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Abstract

Unsupervised face animation aims to generate a human face video based on the
appearance of a source image, mimicking the motion from a driving video. Existing
methods typically adopted a prior-based motion model (e.g., the local affine motion
model or the local thin-plate-spline motion model). While it is able to capture
the coarse facial motion, artifacts can often be observed around the tiny motion
in local areas (e.g., lips and eyes), due to the limited ability of these methods
to model the finer facial motions. In this work, we design a new unsupervised
face animation approach to learn simultaneously the coarse and finer motions. In
particular, while exploiting the local affine motion model to learn the global coarse
facial motion, we design a novel motion refinement module to compensate for
the local affine motion model for modeling finer face motions in local areas. The
motion refinement is learned from the dense correlation between the source and
driving images. Specifically, we first construct a structure correlation volume based
on the keypoint features of the source and driving images. Then, we train a model
to generate the tiny facial motions iteratively from low to high resolution. The
learned motion refinements are combined with the coarse motion to generate the
new image. Extensive experiments on widely used benchmarks demonstrate that
our method achieves the best results among state-of-the-art baselines.

1 Introduction

Face animation aims to generate a human face video based on the appearance of a source image to
mimic the motion from a driving video. It has gained increasing attention from the community in
recent years, due to its great potential in various applications including face swapping, digital humans,
video conferencing, and more. Additionally, the emergence of large-scale face video datasets [18, 44]
has further contributed to this growing interest.

Existing works on face animation can generally be divided into two categories: model-based and
model-free methods (a.k.a supervised and unsupervised methods). On one hand, model-based
methods [7, 33] typically use predefined 2D or 3D facial priors, such as 2D landmarks [20] and
3DMM parameters [2], to provide pose and expression information in the generated videos. While
these methods have the advantage of describing accurate face poses, they are limited by overly strict
structure priors that are not robust to hair and neck motions, which can heavily affect their performance
in real-world applications. On the other hand, model-free animation is a more challenging and
interesting problem, which aims to automatically learn the motion patterns without using predefined
2D or 3D facial models, thus being more flexible and robust in real-world scenarios. With the
emergence of large-scale face video datasets, model-free methods have become more popular in
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Refinement

Figure 1: Illustration of the non-prior based motion refinement. Initially, a prior motion such as an
affine transformation defines a motion flow. However, after the refinement, this flow can be matched
to a new deformation that more realistically models underlying face deformations.

recent years [24, 25]. Among model-free methods, a local prior motion model is usually assumed to
transform the sparse corresponding keypoints to the dense motion flow between the source and driving
image. More recently, researchers have explored combining the two types of methods [40], such as
using prior motion models to learn motion flow for warping source features while simultaneously
employing 3DMM parameters to refine and enhance warped features.

In this work, we focus on the model-free face animation task, considering its flexibility for practical
applications. Existing model-free face animation methods typically operate under the assumption of
a local prior motion model, that is to assume the local motion between a source and driving image
generally follows a parametric model such as affine transformation. For example, Siarohin et al. [24]
proposed a local affine motion model, Siarohin et al. [25] and Tao et al. [29, 30] further constrained
the learning process of the affine matrix, while others proposed a local thin-plate-spline motion
model [43]. While these methods have the advantage of facilitating the process of learning motion
and the ability to learn significant keypoints, their limitations are also obvious. Firstly, assuming
that the human face is locally rigid may not be appropriate, resulting in sub-optimal motion models
that fail to capture tiny motions in local facial areas. Secondly, accurately predicting geometric
parameters such as the affine matrix from a single image is not easy. To address these issues, we
propose a non-prior-based motion refinement approach to compensate for the inadequacy of existing
prior-based motion models as illustrated in Fig. 1. Specifically, inspired by recent advances in optical
flow [12, 28, 31], we utilize the keypoint features in building a correlation volume between the source
and driving images, which represents the structure correspondence between the two images across all
spatial locations. This correlation volume serves as non-prior motion evidence, according to which
we employ a model to iteratively generate finer motions that refine the coarse motion predicted by
prior motion models. In summary, compared to existing prior-based motion models, our approach
exhibits a more powerful motion representation in terms of learning finer motions and thus is capable
of achieving more realistic face animations.

We conduct extensive experiments on challenging face video benchmarks, and the superior perfor-
mance of our method over state-of-the-art baselines highlights that learning motion refinement is
advantageous for enhancing the existing prior-based motion models on face animation.

