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Abstract. Recent research on texture synthesis for 3D shapes benefits
a lot from dramatically developed 2D text-to-image diffusion models, in-
cluding inpainting-based and optimization-based approaches. However,
these methods ignore the modal gap between the 2D diffusion model and
3D objects, which primarily render 3D objects into 2D images and tex-
ture each image separately. In this paper, we revisit the texture synthesis
and propose a Variance alignment based 3D-2D Collaborative Denoising
framework, dubbed VCD-Texture, to address these issues. Formally,
we first unify both 2D and 3D latent feature learning in diffusion self-
attention modules with re-projected 3D attention receptive fields. Subse-
quently, the denoised multi-view 2D latent features are aggregated into
3D space and then rasterized back to formulate more consistent 2D pre-
dictions. However, the rasterization process suffers from an intractable
variance bias, which is theoretically addressed by the proposed variance
alignment, achieving high-fidelity texture synthesis. Moreover, we present
an inpainting refinement to further improve the details with conflicting
regions. Notably, there is not a publicly available benchmark to evaluate
texture synthesis, which hinders its development. Thus we construct a
new evaluation set built upon three open-source 3D datasets and propose
to use four metrics to thoroughly validate the texturing performance.
Comprehensive experiments demonstrate that VCD-Texture achieves su-
perior performance against other counterparts.

Keywords: 3D Texture Synthesis · Diffusion Model · 3D Self-Attention
· Rasterization Variance Alignment

1 Introduction

Textured 3D objects are essential in enhancing the realism and immersive ex-
perience in various computer graphics applications, including games, animation,
and AR/VR environments [7, 10, 20, 21, 23, 47]. Traditionally, texture synthesis
is a time-intensive and challenging task, often demanding specialized knowl-
edge and extensive manual labor. With prominent advancements in diffusion
models [33, 39, 40] trained with large-scale datasets [43, 46], some recent re-
searches [3, 5, 8, 38] have pivoted toward the adoption of 2D text-conditioned
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Fig. 1: Results of text-guided 3D shape textures generated by VCD-Texture. Our
method could achieve high-quality texture synthesis with simple captions.

generative models, such as CLIP [36] and Stable Diffusion (SD) [39], to di-
rect the creation of 3D textures. By leveraging the robust generalization prop-
erties inherent to pre-trained diffusion models, these methodologies enable to
yield of high-quality textures. For instance, prior optimization-based [28,29] and
inpainting-based approaches [5, 38, 45] primarily render 3D objects into 2D im-
ages and texture each image through pre-trained 2D vision-language models.
Very recently, driven by the advancement of 2D diffusion models, some litera-
tures [3, 5, 25, 45] further improve the texturing performance by designing tex-
turing schemes in the image pixel domain or latent feature domain.

However, these text-to-image diffusion-enhanced texturing methods merely
focus on synchronized multi-view diffusion denoising, neglecting cross-view corre-
spondences in 3D space, as well as the fundamental disparity between the 2D dif-
fusion model and 3D objects. Moreover, we clarify that the feature aggregation-
and-rasterization process [3, 25] suffers from a serious variance bias, which de-
grades the diffusion generation a lot. Thus, in the shape texturing task, there
remain challenges in seamlessly embedding 2D text-to-image diffusion priors to
strengthen the 3D texture synthesis.

In this paper, we primarily address these issues through 1) unifying both
2D and 3D feature learning during the text-to-image denoising process. Further-
more, 2) we theoretically align the variance bias that occurred in the aggregation-
and-rasterization process for the multi-view feature fusion. Finally, 3) we refine
inconsistent regions with image inpainting. Therefore, our method enjoys supe-
rior 3D consistency, unbiased high-frequency details, and high-fidelity textures
as shown in Fig. 1.

Formally, we propose a novel 3D texture synthesis framework, called Variance
alignment based 3D-2D Collaborative Denoising (VCD-Texture). Particularly,
VCD-Texture could be divided into two main processes: 3D-2D collaborative de-
noising and inpainting refinement. During the denoising steps of the Stable Dif-
fusion (SD) [39], we modify the self-attention block in U-Net to learn features
through both 2D and 3D respective fields with Joint Noise Prediction (JNP).
JNP utilizes the rendering-projection relationship to lift 2D foreground latent
features into the 3D space, substantially improving the cross-view feature corre-
lations. Moreover, we propose to use Multi-View Aggregation-and-Rasterization
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(MV-AR) to fuse multi-view latent predictions from SD. Specifically, MV-AR
is enhanced by a Variance Alignment (VA) technique to eliminate the domain
gap of rasterization, which is utilized to re-render features from the aggregated
3D space to separate 2D views. To further improve the texture consistency, es-
pecially for the intrinsic discrepancy in latent feature and image pixel domains,
we leverage the inpainting refinement to rectify inconsistent regions detected by
aggregated pixels with high variance.

Benefiting from the integration of aforementioned components of VCD-Texture,
our model could properly synthesize high-fidelity 3D textures. However, the com-
munity still lacks a unified texture synthesis benchmark to evaluate the perfor-
mance. For quantitative experiments, we sample three sub-sets from publicly
available 3D datasets (Objaverse [11], ShapeNetSem [42], and ShapeNet [4]),
and leverage four metrics (FID [13], ClipFID [22], ClipScore [36], ClipVar [1]) to
thoroughly evaluate texture quality concerning fidelity, the semantic matching
score between text and image, and the consistency of views. Qualitative and
quantitative comparisons signify that our VCD-Texture is capable of generat-
ing 3D textures with high fidelity, exhibiting both global and local coherence.
In addition, by harnessing the capabilities of pre-trained diffusion models, our
approach, as a training-free method for 3D texture synthesis, demonstrates good
time efficiency and remarkable and robust generalization ability in handling di-
verse 3D objects and complex textual descriptions.

The contributions of this paper are summarized as follows:

1. We propose a self-attention-based JNP block, which incorporates both 2D
and 3D features to promote consistency of predicted multi-view noise.

2. We design MV-AR to generate consistent textures, and apply VA to theo-
retically address the rasterization variance bias problem.

