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Abstract

Recently, serious concerns have been raised about the privacy
issues related to training datasets in machine learning algo-
rithms when including personal data. Various regulations in
different countries, including the GDPR, grant individuals to
have personal data erased, known as ‘the right to be forgotten’
or ‘the right to erasure’. However, there has been less research
on effectively and practically deleting the requested personal
data from the training set while not jeopardizing the overall
machine learning performance. In this work, we propose a
fast and novel machine unlearning paradigm at the layer level
called layer attack unlearning, which is highly accurate and
fast compared to existing machine unlearning algorithms. We
introduce the Partial-PGD algorithm to locate the samples to
forget efficiently. In addition, we only use the last layer of
the model inspired by the Forward-Forward algorithm for un-
learning process. Lastly, we use Knowledge Distillation (KD)
to reliably learn the decision boundaries from the teacher us-
ing soft label information to improve accuracy performance.
We conducted extensive experiments with SOTA machine un-
learning models and demonstrated the effectiveness of our ap-
proach for accuracy and end-to-end unlearning performance.

1 Introduction
Deep neural networks (DNNs) have achieved significant
progress and dramatic performance gains in challenging ma-
chine learning tasks in recent years. Among others, large
amounts of available training datasets have been the foun-
dation for enabling the revolution of large-scale models.
However, recently, due to the privacy concerns raised by
ChatGPT (Bourtoule et al. 2021; Burgess 2023), the train-
ing dataset would contain personal information or pos-
sible information that can leak one’s privacy. For exam-
ple, many vision-based applications would involve training
one’s face images, which are personally identifiable infor-
mation (PII). Several nations have implemented some types
of regulations, such as the General Data Protection Regu-
lation (GDPR) (Mantelero 2013) and the EU/US Copyright
Law (Kaye 2023; Kublik 2023), in order to address the po-
tential misuse of personal information and further grant in-
dividuals the right to have personal data erased, known as
‘the right to be forgotten’ or ‘the right to erasure.’ The goal

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of such regulations is to provide data owners the right to re-
quest and erase the personal or copyrighted data they want
if they have not agreed and consented in the first place.

Therefore, companies using personal data should delete
the requested data from the training set. One potential ap-
proach for corporations to mitigate the aforementioned con-
cerns involves the exclusion of the required dataset from the
training dataset, followed by a complete retraining process
from scratch. Nevertheless, as models like ChatGPT get big-
ger and datasets grow, retraining them from scratch requires
excessive computational resources and time.

Machine unlearning has emerged to tackle this chal-
lenge, allowing ML models to discard specific data selec-
tively. (Bourtoule et al. 2021) Machine unlearning can be
divided into two primary strategies: instance-wise and class-
wise unlearning. The former involves forgetting knowledge
related to specific instances from ML models, while the
latter, which we focus on, completely removes particular
classes from ML models. For example, face recognition
and social media classification systems may need to erase
data related to specific religion, nationality, age, disease,
gender, etc., for security and privacy reasons. A few ap-
proaches (Chen et al. 2023; Cha et al. 2023) have explored
the adversarial attacks for unlearning by harnessing the for-
getting data’s noise to navigate the adjacent latent space.
However, they used the original PGD (Madry et al. 2017)
for unlearning, which can be slow.

In this work, we propose Layer Attack Unlearning, a
fast and novel machine unlearning algorithm to tackle the
class-wise unlearning problem. Our approach first intro-
duces Partial-PGD, which is a new adversarial attack gen-
eration strategy to efficiently search the close vicinity of the
data points to delete (See Fig. 1). Our proposed Partial-PGD
is designed only to attack fully connected (classification)
layer for probing the neighboring latent space to shift the
forgetting data. Surprisingly, we do not utilize any feature
layer information while achieving efficiency and accuracy.
As shown in Fig. 1, Partial-PGD is much more efficient than
the original PGD, as it can create adversarial examples only
via the classification layer.

In particular, Hinton (2022)’s Forward-Forward (FF) al-
gorithm has inspired us, and we provide the foundation of
the concept of layer-based attack for machine unlearning
based on FF. According to Hinton (2022), each layer un-
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dergoes individualized training in the Forward-Forward al-
gorithm to achieve its specific objectives. Similarly, in line
with FF research, we aim to accomplish machine unlearn-
ing objectives at layers with characteristics directly relevant
to data and features we want to forget. Hence, we focus on
performing machine unlearning at the layer level rather
than using the entire model. Our layer-wise unlearning ap-
proach clearly avoids unnecessary loss calculations during
the unlearning process. Furthermore, updating only the lay-
ers’ weights related to forgetting data will ensure a reduction
in computational costs.

Finally, we employ Knowledge Distillation (KD) (Hinton,
Vinyals, and Dean 2015) to modify the decision boundary
for the forgetting data and preserve the decision boundary
for the retain data. The primary objective in unlearning is to
utilize hard labels and acquire soft label information from
the teacher model for unlearning tasks to maintain perfor-
mance. We show that it achieves a stable placement of for-
getting data in the space subjected to carefully created ad-
versarial examples. We incorporated KD into our final loss
function to improve performance.

Our main contributions are summarized as follows:
• We introduce Layer Attack Unlearning (LAU) algorithm,

which is a novel and fast unlearning method by proposing
Partial-PGD and performing unlearning at the layer level.

• In addition, we propose KD method to further improve
the overall accuracy and data erasure performance by
effectively distilling the decision boundary knowledge
from the teacher model for unlearning task.

• Our extensive experimental results with seven baselines
with four different backbones, including ViT over three
other datasets, show that our approach outperforms pre-
vious SOTA methods in accuracy and time performance
while completely forgetting the requested class.

2 Related Work
There are two main approaches to the current machine un-
learning problem in DNNs. The first involves considering
unlearning during the learning process, while the second fo-
cuses on fine-tuning. This paper will refer to the approach
that considers the learning process as “data-driven” and the
approach that involves fine-tuning as “model-agnostic.”