2 Related work

Face animation: Recent works on face animation can be roughly categorized into model-based and
model-free methods, and more recently some works [40] tried to combine the two types of methods.

Model-based methods [4, 6, 7, 15, 21, 32, 36, 37, 38, 39] leverage predefined facial prior, such as
2D landmarks and 3D face models, to guide the pose or expression of the generated output. For
instance, FSGAN [20] used facial landmarks as input to a generator directly to reenact a source face.
Similarly, SAFA [33] used a 3D morphable model to aid in expression transfer. These methods are
advantageous in modeling accurate face poses but suffer from the too-strict structure prior, which is
not robust to neck and hair motions that are prevalent in practical scenarios.

In contrast, model-free methods [9, 10, 23, 24, 25, 30, 35, 42] tend to have better generalization
performance and have become more popular due to the advent of large-scale face video datasets.
These methods assume a local prior motion between subjects and learn local keypoints and corre-
sponding motion transformation parameters in an unsupervised manner from videos. FOMM [24] is
a pioneer work that proposed a local affine transformation model for image animation. Subsequently,
MRAA [25], DAM [30], and MTIA [29] constrained the affine motion model learning process
with stronger prior, such as PCA decomposition and cooperative motions. In fact, these methods
assume a locally rigid object and mainly apply to human bodies, having limited performance on
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human faces due to the easily violated locally rigid assumption. TPSM [42] proposed to adopt local
thin-plate-spline motions for general animations, while DaGAN [10] used face depth information to
better learn the keypoints and affine matrices. However, these methods still fall into the paradigm
of prior-based motion models, which have difficulty in modeling tiny motions in local face areas.
There are also some works [17, 34] that extremely abandoned the prior-based motion representation,
they either used 3D head rotation supervision or utilized multiple source images for compensating
the loss of motion prior. In this paper, we try to push the limit of single-image-based unsupervised
face animation and propose a non-prior-based motion refinement approach, which overcomes the
inadequacy of existing prior-based motion models by learning the finer motions.

Optical flow: Optical flow estimation has been a longstanding research problem in computer
vision [11, 12, 27, 28]. Its objective is to estimate the motion between consecutive video frames. It’s
worth noting that the key part of unsupervised facial animation is also to estimate the motion flow
between two images of the face. The main difference between the two tasks lies in the fact that optical
flow deals with frames depicting the same scene, whereas facial animation focuses on transferring
the motion between video frames featuring different subjects. This fundamental difference leads
to variations in the methods employed for the two tasks. In more detail, optical flow computes
the visual feature similarities between two frames. On the other hand, facial animation aims to
disentangle the structural and visual appearance features and uses the structural feature to establish
motion representations. Our method is inspired by the optical flow technique named RAFT [31]. Its
fundamental idea is to develop a 4D correlation volume based on the visual features of two frames and
use it to iteratively refine the motion flow. Similar to this concept, we build a structural correlation
volume in face animation based on keypoint features; moreover, we introduce a multi-scale refinement
mechanism to maximally leverage the source features, which helps to capture finer face motions.

3 Method

Our method consists of four key components: (1) a coarse motion estimation module based on a
prior motion model, (2) a structure correlation volume calculator, (3) a motion flow updater, and
(4) an image generator. While the first and last components are similar to existing face animation
methods [24, 25, 29, 30], the second and third components form our proposed non-prior-based
motion refinement module. The overview of our method is presented in Fig. 2. Similar to existing
methods [24, 25, 29, 30] for achieving face animation, we first estimate the motion flow between
the driving and source images. Then, we use the motion flow to warp the source features which is
decoded by the image decoder, and generate the final animation video frame by frame. The difference
is that in addition to estimating a coarse motion flow based on a prior motion model, we further
estimate the motion refinement by our proposed motion refinement module. The coarse motion and
the motion refinement are combined to warp source features. In the following subsections, we will
first describe the existing prior-based motion models and then introduce our proposed non-prior-based
motion refinement module.