3. We design a texture conflict identification and an inpainting refinement
pipeline to mitigate the discrepancy between the feature domain and the
pixel domain.

2 Related Works

Text-to-Image Diffusion Models. In recent years, numerous advanced diffu-
sion models [37, 39, 40, 51] have emerged, demonstrating their prowess in craft-
ing high-fidelity images finely tuned by textual prompts. Among them, the
immensely acclaimed SD [39] stands out, which is honed on a diverse text-
image compendium and intricately interwoven with the fixed text encoder from
CLIP [36]. The following works propose to add more conditions to text-to-image
generation, including semantic segmentation [39], sketch [51], depth map [51],
and other conditions [30, 51], which greatly promote the development and ap-
plication of text-to-image generation. Driven by the success of text-to-image
diffusion models, many works have explored text-conditional diffusion models in
other modalities, e.g., text-to-video [44], and text-to-3D [34], and text-guided
texturing [3, 5, 45]. In this work, we focus on the field of 3D texture generation.
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3D Shape and Texture Generation. Traditional Texture methods leverage
rule-based or optimization-based approaches [2, 6, 24, 48] to tile exemplar pat-
terns to 3D assets. However, due to the limited computation and capacity, these
methods are hard to synthesize complicated 3D models. In the recent few years,
deep learning methods [12, 17] have been widely applied to the synthesis of 3D
textures. Gramgan [35] trains deep models to generate textures by non-linearly
combining learned noise frequencies. SGAN [16] projects a single noise vector to
the whole spatial space via spatial GAN [12] to synthesize texture. Kniaz [19]
proposes a novel method for the generation of realistic 3D models with thermal
textures using the SfM [18] pipeline and GAN. Texture Fields [31] utilizes a
continuous 3D function parameterized with a neural network to achieve high-
frequency textures. AUV-Net [9] learns to map 3D texture into 2D plane by
embedding 3D surfaces into a 2D aligned UV space.

Recently, with the development of the vision language model, recent texture
research has explored techniques to distill language models for 3D texture gen-
eration. Early approaches utilize CLIP [27, 28, 36, 41] to synthesize texture by
improving the semantic similarity between rendering image and descriptive tex-
ture text. Subsequently, given the advancement of text-to-image models, such as
Stable Diffusion [39], DALLE [37], ControlNet [51], which enables the generation
of high-fidelity images with given description text. To harness the capabilities
of text-to-image models, TEXTure [38], Text2Tex [5] and Repaint3D [45] uti-
lize Depth-aware Stable Diffusion (Depth-SD) to design an inpainting texturing
scheme, which gradually paints the texture map of a 3D model from multiple
viewpoints. Later, Texfusion [3] converts the progressive inpainting schema to
the latent feature domain, which obtains consistent latent images via project-
and-inpaint in each denoising time-step. In further, SyncMVD [25] drops the
auto-regressive inpainting schema and treats each view equally, which designs
an aggregate-and-rendering process to synchronized multi-view latent features
in each denoising time-step, and this allows the diffusion processes from different
views to reach a consensus of the generated content early in the process and hence
ensures the texture consistency. Additionally, some studies, like Paint3D [50] and
UV-Diffusion [49], involve training texture models from scratch. However, due
to the limitations of 3D texture datasets, these models often exhibit suboptimal
generalizability and produce textures that fall short of realism.

3 Methods

In this section, we first illustrate the preliminaries of diffusion models and mesh
render principles in Sec. 3.1. Then we detail about VCD-Texture overviewed in
Fig. 2(a). In Sec. 3.2, we introduce the 3D-2D collaborative denoising, including
JNP with unified 3D-2D self-attention learning as depicted in Fig. 2(b) and MV-
AR enhanced with VA as shown in Fig. 2(c) respectively. Finally, the inpainting
refinement detailed in Sec. 3.3 is utilized to further rectify inconsistent areas.
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3.1 Preliminary

Diffusion Models. The diffusion model [14] comprises a forward process q(·)
and a reverse denoising process pθ(·). The forward step incrementally corrupts
data x0 with noise ϵ ∼ N (0, 1) to a noisy sequence x1, . . . , xT , following a Markov
chain as:

q(xt|xt−1, y) = N (xt;
√
1− βtxt−1, βtI), xt =

√
βtx0 +

√
1− βt · ϵ, (1)

where βt is the variance schedule for t = 1, . . . , T ; y is the condition. The reverse
process denoises the pure data from xT as:

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, t, y), Σθ(xt, t, y)), (2)

where µθ and Σθ indicate mean and variance predictions achieved by the train-
able network parameterized with θ.

Stable Diffusion (SD). SD [39] projects all features into the latent space
to save the diffusion computation. SD also employs an encoder-decoder-based
U-Net for noise prediction. As shown in Fig. 2(b), the multi-scale transformer
block comprised in U-Net consists of self-attention and cross-attention modules.
Self-attention lets the network prioritize long-range relevant features within a
2D image, while cross-attention aligns the denoising process with textual de-
scriptions for controllable generation.

Mesh Rendering [32]. Given a 3D mesh M with vertices V , faces F , and
attributes A, the rendering process converts the mesh into a 2D image by triangle
rasterization. Each face f ∈ F is consisted of three vertices Vf1 , Vf2 , Vf3 ∈ V
with attributes Af1 , Af2 , Af3 , where f1, f2, f3 indicate indexes of vertices stored
in face. For each pixel value Ii, the rendering process entails tracing a ray that
intersects the mesh at point Pi within triangle face fk. Attribute of pixel Ii are
interpolated using barycentric coordinates (αi1, αi2, αi3), which satisfy:

αi1 + αi2 + αi3 = 1, αi1, αi2, αi3 ≥ 0. (3)

Then, the pixel value Ii is computed from a linear combination:

Ii = αi1Af1 + αi2Af2 + αi3Af3. (4)

Given camera view Cn∈N with N views at all, we aim to establish a mutual
render-projection relation between 2D image plane I and 3D mesh M . To achieve
this, we utilize the above rendering approach to render M at the same size as
image I. Thereby, we obtain rendering mapping function R(·), which rasterizes
mesh vertices to the 2D image plane, and back projection function R−1(·), which
projects 2D plane values back to corresponding vertices.
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Fig. 2: The framework of VCD-Texture: (a) shows the overall process, including 3D-2D
collaborative denoising and inpainting refinement; (b) shows the JNP in SD U-Net; (c)
indicates the MV-AR with VA. Note that we only apply the aggregation sub-process
of MV-AR to denoised multi-view images Î to achieve texture Î3D.

