To show results
both with and without background regions, we remove the
background regions of the CelebAHQ dataset using the
ground-truth segmentation masks, but keep the background
regions of the FFHQ dataset in our experiments. We ob-
tain the ground-truth poses of real images using pre-trained
camera pose estimation models [8, 15].

Transfer learning. As used in previous 3D GANs for com-
pensating for the small dataset size, we optionally adopt
transfer learning to improve the quality of side-view im-
age synthesis [1, 10]. To be specific, we pre-train a gen-
erator with a pose-balanced synthetic dataset and fine-
tune it with a pose-imbalanced in-the-wild dataset to com-
pensate for insufficient knowledge for side-view images
in in-the-wild datasets. Specifically, we use the FaceSyn-
thetics dataset [26] for pre-training. We also remove the
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Figure 5: Qualitative comparison between EG3D [1] and ours. Both models are trained with transfer learning. Unlike unnatu-
ral images and geometry of the baseline at the steep pose, our method generates high-quality images and shapes on the target
datasets. (Columns 1-4, 6-9 : the results of a 30-degree rotation from the frontal to the side view. Columns 5, 10 : the side
views of the shape obtained using the marching cube.)

background regions of the FaceSynthetics dataset with the
ground-truth segmentation masks to accurately learn 3D ge-
ometries. We use the training strategy of EG3D [1] to pre-
train models.

5.1. Comparison

We first conduct qualitative and quantitative compar-
isons of SideGAN and previous 3D GANs (π-GAN [2]
and EG3D [1]) on different datasets (CelebAHQ [12],
FFHQ [13] and AFHQ Cats [3]) both with and without
transfer learning.
Qualitative Comparison. Fig. 4 shows a qualitative com-
parison between our method and the previous 3D GANs.
In this comparison, all the models are trained from scratch
without transfer learning. The AFHQ Cats dataset [3] is not

FID↓ Depth error↓
Method \Dataset CelebAHQ FFHQ AFHQ(Cats) CelebAHQ FFHQ

π-GAN 80.372 120.991 - 2.438 1.365
EG3D 40.760 35.348 - 0.760 0.921
Ours 37.417 22.174 - 0.580 0.649

EG3D+transfer learning 28.912 26.627 15.639 0.606 0.864
Ours+transfer learning 22.219 24.571 10.134 0.549 0.657

Table 1: Quantitative comparison of the image and shape
quality with baselines.

included in this comparison as the dataset is too small to
train a generator without transfer learning. For all the real-
world human face datasets, π-GAN and EG3D generate
blurry images for steep angles compared to realistic frontal
images. In contrast, SideGAN robustly generates high-
quality images irrespective of camera pose. Fig. 5 shows an-
other qualitative comparison where we adopt transfer learn-
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Figure 6: Visual comparison of side-view images on Cele-
bAHQ [12] on the setting with or without transfer learning.
Without transfer learning, our proposed method outperform
the baseline (EG3D [1]), which shows noisy facial bound-
aries. With transfer learning, our method also outperforms
the baseline, which generates holes.

ing. For all the datasets, EG3D generates unnatural images
for steep angles compared to realistic frontal images. On
the other hand, SideGAN robustly generates high-quality
images irrespective of camera pose. These results indicate
that our method is effective in learning to synthesize high-
quality images at all camera poses in both cases with and
without transfer learning. Additional results are in Sec. D.

Fig. 6 shows zoomed-in patches of side-view images of
SideGAN and EG3D [1] to compare the quality of synthe-
sized details. As the figure shows, SideGAN produces more
realistic details for side-view images with much less arti-
facts than EG3D regardless of transfer learning. In addi-
tion, the figure also shows that transfer learning helps both
models generate clearer images as it provides additional in-
formation on side views of human faces. Nevertheless, the
result of EG3D with transfer learning still suffers from se-
vere artifacts such as holes due to its pose-sensitive training
process.
Quantitative Comparison. We conduct a quantitative eval-
uation on the image and shape quality. To evaluate the pose-
irrespective performance of the models, we generate im-
ages and shapes at randomly sampled camera poses from
a uniform distribution. Refer to Sec. C.5. for more details
regarding the pose sampling strategy used in this experi-
ment. Tab. 1 shows the quantitative comparison. As the ta-
ble shows, in both cases with and without transfer learn-
ing, SideGAN outperforms all the other baselines in terms
of image quality based on FID [11] thanks to our effective
training method.

Due to the absence of 3D geometries corresponding to
synthesized images, we evaluate the shape quality with
pseudo-ground-truth shapes, which are estimated from syn-
thesized images using an off-the-shelf 3D reconstruction
model [8], as done in EG3D [1]. We measure depth error by
calculating MSE between generated depth from our model

AUPS
Dual-branched discriminator

& Pose-matching loss

Identity
regularization

(Lid)
FID↓

EG3D 28.912
✓ 30.553

SideGAN
(Ours)

✓ ✓ 23.106
✓ ✓ ✓ 22.219

Table 2: Ablation study for key components of the proposed
method on CelebAHQ [12].

FID↓ Depth error↓
Ours w/ pose-regression loss 30.069 0.624
Ours w/ pose-matching loss 22.219 0.549

Table 3: Comparison between the pose-matching loss and
the pose-regression loss [6] on CelebAHQ [12].