2.1 Data-Driven Unlearning Methods
A “data-driven” approach utilizes data-centric strategies
such as partitioning and augmentation (Nguyen et al. 2022)
to address unlearning. SISA (Bourtoule et al. 2021) and Se-
lective Forgetting (Shibata et al. 2021) are two representative
data-driven unlearning methods. In SISA, data is divided
into shard units, sequentially trained in slices, and multiple
model checkpoints are created. Once an unlearning query is
requested, it reverts the query to the checkpoint before learn-
ing and retrains this reverted query with the ensemble tech-
nique. However, it is challenging to calculate the probability
of encountering unlearning queries on data points.

On the other hand, Selective Forgetting (Shibata et al.
2021) involves lifelong learning to perform unlearning. A
“mnemonic code” signal is embedded in the data during
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Figure 1: Illustration of the original PGD vs. Partial-PGD.
While the original PGD involves backpropagation to com-
pute xadv with respect to input x for all the layers, (b) Partial-
PGD computes ℓadv in Fc

θ after passing x through Ff
θ to cal-

culate ℓ. Step in both (a) and (b) indicates the iteration.

training. During the unlearning process, the mnemonic code
information is selectively incorporated into the loss func-
tion to remove forgetting data. This strategy requires storing
mnemonic codes for all data points, considering unlearning
queries before building the original model. This could be
more practical in a real-world scenario.

2.2 Model-Agnostic Unlearning Methods

A “model-agnostic” approach is a methodology for han-
dling the unlearning process by adjusting the model’s learn-
ing parameters to achieve data unlearning (Nguyen et al.
2022). Such approaches include various methods such as
Summation form (Cao and Yang 2015), Negative Gradi-
ent (Golatkar, Achille, and Soatto 2020), Fisher Forget-
ting (Golatkar, Achille, and Soatto 2020), Boundary un-
learning (Chen et al. 2023), Instance-wise Unlearning (Cha
et al. 2023), etc. Some methods utilize adversarial at-
tacks to the original model to avoid naively excluding
and deleting forgetting data. Among the mentioned algo-
rithms, approaches like ours include Boundary unlearning
and Instance-wise Unlearning. These two algorithms per-
form unlearning by utilizing adversarial attacks to transition
forgettable data to nearby spaces. However, a significant dif-
ference between our approach and these methods lies in the
target of the attack. Our approach directs the unlearning pro-
cess towards layers with specific classification objectives in-
stead of using entire layers. Furthermore, we aim to intro-
duce effective ways of utilizing PGD in unlearning.

3 Our Approach

The main objective of our approach is to accurately
and efficiently perform class-wise unlearning, which is to
completely remove specific classes from the classification
model. In this section, we describe our Partial-PGD, KD ar-
chitecture, and our connection to the FF algorithm.
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Figure 2: The overall procedure of our approach. Our method involves the unlearning task on the classification layer instead
of the entire model, where each classification layer represents the student and the teacher model. For the unlearning task, we
perform Knowledge Distillation by combining the teacher logit and student logit via the unlearned mask. The teacher logit is
derived from the adversarial examples obtained after applying Partial-PGD.

3.1 Preliminaries and Notations
First, we formulate a machine unlearning problem as fol-
lows: We define a training dataset Dtrain = {xi, yi}Ni=1, con-
sisting of inputs xi ∈ X and their corresponding class labels
yi ∈ Y . The forgetting dataset Df is a subset of Dtrain that
we intend to forget from the pre-trained model. Conversely,
the retain dataset Dr = Dtrain \Df is the dataset we want to
preserve the overall performance.

Next, we define the original model Mθ : Rn → Rn,
which comprises a set of feature layers denoted by Ff

θ :
Rn → Rn and a fully connected layer denoted as Fc

θ :
Rn → Rn, where θ represents the optimal parameters for
the model trained on Dtrain. The following provides a com-
positional representation of the model Mθ as Fc

θ ◦F
f
θ . Also,

we denote xadv to represent the adversarial examples (Good-
fellow, Shlens, and Szegedy 2014) for the input data x. In
particular, we define ℓadv as the adversarial example from
Partial-PGD, generated from the intermediate latent feature
ℓ obtained from the outputs of Ff

θ , as shown in Fig. 1.

3.2 Partial-Projected Gradient Descent (PGD)
The main reason for employing adversarial examples is to
search and identify neighboring candidate spaces more ef-
fectively that will assign the forgetting data samples. As-
signing forgetting classes to random or irrelevant classes can
dramatically reduce downstream task performance.

Therefore, carefully exploring the neighboring space al-
lows us not only to forget Df but also to preserve the
decision boundary of other classes. Hence, adversarial at-
tacks (Madry et al. 2017; Chen et al. 2023) can be explored
below:

xt+1 = Π(xt + (ϵ · sign(∇xL(x, y, θ))), (1)

where the parameter θ represents the weights of the target

model under attack, and generated noise for crafting ad-
versarial examples is produced by computing the gradient
∇xL of the loss function L with respect to the input x. This
noise is added to xt and then projected using the projection
method Π to calculate xt+1, which is repeated t times. Once
xt+1 represents xadv, it is an adversarial example.

However, we clarify the purpose of adversarial examples
used in our work, which differs from prior approaches. The
original PGD approach may generate excessive noise and
slow the unlearning process considerably. Therefore, there
is no need to calculate gradients throughout the entire model
to create adversarial examples.

Hence, our proposed Partial-PGD utilizes Fc
θ to generate

adversarial examples for the unlearning process, as shown
in Fig. 1. This technique effectively identifies the neighbor-
ing space to allocate Df , the forgetting data, similar to con-
ventional PGD. However, it significantly reduces unlearning
time by omitting feature layer information, as depicted in
Fig. 1. We define our Partial-PGD as follows:

ℓt+1 = Π(ℓt + (ϵ · sign(∇ℓL(ℓ, y, θ))), (2)
where Partial-PGD applies an adversarial attack to the in-
termediate latent ℓ obtained from Ff

θ , where ℓ undergoes
gradient computation based solely on passing through Fc

θ .
Then, the result is mapped to the nearby space of a different
label of ℓ and becomes ℓadv, which we use for unlearning Df

as knowledge to be forgotten.