3.2 3D-2D Collaborative Denoising

Given mesh M , text condition y, and camera Cn∈N with N views, we first re-
mesh the initial mesh into a coarse one as Mc [45], containing Jc vertices. Next,
we render Mc into a latent space, which allows us to align the VCD-Texture
learning process to the formulation of the SD U-Net.

Joint Noise Prediction (JNP). During the denoising step of time step t in
U-Net, we indicate N views’ input feature tensor to each transformer block as
Ft ∈ RN×ĥ×ŵ×c, where ĥ, ŵ, c are height, width, and channels of the feature.
Specifically, VCD-Texture unifies both 2D and 3D self-attention learning for dif-
fusion denoising to achieve consistent feature presentation indicated as F2D

t and
F3D

t respectively. Since F2D
t can be separately learned by the inherent 2D self-

attention of SD for each view, we incorporate another 3D self-attention branch
as shown in Fig. 2(b) with tailored 3D receptive fields for F3D

t . Formally, we
first apply the inverse projection R−1(·) to obtain the spatial mapping of every
foreground feature to the 3D space. Then we split the 3D space into a series of
discrete volumetric grids with grid size Gt. In the 3D attention branch, multi-
view features F3D

t can only attend to the ones within the same 3D grid, but it
enjoys cross-view information which is ignored in F2D

t . Note that we empirically
found that the whole process is training-free and the tensor shape can be also
retained because we only adjust the attention receptive fields of F3D

t while all
parameters are frozen. More implementation details about the 3D self-attention
are discussed in the supplementary. After that, we average F2D

t and F3D
t as the
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final output of self-attention, which considers both globally long-range consis-
tency for each separate 2D view and locally cross-view correlations.

Since the non-overlapping grid-based splitting with the same grid size suffers
from limited feature interaction [26], we interactively two different grid sizes Gt

across the whole denoising process with different time steps. Thus, our model
could eliminate the isolation with overlapped 3D receptive fields.

Multi-View Aggregation-and-Rasterization (MV-AR). To fuse the multi-
view latent predictions Xn∈N , we first compute the view score Sn∈N , which
quantifies the cosine similarity between the mesh normal and the screen view
direction. Note that we omit the time step t for simplicity. The distance score
Dn∈N is computed by: 1 − di/Zfar, where di denotes distance between pixel i
and mesh surface, Zfar represent the upper bound of the whole scene. Then we
derive the barycentric coordinate map Bn∈N ∈ Rh×w×3 from R(·), where chan-
nels are denoted by (αi1, αi2, αi3) respectively. Subsequently, we formulate the
vertex latent features X̂n,j ∈ R4 and vertex weights Wn,j ∈ R1 for view n ∈ N ,
vertex index j ∈ Jc as:

X̂n,j =

hw∑
i=1

Xn,i · ψ(Bn,i, τb)/η, (5)

Wn,j =

hw∑
i=1

Sn,i · ψ(Dn,i, τd) · ψ(Bn,i, τb)/η, (6)

where i ∈ hw indicate the 2D pixel indices; η =
∑hw

i=1 ψ(Bn,i, τb); ψ represents
power function; both τb and τd denote the exponent. Furthermore, we aggregate
X̂n,j into X̂3D

j across all N views as:

X̂3D
j =

N∑
n=1

X̂n,j · ψ(Wn,j , τw)/ω, ω =

N∑
n=1

ψ(Wn,j , τw). (7)

With the aggregated 3D vertex feature X̂3D
j , we further rasterize them back to

the 2D plane with initial camera views and replace the foreground rendering area
in predicted latent features Xn with the re-rendered ones, resulting in X̃2D

n . As
2D latent features X̃2D

n are rendered from the 3D feature mesh, they naturally
achieve superior view consistency. We subsequently add the noise to the fea-
tures to produce the latent features for step t− 1, as the diffusion iteration [39]
displayed in Fig. 2(c).

Variance Alignment (VA). In diffusion models, controlling the proper step-
wise variance through a designated noise schedule is critical for maintaining sta-
bility and producing high-quality images. However, we find that the rasterization
process in latent space would cause variance degradation during the denoising,
resulting in over-smoothed generations.
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To provide an in-depth analysis of this phenomenon, we begin by examining
the rendering formula (Eq. 4) and the unit constraint condition (Eq. 3). We ob-
serve that the rasterization process can be represented as a convex combination,
which follows the same linear combination formula and coefficient conditions.
Furthermore, the variance V ar(·) represents the expectation of a square func-
tion, which is naturally convex. Thus the variance satisfies the fundamental
formula and conditions of Jensen’s inequality as the convex function and the
convex combination. Formally, Jensen’s inequality states that if φ(·) is a convex
function, and zi∈Nz are points in interval Z, where Nz is the number of sam-
pling points, then for any non-negative weights λi that satisfy the condition:∑Nz

i=1 λi = 1, the following inequality holds:

φ

(
Nz∑
i=1

λizi

)
≤

Nz∑
i=1

λiφ(zi). (8)

Thereby, for random variable set xi, and any non-negative weights λi satisfying
the condition

∑Nz

i=1 λi = 1, we can indicate:

V ar

(
Nz∑
i=1

λixi

)
≤

Nz∑
i=1

λiV ar(xi). (9)

This means that the variance of the convex value combination is no larger than
the convex combination of variance, and this inequality is deduced in the sup-
plementary materials in detail.