(a) EG3D (e) Ours w/ pose         
regression loss

(c) Ours w/o ℒ (d) Ours final(b) EG3D + AUPS

Figure 7: Additional visual results of ablation study. (b) While
AUPS helps improve side-view image quality, artifacts still re-
main. (d) Lid results in a slightly clearer side-view image than (c).
(e) Instead of our pose-matching loss, our model with the pose-
regression loss leads to a flattened shape.

and rendered depth from the estimated geometry. Tab. 1
shows that SideGAN achieves the best depth accuracy than
the other baselines for the shape quality both with and with-
out transfer learning. This remarkable improvement can
also be shown in Fig. 4 and Fig. 5, where generated shapes
from SideGAN show high-fidelity 3D geometries compared
to those of the other methods.

5.2. Ablation Studies

We conduct ablation studies to evaluate the bene-
fits of three components in our framework: 1) the dual-
branched discriminator (Sec. 3.2), 2) the pose-matching loss
(Sec. 4.1), 3) AUPS (Sec. 4.3), and 4) the identity regular-
ization Lid (Sec. 4.2). The ablation studies are conducted
using the CelebAHQ dataset [12].

Tab. 2 and Fig. 7 report the ablation study result. In
Tab. 2, the pose-matching loss and the dual-branched dis-
criminator are applied together since supervision is needed
for the pose branch of the discriminator. With AUPS,
the image quality of side-view is improved in EG3D [1]
(Fig. 7 (b)) since AUPS increases the learning opportuni-
ties at steep angles. However, the side-view images still
have artifacts and the FID of EG3D deteriorates. This is
because EG3D learns the real/fake distribution in a pose-
wise manner through a pose-conditional GAN loss, which
is unstable under the misalignment between two distribu-
tions, caused by AUPS as mentioned in Sec. 4.3. Unlike



EG3D, our framework with AUPS improves the FID as
each component is added, proving the benefit of each com-
ponent. This is because SideGAN’s GAN loss is more ro-
bust to the mismatch of the pose distribution than EG3D
and our model learns photo-realism and pose-consistency
separately through the dual-branched discriminator and the
pose-matching loss.

To evaluate the effectiveness of the pose-matching loss
in learning side-view images and 3D geometries, we com-
pare our pose-matching loss with the pose-regression loss of
GRAM [6] both quantitatively and qualitatively. As shown
in Tab. 3, our pose-matching loss results in a significantly
lower FID score and depth error, owing to the fact that our
binary-classification-based pose-matching loss allows for
easier training. We also provide visual comparison in Fig. 7.
Compared to our model trained with the pose-matching loss
(d), the model trained with the pose-regression loss (e) pro-
duces a flattened shape, demonstrating the advantages of the
pose-matching loss.

5.3. Effects on the Steep and Extrapolated Angles

Finally, we conduct a more detailed quantitative analy-
sis of SideGAN for different camera poses by measuring
the FID scores of synthesized images for frontal, steep, and
extrapolated angles. Measuring FID scores requires a suffi-
cient amount of ground-truth images for each camera pose,
which is not the case for the in-the-wild datasets. Thus, we
conduct our analysis using the FaceSynthetic dataset [26],
which is pose-balanced and provides a larger number of im-
ages for a wider range of camera poses compared to the
in-the-wild datasets. Specifically, we first construct a pose-
imbalanced training dataset from FaceSynthetics by ran-
domly sampling images within the pose range from −50◦ to
50◦ to have a Gaussian pose distribution like in-the-wild
datasets. Then, we train our model with the dataset, and
evaluate its FID scores for different camera poses using the
original FaceSynthetics dataset. For comparison, we also
evaluate the FID scores of EG3D [1]. In this experiment,
we did not apply transfer learning.

Fig. 8 shows the evaluation result for different camera
poses. In the figure, the near-frontal angles are (−30◦, 30◦),
and the steep angles are (−50◦,−30◦)

⋃
(30◦, 50◦). The

extrapolated angles indicate angles smaller or larger than
−50◦ and 50◦, which are outside the training distribution.
As shown in the figure, our model performs comparably to
EG3D at near-frontal angles, and as the angle gets larger,
our model performs significantly better than EG3D, prov-
ing the effectiveness of our approach.

6. Conclusion
In this paper, we proposed SideGAN, a novel 3D GAN

training method to generate high-quality images irrespec-
tive of the camera pose. Our method is based on the key
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Figure 8: Comparison on image quality (FID↓) with regard
to the range of the camera angles. We limit the FaceSyn-
thetic dataset [26] not to have any images within the range
of extrapolated angles. SideGAN outperforms EG3D [1] in
image quality except for the range of the frontal view, which
shows even competitive result. All angles are from -90 to 90
degrees based on the frontal view.

idea that decomposes the originally challenging problem
into two easier subproblems, each of which promotes pose
consistency and photo-realism, respectively. Based on this,
we propose a novel dual-branched discriminator and a pose-
matching loss. We also presented AUPS to increase the
learning opportunities for improving the synthesis quality
at a side viewpoint.

Our experimental results show that our method can syn-
thesize photo-realistic images irrespective of the camera
pose on human and animal face datasets. Especially, even
only with pose-imbalanced in-the-wild datasets, our model
can generate details of side-view images such as ears, unlike
blurry images from the baselines.

Our method is not free from limitations. For animal
faces, we found that black spot-like artifacts appear behind
the ear, which might be due to the lack of knowledge about
the back of the ear since we conduct transfer learning from
synthetic human face to animal face. Also, despite the back-
ground network, the background region is sometimes not
clearly separated. However, we expect that a more advanced
background separation scheme such as [22] would be able
to resolve this.
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