3.1 Prior based Motion Estimation

Existing methods [24, 25, 29, 30, 40, 42] generally employ the affine prior and thin plate spline prior
to model local facial motion. For the sake of simplicity, we adopt the local affine motion model as our
formulation. This model assumes that a human face is composed of several individual parts and each
part’s motion is defined by an affine transformation. The parameters of these affine transformations
are predicted by a keypoint detector, as shown in Fig. 2(a). The local affine transformations are then
transformed into a set of part motion flows. A dense motion network predicts a composition mask,
which is used to weigh the set of part motion flows to obtain a single motion flow, and an occlusion
map which is used to mask the warped source feature in the occluded area.

Formally, we denote by S and D the source and driving images. A set of keypoints {pks , pkd} ∈ R2×1

and corresponding affine parameters {Ak
s , A

k
d} ∈ R2×2 are predicted by the keypoint detector,

where k = 1, ...,K. These affine parameters predicted from a single image are assumed to be the
transformation to an abstract reference image [24]. Additionally, let z ∈ {0, 1, ..., h×w− 1} denote
any pixel coordinate of the driving image, where h and w define the resolution of the motion flow
which in this stage is set to 4 times downsampled image resolution. The part motion flow between
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Figure 2: Overview of the pipeline. Our method consists of three modules: (a) Prior-based coarse
motion estimation module first estimates a coarse motion flow based on a prior motion model. (b)
Our proposed non-prior based motion refinement module constructs a 4D structure correlation
volume that provides the non-prior motion evidence, based on which the coarse motion flow is
iteratively refined. (c) The image generation module for both encoding multi-scale source features
and decoding multi-scale warped source features.

the driving and source images is derived using the following formula:

T k
S←D(z) = pks +Ak

s(A
k
d)
−1(z − pkd), (1)

Intuitively, Equation (1) represents the flow format of an affine transformation that displays the
coordinate correspondence between two images. In addition to the K part motion flows, a motion
flow of the background, which is typically considered to be static, is also represented by:

T 0
S←D(z) = z, (2)

Using the predicted composition mask M ∈ RH×W×(K+1), we can obtain the motion flow between
the driving and source image as follows:

TS←D(z) =

K∑
k=0

Mk(z) · T k
S←D(z), (3)

We treat the Equation (3) as a coarse estimation of the motion flow, and in the following sections, we
denote it using F0 = TS←D(z) without special indication. Additionally, we also denote O0 as the
occlusion map estimated by the prior motion model. Note that we derived F0 and O0 by the affine
prior, it is also suitable to use the thin plate spline prior for estimating the coarse motion flow.

3.2 Non-prior based Motion Refinement

Prior-based motion models have the advantage of facilitating learning motion in the early stages and
can learn meaningful keypoints. However, the prior assumption such as a locally rigid face may
not be appropriate, limiting them on learning finer facial motions. In this subsection, we present
our non-prior-based motion refinement approach that compensates for the limitations of prior-based
motion models.

Our motion refinement process is iterative, using the initial flow estimation obtained from a prior
motion model, as described in the previous subsection. First, we construct a structure correlation
volume to represent pixel-level structure correspondence between driving and source images. This
volume remains fixed throughout later iterations. For each iteration, we use the current flow estimation
to access the correlation volume and extract neighboring patch features. The cut correlation values,
along with the warped source feature and current flow estimation, are sent to the flow updater to
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Figure 3: Details of the motion flow updater. It outputs the updated motion flow and occlusion
map by processing three types of input features: warped source image feature, correlation feature
extracted from the structure correlation volume using a lookup operation, and the current motion
flow. The correlation feature and input motion flow are passed through two separate convolution
modules, and their results are concatenated to yield an intermediate motion feature. This intermediate
feature, together with the input motion flow and the warped source feature, is combined and input to
a convolution module, which produces the residual flow and occlusion map.

obtain a refined flow. Note that the iteration proceeds from low to high resolutions, thereby enhancing
the ability to capture finer facial movements. Fig. 3 provides a more detailed depiction of a single
iteration of our motion flow update procedure. We will now introduce each component and operation.