Revisiting the rasterization process, we claim that the rasterized 2D latent
feature X̃ contain smaller variance compared to the aggregated one X̂3D as:

V ar(X̃2D) ≤
3∑

u=1

V ar(X̂3D
u ) ·B3D

u = V ar(X̂3D), (10)

where B3D
u indicates three barycentric coordinate banks with u ∈ [1, 2, 3] triangle

indices of each face. To address this issue, we propose a variance correction
formulation defined as follows:

X̃2D′
=

X̃2D − µ(X̃2D)

δ2D
· δ3D + µ(X̂3D), (11)

where µ(·) represents the mean operation; δ denotes standard deviation. And

δ3D =
√
V ar(X̃3D) is achieved by:

V ar(X̃3D) =

3∑
u1=1

(B3D
u1

)2 · V ar(X̂3D) (12)

+

3∑
u1,u2=1
u1 ̸=u2

2 ·B3D
u1

·B3D
u2

∗ Cov(X̂3D
u1
, X̂3D

u2
), (13)
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Fig. 3: The illustration of inpainting refinement. (a) shows the image view rendered
from the initially inconsistent texture Î3D; (b) represents the dilated inpainting mask
rendered from 3D mask M; (c) is the depth map rendered from the input mesh; (d)
indicates the updated final texture through our inpainting refinement.

where Cov(·, ·) represents covariance function. Eq. 11 meticulously aligns the
feature variance after the rasterization to the mesh feature X̂3D, which is capa-
ble of synthesizing realistic textures with more high-frequency details. We also
empirically verified the effectiveness of VA in Fig. 5 and related ablation studies
of Sec. 4.4.

3.3 Inpainting Refinement

Due to the intrinsic discrepancy in resolution size and channel number between
the latent and image domains, consistent latent cannot guarantee consistent im-
ages. In this section, we introduce inpainting refinement to further alleviate the
inconsistency in pixel values across different views of the image domain. Similar
to the latent aggregation process, we generate the initial texture via pixel do-
main aggregation. We first identify those inconsistent vertices by the variance of
related aggregation pixels. Then, we incorporate pixel domain texture inpainting
approach [45] to refine those inconsistent regions, and all intermediate results
of the inpainting refinement are shown in Fig. 3. Specifically, given predicted
multi-view images Inf∈Nf

, where Nf = 4 views are sampled from the total N
views, we calculate the variance of vertex j as:

V arj =

Nf∑
nf=1

(Î3Dj,nf
− µ(Î3Dj ))2/(Nf − 1), (14)

where Î3Dnf
= R−1(Inf

) ∈ RJf×3 indicates color repository re-projected from
nf ∈ Nf sampled images; µ(Î3Dj ) indicates the mean operation across all Nf

views; Jf denotes vertex number. Note that Jf < Jc, while meshes with Jf , Jc
vertexes are used for the fine-grained pixel space and the coarse latent space,
respectively. Variance quantifies the dispersion of data points in a dataset. Since
the value of each vertex is accumulated from Nf pixel values, we can employ
a predetermined threshold λ to discern vertices that exhibit inconsistency. We
construct an indicator function as a 3D mask M ∈ RJf×1:

Mj =

{
1, V arj > λ

0, V arj ≤ λ
. (15)
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After that, we perform pixel domain inpainting refinement through rendering
both Î3D and 3D mask M with R(·) into four separate views and 2D masks.
Then we follow Repaint3D [45] which first dilates inpainting mask with 8*8
kernel, and then utilize Depth-SD to inpaint them through the same prompts
and depth rendered by the input mesh. Subsequently, the inpainting procedure is
carried out sequentially until all views have been inpainted and finally produces
the refined texture Ĩ3D as shown in the rightmost of Fig. 2(a).

4 Experiments

4.1 Experimental Settings

Implementation Details. We use the PyTorch3D library1 to render 3D objects
and employ Depth-SD to conduct 3D-2D collaborative denoising and inpainting
refinement. In the collaborative denoising stage, we engage N = 9 equidistant
viewpoints with each view separated by the angular of 40◦. The grid size Gt

is altered within two values: 0.34 and 0.25, while the whole volume space is
normalized to [−1, 1]. The distance upper bound Zfar is set to 5. Additionally,
exponents τb, τw and τf are set to 2.0, 3.0 and 6.0 respectively, where τf is
used for pixel aggregation. In the inpainting refinement stage, we commence by
selecting Nf = 4 view images at angular positions of 0◦, 80◦, 160◦, and 280◦ for
the initial texture aggregation. Subsequently, a variance threshold λ of 0.005 is
employed to identify inconsistent areas. For parameters related to Depth-SD, we
set the denoising step as 50 in the denoising and inpainting stages, while the
3D-2D collaborative denoising is applied to the first 45 steps.
Datasets. Despite the extensive study on texture, there remains a lack of stan-
dardized datasets and evaluation metrics as a solid benchmark. To compre-
hensively evaluate the performance of the comparison methods, we construct
the largest 3D shape dataset, which consists of three subsets (named SubObj,
SubShape, and SubTex ) from three open-source 3D datasets (Objaverse [11],
ShapeNetSem [42], and ShapeNet [4]). SubObj is inherited from Text2Tex, con-
taining 410 objects from Objaverse, we exclude some too-simple shapes, which
remain 401 objects. Inspired by the sampling methodology of Text2Tex, we ex-
tract 445 3D shapes across categories from the ShapeNetSem dataset to form
the SubShape, with three meshes sampled per category based on vertex count
distribution. In addition, we sample publicly authorized meshes with prompts
from the Texfusion dataset to assemble 43 mesh-prompt pairs, primarily sourced
from ShapeNet, into the subset SubTex.
Metrics. After reviewing relevant metrics, we employ the Fréchet Inception
Distance (FID) [13] and the CLIP-based extension of FID, denoted as CLIP-
FID [22], to measure texture fidelity. Moreover, we utilize the Clip-Score [36]
metric to quantify the correspondence score between the rendered image and
the textual prompt. We also utilize CLIP-Var [1] to ascertain the consistency
across multiple rendering views following [1]. In detail, following the evaluation
1 https://github.com/facebookresearch/pytorch3d
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Table 1: Quantitative comparison of different texture methods on three datasets.