3.3 Layer Unlearning
While other approaches use entire layers for unlearning, we
focus on unlearning only the relevant layers. Inspired by the
FF technique, we focus on the classification layer Fc

θ to for-
get specific classes in the model for class-wise unlearning.
Therefore, our layer unlearning focuses on only modifying
the parameters of Fc

θ tied to classification instead of the en-
tire layers and model Mθ to forget Df effectively.



We define the following equation to describe our unlearn-
ing process, where we focus on the Fc

θ during the unlearning
process to remove Df from the model:

Mθ∗ = Fc
θ∗ ◦ Ff

θ , (3)

where θ∗ is the ideal parameters after forgetting Df .
We show that layer unlearning accelerates the unlearning

process by selectively updating relevant layer weights and
optimizing efficiency. Interestingly, it outperforms models
with whole layers in accuracy.

3.4 End-to-End Unlearning Process
We describe our end-to-end unlearning process, where we
apply the KD to improve the overall performance further.
As illustrated in Fig. 2, the classification layer Fc

θ serves as
our student model Sθ. Additionally, at the beginning of each
epoch, we duplicate the Sθ as our teacher Tθ. The model
uses forgetting data Df as input to create an intermediate
latent feature ℓf through the feature layer Ff

θ . Then, ℓf be-
comes an adversarial example ℓadv

f after applying a Partial-
PGD on the Tθ.

Next, ℓf and ℓadv
f are passed through Sθ and Tθ, re-

spectively, becoming logits for each student and teacher, as
shown in Fig. 2. Then, the logit obtained from Sθ is com-
pared with the ground truth yf . If a discrepancy is observed,
it is considered unlearned. Then, the unlearned logit replaces
the adversarial logit from Tθ. This student’s logit is used to
compute the cross-entropy loss as follows:

LCE =

{
CE(Sθ(ℓf ), y

adv
f ) if ySθ

= yf
CE(Sθ(ℓf ), ySθ

) otherwise,
(4)

where ySθ
represents the predicted label from Sθ(ℓf ), and

CE is the cross-entropy function. This loss leaves the un-
learned data in a state, where it makes wrong (unlearned)
predictions. If not, it is trained to be a predicted label yadv

f

of adversarial logit, leading to its unlearning process. Next,
let Z be the double Softmax representation, which is defined
as:

Z =

{
σ(Tθ(ℓadv

f )) if ySθ
= yf

σ(Sθ(ℓf )) otherwise,
(5)

where σ represents Softmax function. In Eq. 5, we per-
formed double Softmax to distill knowledge by adjusting the
probability distribution of the output from Tθ. This approach
is intended to convey soft label information to Sθ. Exclu-
sively unlearning Fc

θ maintains the decision boundaries of
retain data, and slightly improves the overall accuracy. But,
layer unlearning without double Softmax showed variable
accuracy, as shown in the Fashion-MNIST dataset (Xiao,
Rasul, and Vollgraf 2017). We show this effect in Sec-
tion 4.3. Next, we define our distillation loss as follows:

LDI = KL
(
σ(

Sθ(ℓf )

T
), σ(

Z
T
)

)
, (6)

where knowledge is distilled from Z of Tθ and KL is the
KL divergence. During distillation, the computation of loss

Algorithm 1: End-to-End Unlearning Process
Input: Ff

θ , Fc
θ , Df

Parameter: Learning rate η, Hyper-parameters α, Temperature T ,
Number of Epochs E
Output:Mθ∗

1: Sθ ← Fc
θ

2: θ∗ ← θ
3: for e in range E do
4: Tθ∗ ← Sθ∗
5: L ← (1− α) · LCE + α · T 2 · LDI

6: θ∗ ← θ∗ − η · L
7: if Fc

θ∗ ◦ Ff (Xf )! = Yf then
8: break
9: end if

10: end for
11: Mθ∗ ← Fc

θ∗ ◦ Ff
θ

12: returnMθ∗

(a) (b) (c)

Adversarial exampleRetain data Forget data

Original Boundary
Unlearned Boundary

Unlearning Boundary

Figure 3: Boundary evolution in the unlearning process.
As shown in (a), the original model receives the initial
knowledge about the boundary. As the epoch progresses, the
boundary information updates as depicted in (b) and (c) from
the distilled knowledge.

LDI between the outputs of Sθ and Tθ focuses on creating
a similar boundary to the teacher model, ensuring perfor-
mance while removing information of Df . The temperature
T is a hyper-parameter. Generally, increasing T will gener-
ate smoother soft labels that assists Sθ in mimicking Tθ. The
effects of changes in T are described in Suppl. Mat.

Using LCE and LDI , our final loss function is constructed
as follows:

L = (1− α) · LCE + α · T 2 · LDI , (7)

where the value of α represents the weight assigned to the
loss between LCE and LDI . As a hyper-parameter, α ranges
from 0 to 1. Assigning additional weight to LCE may boost
unlearning time but decrease performance. Conversely, if we
provide more weight to LDI , the unlearning speed may slow
down but can increase accuracy. We conducted the ablation
study for α values to capture the trade-off. The effects of
changes in the exponent of T 2 are described in Suppl. Mat.

In addition, we provide the end-to-end unlearning pro-
cess in Alg. 1. We distill knowledge from Tθ, while grad-
ually reducing boundaries. Algorithm 1 finishes either when
all epochs are completed or when Df becomes unlearned
within a batch during an epoch. Finally, we obtain our un-
learning model Mθ∗ by combining Ff

θ with the classifica-
tion layer, Fc

θ∗ , as shown in Eq. 3.