Structure correlation volume: Inspired by recent advancements in optical flow [31], we propose
a similar approach of constructing a structure correlation volume, which is considered to provide
non-prior motion evidence for refining a coarse motion flow. We accomplish this by first encoding
the source and driving structure features with two separate encoders. The driving structure encoder
takes only the driving keypoints as input, while the source structure encoder concatenates the 4
times downsampled source image and keypoints as input. The source image is considered to provide
dense visual context information for the sparse keypoints, which helps to densify the source structure.
Keypoints are encoded with a fixed variance using Gaussian heatmaps centered on their positions.
After encoding, the driving and source structure features are multiplied along the channel dimension
to obtain a 4D structure correlation volume C ∈ Rh×w×h×w. The first two dimensions align with the
driving coordinate system, while the last two represent the source coordinate system. Each indexed
value in the first two dimensions represents the correspondence confidence between the driving pixel
position and all source pixels. Note that the calculation of the structure correlation volume is carried
out at a resolution that is 4 times lower than that of the original image. We also used a pyramid of
correlations, which is similar to the optical flow approach [31]. The pyramid is created by pooling
the structure correlation volume repeatedly with a series of scale factors. Further details can be found
in the supplementary material.

Correlation lookup: For each iteration of the updates, we utilize the current input motion flow to
lookup a {(2r + 1)× (2r + 1)}-patch correspondence values centered at the flow position, where r
is the radius of the patch. This patch feature is further flattened to the channel dimension, resulting in
a hi × wi × (2r + 1)2 correlation feature Ci, where hi and wi are the flow resolutions of the i’th
iteration. The lookup process is depicted on the left side of Fig. 3 and the correlation features are
denoted by the yellow cuboid.

Motion flow update: The motion flow updater is comprised of four convolution modules that share
parameters across all iterations. During each iteration, the flow updater takes in the current motion
flow, extracted correlation values, and the warped source feature as inputs to produce outputs of
updated motion flow and occlusion map.

To be more specific, we represent the current input motion flow as F↑i−1 which is upsampled twice
from the previous iteration’s output. The correlation feature is represented by Ci, and the source
input feature encoded by the image encoder is represented by fi. Firstly, the residual flow dFi and
the residual occlusion map dOi are generated by the flow updater ψ:

dFi, dOi = ψ(F↑i−1, Ci,F↑i−1(fi)), (4)

where F↑i−1() denotes the warping operation. The update process is then formulated as follows:

Fi = F↑i−1 + dFi,Oi = O↑i−1 + dOi. (5)
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We begin the iteration process at the resolution of the image downsampled by 32 times. The initial
input motion flow for the first iteration is provided by:

F↑0 = Downsample(F0, 8), (6)
as F0 is computed at resolution H/4×W/4. The iteration is stopped once the maximal resolution
iteration is accomplished, i.e., the image size. It should be noted that the initial flow input, F↑0 , loses
a significant amount of information due to the downsampling operation. To ensure preserving as
much information from F0 as possible, we reformulate Equation (5) as:

Fi = Resize(F0) + dFi + dF↑i−1 + dF↑↑i−2 + ..., (7)
where the initial flow F0 is directly resized to the current resolution. The similar rule is also applied
to the occlusion map.

To summarize, the non-prior-based motion refinement module yields multi-scale refined motion flows
and occlusion maps {Fi,Oi}Ni=1, which are utilized in the process of image generation for warping
source features.

Non-prior-based initialization: As previously discussed, we have been utilizing a prior motion
model to estimate coarse motion flow owing to its effectiveness in facilitating learning motion.
However, we have also proposed a non-prior-based initialization approach. Specifically, we reshape
the structure correlation volume to h × w × (h × w) and denote the reshaped C as Cr. We then
perform a softmax operation on the final dimension, treating the result as an attention matrix. This
matrix is subsequently employed to sum up an identity grid. The non-prior-based initialization is
formulated as follows:

QS←D(z) =

h×w∑
i=1

i · Softmax(Cr)[z, i] (8)

Where z indexes the driving spatial dimensions and i denotes the reshaped source dimension. In this
way our proposed method becomes totally non-prior-based, we study this initialization in Section 4.

3.3 Image generation

As previously mentioned, we have prepared multi-scale motion flows, occlusion maps, and source
features {Fi,Oi, fi}Ni=1. To better synthesize facial details, we use a Unet-like image generator
which effectively combines the multi-scale source features with the refined multi-scale motion flows.
In each layer of the image decoder, we integrate information from the current warping and previous
generation by multiplying them with the occlusion map and reversed occlusion map. The generation
process can be summarized as follows:

out1 = F1(f1) · O1 (9)
outi+1 = Fi+1(fi+1) · Oi+1 +UpBolck(ResBolck(outi)) · (1−Oi+1), (10)

where UpBolck defines a upsample-conv operation and ResBolck denotes a 2-layer resnet [8] block.
At the last layer, the output is activated by a sigmoid function to obtain the generated image.