Datasets Method FID ↓ ClipFID ↓ ClipScore ↑ ClipVar ↑

SubTex

Texture [38] 150.21 26.92 26.90 82.37
Text2Tex [5] 112.41 16.26 30.08 81.45
SyncMVD [25] 65.30 16.76 28.78 81.93
Repaint3D [45] 78.65 10.65 30.88 78.96
VCD-Texture 56.29 6.84 31.65 83.97

SubShape

Texture [38] 64.78 18.08 27.20 82.32
Text2Tex [5] 40.46 7.96 27.76 82.18
SyncMVD [25] 32.44 6.18 28.76 82.76
Repaint3D [45] 29.21 5.25 28.39 80.18
VCD-Texture 19.46 2.37 28.98 82.93

SubObj

Texture [38] 65.30 16.76 28.78 81.93
Text2Tex [5] 43.71 7.46 29.27 82.08
SyncMVD [25] 34.00 5.60 30.08 84.52
Repaint3D [45] 29.77 4.44 30.30 81.45
VCD-Texture 21.19 2.33 30.42 83.64

setting of Repaint3D [45], we render the textured mesh from eight distinct cam-
era perspectives, evenly spaced at 45◦ intervals, and overwrite the background
regions with pure white color to emphasize the foreground object for more fo-
cused comparisons. To compute the FID metric, following [3, 45], ground-truth
images are synthesized through Depth-SD, with each image being conditioned
on the same prompt and synthesized from the designated evaluation viewpoints.
The computation of Clip-Score is achieved upon the minimum value derived from
eight cosine similarity scores, each one representing the similarity between the
normalized features of the CLIP image and the corresponding text features. Sim-
ilarly, CLIP-Var is determined by the minimal mutual cosine similarity scores
among the eight normalized CLIP image features.

4.2 Quantitative Evaluation

In this section, we quantitatively compare our VCD-Texture method against
state-of-the-art texturing methods, including TEXTure [38], Tex2Tex [5], Rea-
paint3D [45], and SyncMVD [25], which have released their source codes. As
for the comparison methods, we attain the results by running their official code
with their default settings. As reported in Tab. 1, compared with the inpainting-
based methods (Tex2Tex, TEXTure, and Reapaint3D) and the optimization-
based methods (SyncMVD), our method achieves lower FID and ClipFID and
higher ClipScore and ClipVar results. The results demonstrate that our VCD-
Texture method possesses superior performance in terms of both texture fidelity
and multi-view consistency.
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Fig. 4: Qualitative comparisons of text-guided texture synthesis. Prompts from top to
down are: “old and rusty volkswagon beetle”, “crocodile skin handbag”, “barrel”, “half
moon chaise”, “sausage”, “lego”, “electric oven”.

4.3 Qualitative Evaluation

Fig. 4 depicts textures generated by the same text prompt and 3D mesh. We
can conclude that: 1) Inpainting-based methods, Texture [38], Text2Tex [5], and
Repint3D [45], tend to generate inconsistent textures on the two opposing views.
2) The optimization-based method, SyncMVD [25], can generate more consistent
textures compared to the inpainting-based ones. However, SyncMVD tends to
produce textures that are excessively smooth, resulting in a loss of intricate de-
tails and fine texture quality. 2) The optimization-based method, SyncMVD [25],
can generate more consistent textures compared to the inpainting-based ones.
However, SyncMVD tends to produce textures that are excessively smooth, re-
sulting in a loss of intricate details and fine texture quality. This deficiency could
be attributed to the frequent application of synchronized multi-view diffusion
coupled with the absence of a VA. Such a process generates latent features with
low variance, which in turn, leads to the creation of textures that are notably
smooth yet exhibit high consistency. 3) Our VCD-Texture method is capable of
generating more multi-view consistent and fidelity textures compared to both
the inpainting-based and optimization-based methods.

4.4 Ablation Study

Factor-by-factor Analyzation. We conduct a comprehensive ablation study
on the SubTex datasets to validate the effect of different components. The exper-
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Table 2: The ablation study for MV-AR, JNP, VA, the incorporating of distance score
(DS), and inpainting refinement (IR).

No. MV-AR DS JNP VA IR Fid ↓ ClipFid ↓ ClipScore ↑ ClipVar ↑

(1) ✓ 58.87 7.39 31.32 82.87
(2) ✓ ✓ 58.73 7.25 31.47 83.12
(3) ✓ ✓ ✓ 58.02 7.16 31.57 83.62
(4) ✓ ✓ ✓ ✓ 56.05 6.88 31.62 83.94
(5) ✓ ✓ ✓ ✓ ✓ 56.29 6.84 31.65 83.97

w/o VA w/ VA

(a) (b)
w/o VA w/ VA

w/o VA w/ VA

w/o VA w/ VA

Fig. 5: The effectiveness of VA. (a) shows the standard deviation curve of three de-
noising policies; (b) showcases the qualitative comparison with and without (w.o) VA.

imental results are summarized in Tab. 2, from which we can draw the following
conclusions:

– Comparing the models (1) and (2), the distance score (DS) improves Clip-
FID and multi-view consistency. This validates pixel distance is a valid met-
ric that can aid the view score in selecting more consistent pixels in the
aggregating process.

– Comparing the models (2) and (3), the integration of JNP facilitates the
exchange of information within the 3D domain, which improves the semantic
metric ClipScore and also enhances the consistency across views.

– Comparing models (3) and (4), incorporation of VA leads to a significant
improvement in the FID metric, this proves that rectifying feature variance
to align original diffusion distribution after rasterization helps to generate
high-fidelity images.

– Comparing models (4) and (5), since the inconsistent regions are small, thus
inpainting refinement doesn’t contribute much more improvements in eval-
uation metrics. However, the subsequent visual comparative analysis clearly
reveals that inpainting refinement is instrumental in mitigating blurred re-
gions and rectifying visual artifacts.