Summary. In Fig. 3, we pictorially describe our end-to-
end unlearning process by displaying the boundary change
for the retain and forgetting data.

4 Experimental Results
We experiment and evaluate popular unlearning benchmarks
used in other unlearning research (Golatkar, Achille, and
Soatto 2020; Chen et al. 2023; Cha et al. 2023) on image
classification tasks.
Datasets and Models. We conducted experiments on
CIFAR-10 (Krizhevsky, Hinton et al. 2009), Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), and VG-
GFace2 (Cao et al. 2018) datasets. For the VGGFace2
dataset, we randomly select ten individuals from a train-
ing dataset containing over 600 images, ensuring a bal-
anced gender distribution. Furthermore, we perform training
from scratch for three different architectures: VGG16 (Si-
monyan and Zisserman 2014), ResNets (He et al. 2016), and
ViT (Dosovitskiy et al. 2020).
Baseline Approaches. The subsequent unlearning baseline
methods are used:
1) Original: We train the model on the Dtrain dataset before
undergoing the unlearning process.
2) Retrain: We train the model from scratch utilizing Dr as
the retrained model, an optimal unlearning strategy.
3) Negative Gradient (NG) (Golatkar, Achille, and Soatto
2020): We fine-tune the Original with Df by following the
direction of gradient ascent.
4) Fine-tune (Golatkar, Achille, and Soatto 2020): We fine-
tune the Original using Dr with a large learning rate.
5) Random Label (Golatkar, Achille, and Soatto 2020):
We fine-tune the Original by assigning arbitrary labels ran-
domly to Df .
6) Fisher Forgetting (Golatkar, Achille, and Soatto 2020):
The Fisher Forgetting model identifies influential parame-
ters significantly affecting Df and then introduces noise to
neutralize their impact.
7) Boundary Shrink (Chen et al. 2023): We create adver-
sarial examples from Df and assign new adversarial labels
to shrink towards different classes.
8) IWU (Cha et al. 2023): Generating adversarial instances
for distinct labels via Df and incorporating a regularization
term. While initially designed for instance-wise learning, we
adapt this method for class-wise unlearning problems.
Implementation Details and Evaluation Metrics. Our
method and other baselines are implemented in Python 3.7
and use the PyTorch library (Paszke et al. 2019), employ-
ing a single NVIDIA GeForce RTX 3090 GPU. The initial
model was trained using an LR scheduler and an SGD op-
timizer with specific settings (momentum: 0.9, weight de-
cay: 5 × 10−4, initial learning rate: 0.01). For the unlearning
phase, we employ the SGD optimizer and conduct exper-
iments with varying learning rates (ranging from 0.001 to
0.01), KD α values (ranging from 0.3 to 0.7), KD temper-
ature T value (fixed at 4), and Partial-PGD values (ranging
from 0.4 to 1.0). As defined, Df and Dr represent the for-
getting and retain data, respectively. Additionally, Dtf cor-
responds to the test forgetting data, and Dtr represents the

test retain data. We assess the accuracy of all four different
datasets.

4.1 Accuracy Performance
To achieve the best unlearning performance, it should com-
pletely forget information related to Df . Therefore, guar-
anteeing accuracy on a par with those achieved by the Re-
train for both Df and Dr will be the best. Table 1 presents
test results from different classification models, datasets,
and metrics. The tested models include VGG16, ResNet18,
ResNet50, and ViT. The datasets used for testing were
CIFAR-10, Fashion-MNIST, and VGGFace2. In addition to
the accuracy metric, we evaluate the performance using the
unlearning score (US) as follows:

US(accr, accf ) =
exp(

accr
100

) + exp(1−
accf
100

)− 2

2 · (exp(1)− 1)
, (8)

where accr and accf denote the accuracy of the retain and
forgetting dataset, respectively. If the Dtr approaches 100%
and Dtf approaches 0%, the US metric approaches 1, indi-
cating a stable result on the unlearning process. We provide
a more detailed explanation of why this metric is useful for
unlearning in Suppl. Mat.

Finally, Table 1 presents the performance of each unlearn-
ing method for a specific single class in the aforementioned
datasets. We measure the accuracy for datasets Dr, Df , Dtr,
and Dtf , along with the metric US. For the NG, the unsta-
ble variability in the loss of negative gradient contributes to
less favorable overall performance results. Fine-tune shows
strong performance in forgetting and retaining information.
Nevertheless, this methodology requires utilizing the com-
plete dataset Dr during training. Such extensive data is time-
consuming, and we analyze and compare their worse time
performance in Table 2. In the case of Random Label, ex-
cept for VGGFace2’s ResNet18, most cases have poor accu-
racy and US. Due to the random nature of forgetting, con-
verging towards arbitrary labels in the classification space is
challenging, resulting in low performance.

Fisher Forgetting exhibits poor performance, with low
accuracy and US on the overall test. Also, the Fisher ma-
trix information required a significant amount of time. For
Boundary Shrink, they also utilized adversarial attack ex-
amples, but they used the hard label information of the attack
examples on Df , which resulted in an unstable unlearning
process. IWU approach involves utilizing adversarial attack
examples while incorporating regularization to achieve a sta-
ble unlearning process. However, this gains an average US
of 0.8587 in the overall test.

Finally, Ours completely removes the forgetting dataset
(0% accuracy) on all the test cases and retains the highest
unlearning performance. The accuracy for both Df and Dtf

reaches 0, while the accuracy for Dr and Dtr is comparable
to or sometimes even higher than the Retrain. Also, ours
demonstrates superior performance compared to almost all
baseline models across various scenarios, with a high US
average of 0.9443. Our approach that utilizes Partial-PGD
and KD-based unlearning processes on layers with explicit
objectives clearly achieves the best unlearning performance.