3.4 Training

Our method is trained end to end. Following previous methods [24, 25] and for the sake of simplicity,
we only adopt the perceptual loss and the equivariance loss as our objective functions.

Perceptual loss: We adopt the multi-resolution perceptual loss [13] defined with a pre-trained
VGG-19 [26] network. Given the driving image D with resolution index i, the generated image D̃,
and the feature extractor ϕ with layer index l, the perceptual loss can be written as follows:

Lper =
∑
i

∑
l

∥∥∥ϕl (Di)− ϕl(D̃i)
∥∥∥
1
. (11)

Equivariance loss: Given a random geometric transformation T and a driving image D, the
equivariance loss can be written as follows:

Lequi =
∑
k

∥∥∥T(pkD)− pkT(D)

∥∥∥
1
. (12)

The overall loss is formulated by the sum of the two without weighting:
L = Lper + Lequi (13)
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Table 1: Quantitative comparisons with state-of-the-art methods on the video self-reconstruction task.
We present results on the Voxceleb1 and CelebV-HQ datasets. Our method generally achieves the
best performance on all evaluation metrics.

Voxceleb1 CelebV-HQ
L1 PSNR LPIPS AKD AED L1 PSNR LPIPS AKD AED

FOMM 0.0412 23.85 0.171 1.284 0.135 0.0531 22.95 0.204 3.491 0.219
MRAA 0.0394 24.47 0.166 1.274 0.132 0.0433 24.65 0.173 1.852 0.167

LIA 0.0425 23.64 0.212 1.457 0.138 0.0507 22.95 0.235 1.982 0.179
DAM 0.0395 24.51 0.165 1.242 0.124 0.0496 23.58 0.189 1.899 0.180

DaGAN 0.0422 24.03 0.168 1.265 0.125 0.0652 21.37 0.249 8.704 0.307
TPSM 0.0396 24.84 0.160 1.203 0.122 0.0412 25.29 0.160 1.663 0.156
MTIA 0.0370 25.09 0.159 1.190 0.120 0.0405 25.63 0.157 1.532 0.153

FNeVR 0.0404 24.36 0.165 1.238 0.126 - - - - -
Ours 0.0354 25.57 0.151 1.155 0.108 0.0376 26.11 0.147 1.424 0.137

Table 2: Cross-identity evaluation on the Voxceleb1 dataset.
FOMM MRAA LIA DAM DaGAN TPSM MTIA FNeVR Ours

ARD 3.122 2.678 3.883 2.669 3.090 2.724 2.794 2.755 2.399
AUH 0.850 0.729 0.772 0.717 0.751 0.668 0.676 0.691 0.647
FID 70.00 69.29 71.01 69.16 68.50 68.67 66.65 66.48 64.68

4 Experiments

Implementation details: We adopt two Hourglass networks [19] for the keypoint detector and the
dense motion network, and a Unet [22] for the image generator similar to previous works [24, 25].
We further employ two hourglass networks for the driving and source structure encoders. The flow
updater consists of four convolution blocks that share the parameters across the iterations. We
train our method for 100 epochs on four NVIDIA A100 GPU cards or eight NVIDIA 3090 GPU
cards. It takes about 24 hours for training. The number of keyoints is set to 10 following previous
methods [24, 29, 30, 42]. The patch radius r is set to 3 and the number of iterations is set to 6. The
Adam optimizer [16] is adopted with β1 = 0.5 and β2 = 0.999, the initial learning rate is set as
2× 10−4 and dropped by a factor of 10 at the end of 60th and 90th epoch. We leave the architecture
details in the supplementary material.

Datasets: We conduct experiments on the widely used Voxceleb1 [18] dataset and the recently
collected more challenged CelebV-HQ dataset [44]. Voxceleb1 is a talking head dataset consisting of
20047 videos, among which 19522 are used for training and 525 are used for testing. The CelebV-HQ
dataset consists of 35666 video clips, we randomly choose 500 of them for testing. All videos are
resized to 256× 256 for a fair comparison with existing methods.