Variance Alignment Analysis. To elucidate the process of variance reduc-
tion, we present the standard deviation trajectories of latent features during the
denoising phase in Fig. 5. The blue curve (without MV-AR) depicts the denois-
ing process without consistent multi-view projection. The green curve (MV-AR
without VA) illustrates the feature variance resulting from a consistent denois-
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Fig. 6: Qualitative results of the inpainting refinement.

ing projection, i.e., lifting the feature to 3D space and rasterizing it back to 2D
without VA. The red curve (MV-AR with VA) represents the feature variance
when VA is incorporated into the MV-AR.

A comparative analysis of these curves reveals that the green curve consis-
tently maintains a lower trajectory than the standard blue line, indicative of
the variance diminishing process and congruent with the theoretical proof’s con-
clusions. The trajectory of the red curve (MV-AR with VA), which adopts VA,
displays a similar pattern to the blue curve and ultimately converges just below
the blue line, which validates the efficacy of the proposed VA method. The lower
endpoint of the red line can be attributed to the features generated by consistent
projection being more consistent than those in the general denoising process.
Effectiveness of Inpainting Refinement. As illustrated in Fig. 6, we visualize
the texture improvements w.r.t. the inpainting refinement process on four exam-
ples of SubTex dataset. We can observe that the inpainting mask can accurately
identify those inconsistent pixels, and the subsequent pixel domain inpainting
refinement is capable of refining the inconsistent regions and achieving more
fidelity and high-quality texturing results.

5 Conclusion

We propose a novel collaborative denoising 3D texture synthesis approach, VCD-
Texture, to mitigate the gap between the 2D diffusion generation and 3D ob-
jects. VCD-Texture injects 3D geometries into the 2D diffusion denoising pro-
cess, designing Joint Noise Prediction (JNP) and Multi-View Aggregation-and-
Rasterization (MV-AR) modules to incorporate features in 2D and 3D space.
Moreover, we theoretically analyze the variance bias issues caused by the ras-
terization in MV-AR, which is eliminated by the proposed Variance Alignment
(VA) technique. To further reduce the intrinsic discrepancy in latent feature and
image pixel domains, we design an inpainting refinement to rectify identified
inconsistent regions. Through a collaborative denoising process and inpainting
refinement process, VCD-Texture enables the generation of consistent textures
with diverse and high-quality details.
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6 Supplementary Materials

This supplementary material first presents Additional Results, which are orga-
nized into five sections: 1) trade-off between consistency and time, 2) time cost
comparisons, 3) visual ablation studies of variance alignment, 4) visual compar-
isons with TexFusion, and 5) more visual comparison results. Next, the limi-
tations of the proposed method are discussed. Thereafter, we offer Algorithm
Details about the core JNP and MV-AR modules. Fourthly, we deduce the in-
equality of Rasterization Variance Reduction. Finally, further details about the
evaluation dataset are provided.

6.1 Additional Results

Trade-off between Consistency, Fidelity and Time. Our experiments re-
veal that the number of views significantly impacts efficiency and performance.
We conduct ablation studies to analyze the influence of view numbers. Tab. 3
summarizes the results, from which three key conclusions can be drawn:

– When comparing models (1) to (4), an increasing number of views results in
an opposite trend between fidelity metrics (FID, ClipFID) and the consis-
tency metric (ClipVar). More views cause more overlaps, leading to higher
consistency; however, more overlap areas cause more blurriness, resulting in
lower fidelity.

– Comparing models (1) to (4), the number of views and the cost time are
positively correlated, more views require more generation time. Addition-
ally, by comparing models (5) and (6), the inpainting refinement stage takes
approximately 11 seconds.

– Comparing models (4) and (5), we propose a sampling view policy that uti-
lizes 9 views during the denoising process and samples a subset of 4 views
during the pixel aggregation process. This trade-off between consistency,
fidelity, and time enables achieving high consistency while maintaining rela-
tively higher fidelity.

Table 3: Ablations for view number on SuxTex dataset. LView represents latent views
used in the denoising process, 4 × 90 means 4 views with a 90-degree interval each,
PVnum denotes the view number used for pixel aggregation.

No. LView PVnum Inpaint FID ↓ ClipFID ↓ ClipScore ↑ ClipVar ↑ Runtime (s) ↓

(1) 4× 90 4 51.47 6.00 31.54 82.13 70.6
(2) 6× 60 6 55.32 6.77 31.81 83.11 93.4
(3) 8× 45 8 57.17 7.01 31.57 83.36 98.5
(4) 9× 40 9 59.71 7.56 31.69 84.03 103.4
(5) 9× 40 4 56.05 6.88 31.62 83.94 93.1
(6) 9× 40 4 ✓ 56.29 6.84 31.65 83.97 104.0
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Time Cost Comparison. We compared the runtime efficiency of VCD-Texture
against prior approaches on a GPU server with eight NVIDIA RTX A800 GPUs.
The results are presented in Tab. 4. For clarity, we organized the evaluated meth-
ods into two categories: Fitting (training-based neural networks for multi-view
texture assimilation) and Re-Projection (rasterization-based re-projection with-
out training). Re-Projection methods significantly outperformed Fitting meth-
ods, being an order of magnitude faster. Within Re-Projection, Texture [38]
demonstrates the quickest performance times under default configuration, which
were on par with SyncMVD [25].

Since we apply a fine mesh Mf in pixel aggregation, which takes more time
in reprojecting colors to the mesh, and also introduce an additional inpainting
refinement stage, this results in a marginal increase in runtime compared to
Texture and SyncMVD [25]. To improve efficiency, we design a fast version of
our algorithm (Ours-Fast), which incorporates three optimizations: 1) reducing
denoising steps from 50 to 30; 2) remeshing the source mesh at a coarse level
(from 256 to 128 resolution) to speed up color reprojection; and 3) removing the
inpainting stage. This fast version achieves the fastest speed while maintaining
high performance.

Table 4: Runtime Comparisons. VNum denotes the number of views, TType repre-
sents texture drawing type, and Re-Proj means texture drawing by color re-projection.
‘Ours-Fast’ is implemented with fewer denoising steps from 50 to 30, lower mesh reso-
lution from 256 to 128, and without the inpainting stage, which still outperforms other
competitors.