Table 1: Accuracy and Unlearning Score (US) performance on the CIFAR-10, Fashion-MNIST and VGGFace2 datasets. Bold
font highlights the highest performing results, while underlining indicates the second-best performance.

Model VGG16 ResNet18 ResNet50 ViT
Metrics Dr ↑ Df ↓ Dtr ↑ Dtf ↓ US Dr ↑ Df ↓ Dtr ↑ Dtf ↓ US Dr ↑ Df ↓ Dtr ↑ Dtf ↓ US Dr ↑ Df ↓ Dtr ↑ Dtf ↓ US

C
IF

A
R

-1
0

Original 99.98 100 92.07 96.70 0.4494 99.98 100 93.13 96.60 0.4575 99.94 99.96 93.44 95.0 0.4646 88.06 93.52 81.48 88.40 0.4020
Retrain (Optimal) 99.89 0 91.98 0 0.9390 99.79 0 92.50 0 0.9428 99.77 0 92.48 0 0.9426 95.0 0 81.0 0 0.8631
Negative Gradient 88.53 16.96 79.86 17.0 0.7320 93.85 28.38 86.30 25.54 0.7204 88.75 24.77 82.52 23.30 0.7087 85.264 18.69 79.74 16.7 0.7332

Fine-tune 99.63 0 90.09 0 0.9253 99.63 0 91.25 0 0.9337 99.45 0 90.79 0 0.9304 90.96 1.77 82.43 1.62 0.8598
Random Label 80.99 3.56 72.40 3.69 0.7805 91.38 11.09 84.00 10.98 0.8007 81.30 12.91 76.62 11.84 0.7467 77.58 15.10 73.42 14.38 0.7094

Fisher Forgetting 46.78 55.24 44.61 52.30 0.3414 59.0 52.34 55.57 52.2 0.3945 58.17 58.06 55.95 56.20 0.3781 42.68 66.34 43.34 62.30 0.2911
Boundary Shrink 90.73 10.16 81.53 9.58 0.7943 95.88 9.75 87.91 10.24 0.8329 86.03 3.94 80.09 3.46 0.8303 85.22 0.61 79.29 0.28 0.8498

IWU 90.81 0 82.35 0.10 0.8712 89.41 0 82.55 0 0.8733 86.11 0 79.98 0 0.8564 82.48 3.92 77.01 2.58 0.8173
Ours 99.97 0 92.18 0 0.9405 99.97 0 93.53 0 0.9504 99.92 0 93.52 0 0.9503 87.51 0 81.14 0 0.8640

Fa
sh

io
n-

M
N

IS
T

Original 99.83 100 94.38 99.60 0.4579 98.45 99.96 94.71 99.70 0.4601 98.49 99.98 94.68 99.6 0.4601 91.27 98.71 88.28 97.10 0.4210
Retrain (Optimal) 100 0 93.40 0 0.9494 100 0 93.38 0 0.9493 100 0 93.28 0 0.9485 89.44 0 86.76 0 0.9019
Negative Gradient 97.77 0 92.63 0 0.9438 92.57 1.39 90.04 0.84 0.9183 84.44 12.63 81.42 10.22 0.7890 71.77 0.10 70.38 0.10 0.7964

Fine-tune 99.67 0 93.07 0 0.9470 97.23 0 91.93 0 0.9386 98.83 0 92.85 0 0.9454 96.08 0.01 88.72 0.10 0.9148
Random Label 98.17 8.34 92.43 23.55 0.7763 76.80 11.47 74.80 11.54 0.7375 75.99 10.77 73.73 10.72 0.7368 84.18 11.36 82.10 13.04 0.7736

Fisher Forgetting 62.33 28.81 60.32 28.10 0.5471 72.78 57.65 71.03 54.10 0.4705 60.59 84.01 60.25 82.60 0.2958 43.42 88.01 42.60 86.3 0.1972
Boundary Shrink 86.88 1.47 81.66 1.12 0.8586 95.78 34.54 92.31 32.40 0.7225 83.50 30.23 80.60 27.08 0.6728 70.31 2.04 68.74 2.70 0.7665

IWU 99.09 0 93.68 0 0.9515 93.82 0 90.80 0 0.9304 80.17 0 77.94 0 0.8434 82.85 0 81.21 0 0.8645
Ours 99.51 0 93.89 0 0.9531 97.98 0 94.54 0 0.9579 98.14 0 94.48 0 0.9575 90.11 0 87.44 0 0.9066

V
G

G
Fa

ce
2

Original 100 100 96.67 98.41 0.4787 100 100 95.88 98.41 0.4727 99.12 98.43 93.67 100 0.4514 94.71 96.86 95.43 93.82 0.4832
Retrain (Optimal) 99.98 0 96.67 0 0.9740 100 0 96.20 0 0.9705 99.10 0 94.77 0 0.9596 92.63 0 93.32 0 0.9488
Negative Gradient 96.85 15.67 90.50 4.76 0.8915 97.32 9.75 89.55 12.69 0.8272 86.80 4.73 78.79 3.17 0.8241 91.16 1.63 92.34 0 0.9416

Fine-tune 97.86 0 89.87 0 0.9416 91.42 0 85.91 0 0.8960 95.18 0 90.03 0 0.9249 96.91 1.63 84.85 3.70 0.8600
Random Label 90.32 1.74 79.11 1.58 0.8384 96.76 6.44 87.34 0 0.9059 88.24 13.19 82.43 9.52 0.8007 92.06 9.68 91.04 8.64 0.8667

Fisher Forgetting 46.24 31.01 42.72 50.79 0.3400 72.78 57.65 71.03 54.10 0.4705 76.28 4.52 71.83 7.93 0.7455 60.80 71.07 53.58 60.49 0.3472
Boundary Shrink 99.48 17.25 93.04 5.36 0.9055 94.02 5.40 86.08 5.36 0.8559 93.85 5.36 85.78 5.0 0.8565 86.92 6.46 86.81 4.25 0.8693

IWU 99.21 10.80 94.46 4.76 0.8650 75.23 0.17 69.77 0 0.7936 78.62 0 69.14 0 0.7899 76.25 0.27 78.66 0 0.8479
Ours 99.70 0 96.70 0 0.9743 99.79 0 95.34 0 0.9639 97.46 0 93.28 0 0.9485 95.18 0 95.50 0 0.9651

Table 2: Total extra data used and time consumption in sec
for training different unlearning methods.