Metrics: We measure the reconstruction quality using L1, Peak Signal-to-Noise Ratio (PSNR), and
LPIPS [41] following [35, 40]. To evaluate the transferred motion quality we adopt Average Keypoint
Distance (AKD) following previous methods [24, 25, 30, 42]. The identity quality of the generated
videos is measured by Average Euclidean Distance (AED) [24, 25]. We use FID, ARD, and AUH
metrics for evaluating cross-identity face animation following [5]. All these metrics are the lower the
better except the PSNR.

Baselines: A bunch of baseline methods are compared, including FOMM [24], MRAA [25], LIA [35],
DAM [30], DaGAN [10], TPSM [42], MTIA [29] and FNeVR [40]. All reported baseline results
are obtained by evaluating the checkpoints from their Github repo. or retrain the provided codes,
except that the FNeVR does not provide the training code and thus we do not report their results on
the CelebV-HQ dataset. It is worth noting that most of these baseline methods adopt a prior motion
model, while DaGAN [10] further explored the face depth information and FNeVR leverage the
3DMM parameters. For comparison with them, we adopt the motion transformer [29] for our prior
motion estimation, while we also employ the affine motion model [24] and thin-plate-spline motion
model [42] in the section of model ablations.

Quantitative comparison: Table 1 displays the same-identity reconstruction results, which is the
standard evaluation setting used in previous methods [10, 24, 25, 29, 30, 40, 42] that reconstruct
a driving video based on its first-frame appearance and all-frame motion. As can be seen, our
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Table 3: Model ablations on the proposed non-prior based motion refinement module. We present
results on the Voxceleb1 dataset. Baseline methods are all based on our implementation, which
differentiates from original methods with a multi-scale feature fusion mechanism as described in
Equation (10).

L1 PSNR LPIPS AKD AED
NPMR 0.0393 24.41 0.164 1.328 0.133
FOMM 0.0386 24.62 0.164 1.254 0.124

FOMM + NPMR 0.0367 25.15 0.156 1.224 0.114
TPSM 0.0370 25.09 0.159 1.231 0.120

TPSM + NPMR 0.0353 25.51 0.152 1.176 0.107
MTIA 0.0370 25.09 0.159 1.190 0.120

MTIA + NPMR 0.0354 25.57 0.151 1.155 0.108

MRAASource Driving FOMM LIA DAM DaGAN TPSM FNeVR Ours

Figure 4: Same-identity video reconstruction on the Voxceleb1 dataset. Our method generally
performs the best among a variety of baselines.

method outperforms other methods across all metrics on the two datasets. Specifically, large-margin
improvements on the reconstruction metrics (L1, PSNR, LPIPS) demonstrate the advantages of
learning motion refinement. What’s more, our method achieved the best motion quality (the best
score on the AKD metric) particularly on the more challenging CelebV-HQ dataset, highlighting
the powerful motion representation capabilities of our non-prior-based motion refinement approach.
The superior generated motion quality of our method is further validated by the best ARD and AUH
metric in cross-identity experiments in Table 2. The best AED score and FID score also indicate
that our method preserves the source face identity well during motion transfer. These significant
observations are further supported by the qualitative results presented in Fig. 4, Fig. 5, and Fig. 6.

Qualitative comparison: We conducted experiments on both the same-identity video reconstruction
and cross-identity face reenactment similar to previous methods [10, 29, 43], showcasing our qualita-
tive results in Fig. 4, Fig. 5, and Fig. 6. Our method consistently demonstrates greater robustness
against large motions (the first row of Fig. 4), detailed face deformations (the third row of Fig. 5
and the fourth row of Fig. 6), occlusions (the second and last row of Fig. 4), and varying light
conditions (the fourth row of the Fig. 4), etc. Additionally, our approach outperforms other methods
in generating precise facial details such as the eyes and lips, while avoiding common artifacts. To
sum up, our methods can effectively learn non-prior-based motion refinement, exhibiting a significant
improvement over prior-based motion representation that is limited on learning finer facial motions.

Model ablations: We performed a model ablation study to further evaluate the proposed Non-Prior-
based Motion Refinement module. As previously discussed in Equation (8), in the non-prior-based
initialization process, we initialize the motion flow using the structure correlation volume itself. We
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Source Driving FOMM LIA DAM DaGAN TPSM FNeVR OursMTIA

Figure 5: Cross-identity face reenactment on the Voxceleb1 dataset, our method consistently demon-
strates superior performance in generating high-fidelity results compared to existing methods.