Method TType VNum FID ↓ ClipFID ↓ ClipScore ↑ ClipVar ↑ Runtime (s) ↓

Text2Tex [5] Fitting 36 112.41 16.26 30.08 81.45 842.20
Repaint3D [45] Fitting 9 78.65 10.65 30.88 78.96 611.60
Texture [38] Re-Proj 8 150.21 26.92 26.90 82.37 79.50
SyncMVD [25] Re-Proj 10 65.30 16.76 28.78 81.93 83.30
Ours Re-Proj 9 56.29 6.84 31.65 83.97 104.00
Ours-Fast Re-Proj 9 62.57 9.73 31.42 83.10 74.40

Visual Ablation of Variance Alignment. The analysis of the standard de-
viation curve, presented in Fig. 5(a), indicates that iterative rasterization within
the denoising phase results in a reduction in the magnitude of feature variance,
which is likely to cause Depth-SD to produce images that are blurred or exces-
sively smooth. To validate this conclusion, we ran experiments with and without
applying variance alignment under 100 denoising steps, respectively. Fig. 5(b)
shows the generated images. Comparing images without VA (first and third
columns) to images with VA (second and fourth columns), we can observe that
images without VA have lower contrast and much more blurriness, in contrast,
images with VA exhibit higher fidelity and more distinct textural details. This
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Fig. 7: Qualitative comparisons with TexFusion.

proves that our proposed variance alignment can improve the image quality pro-
duced by Depth-SD when frequently conducting rasterization.

Visual Comparison with TexFusion. TexFusion [3] employs a similar la-
tent texture methodology. However, at the time of writing this manuscript, the
authors had not made their code or textured mesh data publicly available. Conse-
quently, we have opted to utilize the images presented in the original publication
for visual comparison. To visualize the top view, we have incorporated two ad-
ditional views (46◦, 0◦) and (46◦, 180◦) into our default horizontal viewpoints.
Fig. 7 presents a visual comparison, from which we observed higher fidelity and
finer details in our results.

While TexFusion [3] integrates an ancillary VGG-based loss to diminish the
discrepancy between the latent and pixel domains. Nevertheless, it fails to ef-
fectively address the issue of pixel inconsistencies across views, resulting in tex-
tures that are perceptibly blurred. In contrast, our approach employs a two-stage
pipeline that initially enforces consistent feature generation within the latent do-
main, followed by a refinement process through pixel domain inpainting. This
two-stage strategy synergistically enhances the consistency and fidelity of the
synthesized textures.

More Visual Comparison. As depicted in Fig. 8, we provide more quali-
tative comparisons against state-of-the-art counterparts, further validating the
effectiveness and superiority of our proposed approach.

6.2 Limitations

Our research is subject to two principal limitations, primarily attributable to
the constraints inherent in the pre-trained diffusion model. Firstly, the issue of
pre-illumination: the images synthesized by the SD model display variations in
luminance, leading to instances of local overexposure in textures. This challenge
has been addressed by the development of a diffusion model [50] devoid of light-
ing effects. Secondly, we identify the presence of local artifacts: the Depth-SD
technique synthesizes images based on a combination of depth maps and textual
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Source Mesh Texture Text2Tex Repaint3D SyncMVD Ours

Fig. 8: Qualitative comparisons of text-guided texture synthesis. Prompts from top to
down are: “CD player”, “banjo”, “lemon”, “dell inspiron white”, “Toilet paper holder with
tp”, “target”, “Chair stool armchair stuhl”, “kare sideboard janus”, “flask” , “sofa”.

prompts. Due to the discrepancy in complexity between the rudimentary 3D
mesh geometry and the intricate training images, the resulting depth map of the
synthesized image fails to align precisely with the conditional depth map. This
misalignment results in the projection of unmatched pixel colors onto the corre-
sponding 3D vertices, thereby generating local artifacts. A potential solution to
this issue lies in fine-tuning texture using methods such as PatchGAN [15], which
employs a contrastive approach to learning the distribution of image patches.

6.3 Dataset and Evaluation details

We evaluated our method on three datasets, the statistical details of which are
presented in Table 5. Notably, there are some meshes listed in TexFusion [3]
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were not found in the ShapeNet [4] dataset, and we utilize meshes from the same
category as replacements for those invalid meshes. Since the Fréchet Inception
Distance (FID) metric can be influenced by the number of evaluation images,
we report the ground-truth numbers (GT-Num) in the third column of Table 5.

The comprehensive list of mesh names and prompts employed for each dataset
is provided in the supplementary material, whose file names are: subtex.txt, sub-
obj.txt and subshape.txt. We use the same data loader as Repaint3D [45], which
can be found at: Data Loader of Repaint3D

Table 5: Evaluation Datsets.

Name Num GT-Num

SubTex 43 344
SubShape 445 3560
SubObj 401 3208

6.4 Proof of Rasterization Variance Reduction

Formally, Jensen’s inequality states that if φ(·) is a convex function, and zi∈Nz

are points in interval Z, where Nz is the number of sampling points, then for any
non-negative weights λi that satisfy the condition:

∑Nz

i=1 λi = 1, the following
inequality holds:

φ

(
Nz∑
i=1

λizi

)
≤

Nz∑
i=1

λiφ(zi). (16)

For random variable set Xi, the variable Yj are combined by variables sam-
pled from Xi, which is computed by:

Yj =

N∑
i=1

λi ·Xij (17)

where j denotes index in Y, i is the variable set index. λi represents non-negative
weights, which satisfy the condition

∑N
i=1 λi = 1, λi ≥ 0. Let M denotes the

element number of Y, The variance of Y is defined by:

V ar(Y) =

M∑
j=1

[Yj − µ(Y)]2/(M − 1) (18)

=

M∑
j=1

[

N∑
i=1

λi ·Xij −
N∑
j=1

λi · µ(Xi)]
2/(M − 1) (19)

=

M∑
j=1

[

N∑
i=1

λi · (Xij − µ(Xi)]
2/(M − 1) (20)