Retrain Fisher Fine- NG Random Boundary IWU OursForgetting tune Label Shrink

C
IF

A
R

-1
0

Total Extra 45,000 45,000 45,000 5,000 5,000 5,000 5,000 5,000Data Used
Time w/ VGG16 3,683 9,710 433 73 24 116 1351 3.76

Time w/ ResNet18 2,871 12,526 546 153 30 191 362 4.37
Time w/ ResNet50 4,705 19,850 1,061 174 57 471 1513 7.76

Time w/ ViT 4,441 13,238 479 78 23 163 1563 25.93

Fs
hi

on
-M

N
IS

T Total Extra 54,000 54,000 54,000 6,000 6,000 6,000 6,000 6,000Data Used
Time w/ VGG16 2,309 8,526 430 85 23 214 1072 8.75

Time w/ ResNet18 2,768 12,116 582 103 30 715 223 5.19
Time w/ ResNet50 5,758 22,013 1,229 206 76 929 967 9.14

Time w/ ViT 2,155 8,377 487 80 25 282 546 13.39

V
G

G
Fa

ce
2

Total Extra 5,726 5,726 5,726 574 574 574 574 574Data Used
Time w/ VGG16 1,840 1,295 468 400 17 338 548 5.6

Time w/ ResNet18 1,861 1,354 670 140 27 473 1258 6.51
Time w/ ResNet50 3,721 2,597 3,291 484 157 503 1837 17.77

Time w/ ViT 2,155 1,428 665 84 27 187 783 6.74

4.2 Data Usage & Time Performance
Table 2 presents each method’s elapsed time and data usage.
The Retrain, Fisher Forgetting, and Fine-tuning leverage

Figure 4: Impact of hyper-parameter α in Knowledge Distil-
lation vs. Accuracy on CIFAR-10 with ResNet18.

Table 3: Original PGD vs. Partial-PGD.

Original PGD Partial PGD
Dtr Dtf Time (s) Dtr Dtf Time (s)

VGG16 92.03 0 14.18 92.18 0 3.76
ResNet18 92.97 0 18.19 93.53 0 4.37
ResNet50 91.84 0 44.15 93.52 0 7.76

ViT 78.07 0 237.36 81.14 0 25.93

the entire Dr dataset, resulting in significant time costs for
unlearning. Including our method, the rest of the unlearning
methods utilize only Df . In the case of Fisher Forgetting,
it takes a longer time than the Retrain, and its unlearning
performance is significantly poor. While the Fine-tune ex-
hibits favorable unlearning performance, it comes with the
drawback of consuming a considerable time. However, our
method showcases optimal unlearning performance, while
consuming only 3.76 seconds in the quickest scenario. To
summarize, our approach exhibits higher efficiency, com-
pared to competing methods.

4.3 Ablation Study
We performed several different ablation experiments to ana-
lyze and show the benefits of our approach.

Original PGD vs. Partial-PGD. Table 3 compares un-
learning performance when applying the original PGD vs.
Partial-PGD within our method on the CIFAR-10 dataset.
While the original PGD yields high unlearning perfor-
mance, Partial-PGD indicates even superior outcomes. No-
tably, Partial-PGD accelerates the unlearning process by up
to nearly tenfold compared to the original PGD.

Double Softmax. In our technique, the teacher logits un-
dergo a softmax function before being integrated into the



Figure 5: Visualization of decision boundary for the CIFAR-10 dataset in ResNet18, where each point represents a sample
colored with the predicted classes. Red dots in (a) are the data to be removed, which are not showing in (b) and (c), indicating
the successful unlearning. Similar plots for other models are provided in Suppl. Mat.

Table 4: Effect of Softmax vs. Double Softmax.

w/o Double Softmax w/ Double Softmax
Dtr Dtf Time (s) Dtr Dtf Time (s)

VGG16 84.74 0 10.9 93.89 0 8.75
ResNet18 91.42 0.1 25.87 94.54 0 5.19
ResNet50 80.91 0 93.49 94.48 0 9.13

ViT 87.01 0 61.37 87.44 0 13.39

Table 5: The changes in time and accuracy performance with
the reduction in Df data on the CIFAR-10.

Model VGG16 ResNet18 ResNet50 ViT
Total Extra 2,500 500 2,500 500 2,500 500 2,500 500Data Used

M
et

ri
cs

Dtr 92.42 92.38 93.51 93.38 93.63 93.37 81.14 81.6
Dtf 0 0 0 0 0 0 0 0.1
US 0.9422 0.9420 0.9503 0.9493 0.9512 0.9493 0.8640 0.8662

Time 1.91 1.21 2.28 1.45 3.81 1.62 25.63 14.55

distillation loss. We have coined this method “Double Soft-
max”, where Double Softmax enhances the robustness of
our method across diverse datasets and models. And, Table 4
presents unlearning performance with and without double
Softmax in our methods on the Fashion-MNIST dataset.

Data Usage Ratio. The class-specific Df dataset for one
class in CIFAR-10 contains 5,000 samples. As shown in
Table 5, we reduced the dataset size to 50% (2,500) and
10% (500) for each model to perform the unlearning task.
We measure the accuracy, US, and execution time of Dtr,
Dtf . In the following scenario, all models completed the
unlearning for 2,500 samples, but ViT still had 0.1% retain-
ing for 500 samples. The execution speed increases as the
size of Df decreases. Our experiment shows the potential
for achieving superior unlearning performance by focusing
on critical subsets of Df rather than employing the complete
dataset, saving time nearly seven times.