Source Driving FOMM LIA DAM DaGAN TPSMMRAA OursMTIA

Figure 6: Cross-identity face reenactment on the CelebV-HQ dataset, our method consistently
demonstrates superior performance in generating high-fidelity results compared to existing methods.

denoted this model variant as NPMR. As shown in Table 3, our NPMR-only model did not yield
good results, highlighting the importance of prior-based initial motion estimation for learning finer
facial motions and the crucial role it plays in our non-prior-based motion refinement module. When
combined with specific prior motion estimations, such as that from the affine and thin plate spline
motion models, our method showed promising improvements over the original prior motion models.
These combinations with different prior motion models significantly demonstrate the flexibility of the
proposed non-prior-based motion refinement module, and its strong ability to promote the enhanced
motion representation over existing prior motion models.

Component ablations: We conducted a thorough examination of the inputs and outputs of our
non-prior-based motion refinement module through detailed ablations. Specifically, we explored the
impacts of the model variants of the source structure encoder without the input of a source image, the
flow updater without the input of warped source features, and the flow updater without the output
of occlusion or flow (i.e. only updating either occlusion or flow and keeping the other the same as
in the initialization process). The results are presented in Table 4. It is noteworthy that both the
warped source feature and the source image play an important role in the motion refinement process
as demonstrated by the decreased AKD and AED metric values on the w/o warped source feature
and w/o source image variants. Importantly, if we solely refine the occlusion map without updating
the motion flow (and vice versa), a significant decrease in AKD and AED metrics occurs, validating
the significance of our motivation to refine the coarse motion flow.
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Table 4: Component ablations of the inputs and outputs of the proposed non-prior-based motion
refinement module. We present results on the Voxceleb1 dataset.

L1 PSNR LPIPS AKD AED
w/o flow 0.0362 25.48 0.155 1.172 0.112

w/o occlusion 0.0356 25.48 0.152 1.175 0.112
w/o warped source feature 0.0357 25.52 0.153 1.160 0.110

w/o source image 0.0354 25.45 0.152 1.165 0.113
Ours full 0.0354 25.57 0.151 1.155 0.108

Source Driving Refined motion flow

Figure 7: Motion flow visualization of the refining process, we show refined motion flows of all
iterations. Note that flows of different resolutions are resized to the image resolution.

Motion flow visualizations: To further understand the motion refinement process, we visualize the
refined motion flows in different iterations. As can be seen in Fig. 7, the motion flow gets refined
from the initial iteration to the final iterations, corresponding to our description in Equation (7).

5 Conclusion

In this paper, we investigate the task of unsupervised face animation and propose a novel motion
refinement approach to address the inadequacies of existing prior-based motion models for estimating
finer facial motions. Our approach utilizes a structure correlation volume constructed from keypoint
features, to provide non-prior-based motion information, which is used to iteratively refine the coarse
motion flow estimated by a prior motion model. We conducted extensive experiments on challenging
benchmarks, and our results demonstrate that our approach enhances the capability of prior-based
motion representation through learning motion refinement.

Limitations: A major limitation of our approach is that it relies on the quality of the learned keypoints,
as we mainly construct our proposed structure correlation volume using these keypoints. While
current prior motion models may support the learning of significant keypoints, our method may still
be limited by the quality of keypoints that are learned in an unsupervised fashion. To overcome
this limitation, one potential solution would be to integrate model-based techniques that leverage
facial priors, such as predefined keypoints that are more structured. Another limitation is the identity
shift problem in cross-identity face animation, as keypoints often leak the face shape information
of a driving video. The issue can be alleviated by employing relative motion transfer as in existing
unsupervised animation methods [24, 25, 29]. Moreover, we could also explore prior motion models
that can disentangle the global head motion and micro-expression motion, like facevid2vid [34].

Social impact: Our method has the potential to be used in creating deepfakes, which could have
negative impacts. Therefore, individuals intending to use our technique for creating deepfakes should
obtain authorization to use the respective human face images. Nevertheless, our method can also be
utilized in creating imaginative image animations for entertainment purposes.

Acknowledgement: This work is supported by the National Natural Science Foundation of China
(No. 62176047), Shenzhen Fundamental Research Program (No. JCYJ20220530164812027), and
the Fundamental Research Funds for the Central Universities Grant (No. ZYGX2021YGLH208).
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Appendix

In this appendix, we present detailed information on the architectural design, evaluation metrics,
correlation pyramid, and parameter analysis on the number of keypoints and the number of iterations.