(21)

https://github.com/kongdai123/repainting_3d_assets/blob/256af2cbeceaa009cf67fa424de85a161355c4b7/repainting_3d_assets/main_shapenet.py#L11
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As square is a convex function, based on the Jensen’s inequality 16, For each
variable Yj , we have:

[

N∑
i=1

λi · (Xij − µ(Xi)]
2 ≤ λi ·

N∑
i=1

[Xij − µ(Xi)]
2 (22)

Let EY |j and EX|ij denote the squared deviation term in Y and Xi sep-
arately, which are defined as EY |j = [Yj − µ(Y)]2, EXi|j = [Xij − µ(Xi)]

2.
Referring previous inequality, we have:

EY |j ≤ λi ·
N∑
i=1

EXi|j (23)

This means each squared deviation term EY |j in Y is no large than the linear
combined squared deviation term EXi|j in Xi . And then apply the expectation
with total number M , we have:

V ar(Y) =

M∑
j=1

EY |j/(M − 1) (24)

≤
M∑
j=1

λi ·
N∑
i=1

EXi|j/(M − 1) =

N∑
i=1

λi ·
M∑
j=1

EXi|j/(M − 1) (25)

As V ar(Xi) =
∑M

j=1EXi|j/(M − 1), thus we have:

V ar(Y) ≤
N∑
i=1

λi · V ar(Xi) (26)

6.5 Algorithm Details

We present pseudo codes for two core modules: Joint Noise Prediction in Algo-
rithm 1, Multi-View Aggregation and Rasterization (MV-AR) in Algorithm 2.
To optimize efficiency, the Joint Noise Prediction module was solely implemented
at the highest resolution of the U-Net architecture. Additionally, cross-attention
mechanisms operating in 3D space were also attempted but did not yield per-
formance improvements.



VCD-Texture 21

Algorithm 1 Joint Noise Prediction Algorithm

Input: Coarse mesh Mc, Cameras Cn, denoised latent feature F2D
n

Parameters: View number N , Vertex face index {fu}3u=1 in each face, Vertex Co-
ordinate P v

j , Feature size (w, h), Rasterizaiton function R(n). In Pytorch3D library,
R(n) contain three output tensors: Depth map tensor D̂n, barycentric coordinate
tensor Bn and pixel and mesh face relation tensor Rp

n specifying the indices of the
faces which overlap each pixel.
Return: F̃2D

l|n : updated latent features at level l of U-Net
1: procedure Joint Noise Prediction Algorithm
2: for each level l ∈ L do

3: #Step1: Extract 3D features F3D
l

4: for each view n ∈ N do
5: Build rasterization relation R(n) = Pytorch3D.Render(Mc, Cn)
6: Compute 3D coordinates PF

n,i =
∑3

u=1(B
u
n,i)

2 · P v
fu

7: Extract F3D
l from 2D foreground features with 3D coordinates.

8: end for

9: #Step2: Split 3D features into groups
10: Compute bounding box Bp of 3D space features F3D

l .
11: Group F3D

l into different groups F3D
l|g by grid size Gt

12: #Step3: Compute view-aware 2D self-attention in each 2D plane
13: for each view index n ∈ N do
14: Compute F̃2D

l|n = SelfAttn(F2D
l|n)

15: end for

16: #Step4: Compute grid-aware 3D self-attention in each 3D grid
17: for each group index g ∈ Gt do
18: Compute F̃3D

l|g = SelfAttn(F3D
l|g )

19: end for
20: Obtain 3D features F̃3D

l|n in 2D space by removing coordinates of F̃3D
l

21: #Step5: Combine features from 2D and 3D space
22: F̃2D

l|n = Mean(F̃3D
l|n + F̃2D

l|n)
23: end for
24: end procedure
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Algorithm 2 Multi-View Aggregation and Rasterization

Input: Coarse mesh Mc, Cameras Cn, denoised latent feature F2D
n

Parameters: View number N , Vertex index {j}Jc
j=1, Feature size (w, h), Upper

bound of scene distance Zfar, Exponents τb, τd, τw for the power function, Raster-
izaiton function R(n), In Pytorch3D library, R(n) contain three output tensors:
Depth map tensor D̂n, barycentric coordinate tensor Bn and pixel and mesh face
relation tensor Rp

n specifying the indices of the faces which overlap each pixel.
Return: X̃2D

n : updated latent predictions for each view n ∈ N
1: procedure Multi-View Aggregation and Rasterization

2: #Step1: Initialize view scores Sn and distance scores Dn for each view n ∈ N
3: for each view n ∈ N do
4: Build rasterization relation R(n) = Pytorch3D.Render(Mc, Cn)
5: Compute view score Sn = Cosine(Normal(Mc), Direction(Cn))
6: Compute depth score Dn = 1− D̂n/Zfar

7: end for

8: #Step2:Initialize vertex features X̂n,j and vertex weights Wn,j

9: for each view n ∈ N and vertex index j ∈ Jc do
10: Compute normalization factor η =

∑
i ψ(Bn,i, τb)

11: Re-project 2D to 3D X̂3D
n,j =

∑
iX

2D
n,i · ψ(Bn,i, τb)/η, the relation of each

vertex X̂3D
n,j and 2D pixel values X2D

n,i are derived from Rp
n.

12: Compute view weight Wn,j =
∑

i Sn,i · ψ(Dn,i, τd) · ψ(Bn,i, τb)/η
13: end for

14: #Step3:Aggregate each view features to final texture feature
15: for each vertex index j ∈ Jc do
16: Compute normalization factor ω =

∑
n ψ(Wn,j , τw)

17: View Aggregation X̂3D
j =

∑
n X̂3D

n,j · ψ(Wn,j , τw)/ω
18: end for

19: #Step4:Rasterize final texture feature to 2D plane feature
20: for each view n ∈ N do
21: Compute X̃2D

n = Pytorch3D.Render(Mc, Cn, X̂
3D)

22: Replace background features in X̃2D
n with X2D

n

23: end for
24: end procedure
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