Hyper-parameter α in KD. As shown in Fig. 4, we ex-
amine the accuracy variation of Dtr and Dtf with respect

to changes in the hyper-parameter α in Eq. 6. As the α
approaches zero, it exclusively prioritizes the removal of
Df without taking into account any information from Dr.
Consequently, the information about Dtf is completely re-
moved, resulting in a decrease in the accuracy of Dtr. As
α approaches one, heavily relying on the teacher model for
retaining information increases Dtf accuracy, indicating in-
effective unlearning. Therefore, selecting the appropriate α
value can maximize unlearning performance. Consequently,
we used α ranging from 0.4 to 0.6 in this work. In more de-
tail, the effects of changes in α are described in Suppl. Mat.

4.4 Visualization on Decision Boundary

Figure 5 presents the Original, Retrain, and Ours using t-
SNE on the CIFAR-10 dataset. The red dots represent sam-
ples of ship images, indicated as Df . As shown in Fig. 5(b),
Df was totally misclassified in the Retrain. On the other
hand, Our unlearning method produces results correctly, as
shown in Fig. 5(c), where the decision boundary of Df has
been successfully absorbed into the surrounding space.

5 Conclusion

In this paper, we introduce a novel and fast machine un-
learning algorithm, layer attack unlearning, which is the
new layer-based unlearning paradigm. Our work proposes
Partial-PGD, layer unlearning method, and KD end-to-end
framework to improve the overall accuracy performance
while completely removing the forgetting dataset. Through
extensive experimental evaluations, we demonstrated that
modifying only specific layers’ learning objectives can lead
to successful unlearning. Our approach effectively decreases
both the number of parameters and their updates (computa-
tional cost), consequently reducing the overall time required
for unlearning. We believe our layer attack unlearning paves
a new way for future research in effectively addressing vari-
ous unlearning challenges.
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Supplementary Materials
A Datasets

We used the three different datasets as follows:
• CIFAR-10. The CIFAR-10 dataset (Krizhevsky, Hinton

et al. 2009) is a widely used benchmark in classification
tasks. It consists of 60,000 images in ten classes. The
dataset is divided into a training set of 50,000 images and
a test set of 10,000 images. We experiment to erase only
one class (5,000 images) out of 10 classes.

• Fashion-MNIST. The Fashion-MNIST dataset (Xiao,
Rasul, and Vollgraf 2017) is popular in classification
tasks. It contains 70,000 grayscale images of various
fashion items, categorized into ten classes. The dataset
is divided into a training set of 60,000 images and a test
set of 10,000 images. We experiment with erasing only
one class (6,000 images) out of 10 classes. We utilize the
dataset to evaluate unlearning performance in grayscale
images.

• VGGFace2. The VGGFace2 dataset (Simonyan and Zis-
serman 2014) is a large-scale face dataset designed for
face recognition tasks. This dataset consists of facial
data and is closely related to tasks to preserve privacy.
Given the high similarity among classes, it is a cru-
cial dataset for assessing the effectiveness of unlearn-
ing methods in real-life scenarios involving facial data. It
consists of diverse face images that vary regarding identi-
ties, poses, illuminations, backgrounds, and expressions.
The dataset contains over 3.31 million images from more
than 9,000 individuals. But, to experiment with our un-
learning task, we randomly chose ten individuals from a
training dataset containing over 600 images, ensuring a
balanced distribution of gender.

B Evaluation Metrics for Unlearning
Performance

The results in our experiments are evaluated based on the
following metrics:

Accuracy. In order to assess a classifier’s performance,
accuracy is frequently utilized. It measures the percentage
of samples for which the true classes can be predicted with
the maximum degree of certainty. Accuracy of a model Mθ

tested on a dataset of N samples {(x1, y1), ..., (xN , yN )} is
formulated as follows:

ACC = 100 ·
∑N

i=1 δ(σ(Mθ(xi)), yi)

N
, (9)

where δ(·, ·) is the Kronecker delta function.

Unlearning Score (US). Effective unlearning perfor-
mance refers to the ability of a model to effectively forget
information from the forgetting data, while concurrently re-
taining the relevant information from the retain data. How-
ever, determining the most effective metric for unlearning
is challenging because of the orthogonal objective between
evaluating and measuring forgetting vs. retain data accuracy,
where they are not in a linear relationship. For instance,

when comparing two unlearning approaches, one exhibits
good performance in forgetting data but does poorly retain
data well. At the same time, the other will be the oppo-
site case, with poor performance in forgetting data but great
accuracy in retaining data. In such scenarios, it becomes
quite challenging to determine which method is better based
solely on one of the two accuracies. Therefore, while consid-
ering both accuracies is essential, there is no straightforward
way to assess both simultaneously. Such discrepancy leads
to difficulties in evaluating unlearning performance.

Therefore, to evaluate unlearning performance more ac-
curately and effectively, we propose and define a new metric,
called Unlearning Score (US), which effectively character-
izes and combines the two accuracies into a single value to
assess unlearning performance. Since accuracy is measured
in percentages, we normalize it to a range of 0 to 1 by di-
viding by 100. As accuracy for forgetting data is preferred
to be lower, we subtract the value from 1 to convert it into
a higher-is-better range. Next, we input the values into the
exponential function. The following equation pertains to the
retain data:

USr = exp(
accr
100

), (10)

where accr is accuracy of retain data.
Similarly, the following equation is defined for the forget-

ting data:

USf = exp(1−
accf
100

), (11)

where accf is accuracy of forgetting data.
In fact, we use exponential functions, which offer a good

way to assign and map weights to values, much better than
linear functions. In other words, rather than simply using the
two accuracies as they are, this approach enables us to bet-
ter characterize higher scores as accuracies increase. Con-
versely, for lower accuracies, we can assign lower scores.
We calculate the average of USr and USf values obtained
through Eq. 10 and Eq. 11, respectively. Then, we normal-
ize them to range from 0 to 1 using min−max scaling with
exp(1) and exp(0).