Architecture details: Our system mainly consists of a keypoint detector, a dense motion module,
the source and driving structure encoders, a flow updater, and an image generator. The keypoint
detector and dense motion modules are implemented using blocks similar to those used in previous
works [23, 29]. In contrast, we provide architecture details of our source and driving structure
encoders and image generator in Figure 8. All the modules are included in our provided codes for
easy reference and implementation.

Evaluation metrics: We mainly introduce four metrics that utilized third-party models for evaluation.

• Average Keypoint Distance (AKD [24]). This metric computes the average keypoint distance
between generated and ground-truth images. It is designed to evaluate the pose quality of the
generated images. We use existing detectors [3] to extract the facial landmarks.

• Average Euclidean Distance (AED [24]). This metric is designed to assess the identity quality of
generated images based on specific feature representations, that are extracted from a pre-trained
facial identification network [1]. The average Euclidean distance between generated and ground-
truth video frames is computed.

• Average Rotation Distance (ARD [5]). We use the toolbox py-feat [14] to extract the Euler angles
of the head poses, and then compute the average Euler angles distance between the generated and
driving images. This metric evaluates the head pose quality.

• Action Units Hamming distance (AUH [5]). This metric measures the quality of facial expression,
it computes the average Hamming distance between action units of generated and driving images.
We use the toolbox py-feat [14] to extract facial action units.

Details of the correlation pyramid: We pool the structure correlation volume C ∈ Rh×w×h×w

in the last two dimensions to obtain the pyramidal structure correlation volume {Ci ∈
Rh×w×h/2i×w/2i}Pi=0. In each iteration, we sample patch correlation features on all Ci’s in the
pyramid, as the pyramid design aims to capture more rich motion features of different scales, which
is inspired by the optical flow method RAFT [31]. Both the patch radius and the pyramid level can
expand the search space of the structure correlation volume, resulting in the expanded correlation
feature dimensions. In the main paper’s experiments, we empirically set P to 1 and r to 3.

Number of keypoints: Following previous methods [24, 29], we configured the number of keypoints
to 10 in the main paper. Here we conduct experiments to study this hyperparameter, with FOMM
adopted as the prior motion model. As shown in Table 5, in a relatively sparse configuration such
as 10-20 keypoints, our non-prior-based motion refinement approach can consistently improve the
performance of the prior motion model.

Number of iterations: We set the iteration number according to the image resolutions in the
main paper. Specifically, we start the iteration at a lower feature resolution H/32 ×W/32 that is
meaningful for motion flow for warping, and end the iteration at the highest resolution H ×W , thus
the total iterations are set to 6 for a 256-resolution image. By changing the highest resolution to
H/2×W/2, H/4×W/4, H/8×W/8, we obtain iteration settings of 5, 4, 3 accordingly. We then
analyze the performance and run time of different iteration settings. As seen in the table, the FPS
goes down as the iteration number increases. At the same time the performance is generally better
with higher iterations, especially for the motion-related metric AKD and identity-related metric AED.
Overall, the 5-iteration setting can be a good trade-off.
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Table 5: Parameter analysis on the number of keypoints. We present results on the Voxceleb1 dataset.
L1 PSNR LPIPS AKD AED

FOMM-kp10 0.0386 24.62 0.164 1.254 0.124
NPMR+FOMM-kp10 0.0367 25.15 0.156 1.224 0.114

FOMM-kp15 0.0376 24.91 0.161 1.245 0.123
NPMR+FOMM-kp15 0.0360 25.34 0.154 1.199 0.108

FOMM-kp20 0.0376 24.97 0.160 1.222 0.118
NPMR+FOMM-kp20 0.0356 25.49 0.152 1.194 0.107

Table 6: Parameter analysis on the number of iterations. We present results on the Voxceleb1 dataset.
Iteration Number L1 PSNR LPIPS AKD AED FPS

3 0.0355 25.52 0.152 1.164 0.109 21.30
4 0.0353 25.57 0.151 1.156 0.107 20.45
5 0.0354 25.57 0.151 1.151 0.108 19.56
6 0.0354 25.57 0.151 1.155 0.108 18.57
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Figure 8: Detailed architectures of the driving structure encoder, the source structure encoder, and the
image generator.
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