Our final US is constructed and derived to Eq. 8 as fol-
lows:

US(accr, accf ) =

USr + USf

2
− exp(0)

exp(1)− exp(0)
(12)

=
USr + USf − 2 · exp(0)
2 · (exp(1)− exp(0))

(13)

=
exp(

accr
100

) + exp(1−
accf
100

)− 2

2 · (exp(1)− 1)

By introducing this novel metric, US, we can more ef-
fectively characterize and evaluate whether an unlearning
method has properly forgotten information from forgetting
data, while retained information from retain data simulta-
neously. Throughout experiments, we show that US effec-
tively characterize and capture the underlying performance



Table 6: Unlearning performance based on changes in the α value in knowledge distillation.

α 0 0.2 0.5 0.8 1

Metrics Dtr Dtf US Dtr Dtf US Dtr Dtf US Dtr Dtf US Dtr Dtf US

CIFAR-10

VGG16 75.31 0 0.8269 91.93 0 0.9386 92.28 0 0.9412 92.17 0 0.9404 92.14 0 0.9402
ResNet18 92.87 0 0.9456 93.38 0 0.9493 93.50 0 0.9502 92.47 2.4 0.9239 91.58 6.7 0.8849
ResNet50 91.75 0 0.9374 93.51 0 0.9503 93.43 0 0.9497 90.06 2.8 0.9033 86 10.30 0.8192

ViT 78.46 0 0.8467 80.65 0 0.8608 81.22 0 0.8645 81.16 0 0.8642 79.11 0.5 0.8469

Fashion-MNIST

VGG16 77.38 0 0.8399 94.21 0 0.9555 93.91 0 0.9532 92.78 0 0.9449 80.47 4.9 0.8218
ResNet18 91.14 0 0.9329 93.92 0 0.9533 94.6 0 0.9584 93.38 0.6 0.9446 91.54 7.4 0.8794
ResNet50 85.57 0 0.8937 94.67 0 0.9590 93 0 0.9465 93.18 0.1 0.9471 92.43 8.3 0.8793

ViT 88.22 0 0.9121 88.38 0 0.9132 88.57 0 0.9146 88.75 0 0.9158 88.44 0 0.9136

VGGFace2

VGG16 91.93 0 0.9386 93.35 0 0.9491 96.04 0 0.9693 96.99 0 0.9765 96.99 0 0.9765
ResNet18 56.01 0 0.7185 85.12 0 0.8906 94.62 0 0.9585 94.30 0 0.9562 93.19 0 0.9479
ResNet50 90.82 0 0.9306 93.67 0 0.9514 94.46 0 0.9573 89.39 4.76 0.8836 89.87 14.28 0.8185

ViT 94.30 0 0.9562 95.56 0 0.9657 95.88 0 0.9681 95.72 0 0.9669 95.56 0 0.9657

Table 7: Unlearning performance based on changes in
the T value in knowledge distillation on CIFAR-10 with
ResNet18.

T 1 4 8 16 Original

Dr 99.98 99.98 99.97 99.97 99.98
Df 0 0 0 0 100
Dtr 93.4 93.53 93.32 93.24 93.13
Dtf 0 0 0 0 96.60
US 0.9495 0.9504 0.9489 0.9483 0.4575

Table 8: Unlearning performance based on changes in the
x value of T x in knowledge distillation on CIFAR-10 with
ResNet18.

x 1 2 3 4 Original

Dr 99.97 99.98 99.95 90.63 99.98
Df 0 0 1.94 4.77 100
Dtr 93.37 93.53 92.67 82.09 93.13
Dtf 0 0 2.7 5.03 96.60
US 0.9493 0.9504 0.9230 0.8315 0.4575

of forgetting and retain data performance across different
proposed methods.

C Hyper-parameters effects in KD
Table 6 illustrates the variations in unlearning performance
based on the hyper-parameter α in knowledge distillation.
When α is set to 0, our loss function L employs only LCE ,
focusing solely on forgetting data. As a result, it may not
effectively retain information from the boundary, leading to
a potential drop of up to approximately 40%. On the other
hand, setting α to 1 utilizes only LDI , prioritizing the reten-
tion of the boundary. Although this approach may preserve
boundary information well, it might struggle to forget the
forgetting data properly. Hence, striking the right balance
between forgetting data and boundary information through
an appropriate α value in knowledge distillation is crucial,
as shown in Table 6. Table 7 illustrates the variation in un-
learning performance based on the hyper-parameter T in

Table 9: Original PGD vs. Partial-PGD for all datasets.

Original PGD Partial-PGD

Metrics Dtr Dtf Time (s) US Dtr Dtf Time (s) US

CIFAR-10

VGG16 92.03 0 14.18 0.9394 92.18 0 3.76 0.9405
ResNet18 92.97 0 18.19 0.9463 93.53 0 4.37 0.9504
ResNet50 91.84 0 44.15 0.9380 93.52 0 7.76 0.9503

ViT 78.07 0 237.36 0.8442 81.14 0 25.93 0.8640

Fashion-MNIST

VGG16 94.15 0 16.61 0.9551 93.89 0 8.75 0.9531
ResNet18 94.49 0 21.35 0.9576 94.54 0 5.194 0.9579
ResNet50 94.47 0 51.74 0.9574 94.48 0 9.14 0.9575

ViT 87.4 0 23.99 0.9063 87.44 0 13.396 0.9066

VGGFace2

VGG16 96.29 0 19.95 0.9349 96.70 0 5.60 0.9743
ResNet18 91.42 0 29.21 0.9467 95.34 0 6.51 0.9639
ResNet50 93.02 0 298.15 0.9712 93.28 0 17.77 0.9485

ViT 95.76 0 18.65 0.9672 95.5 0 6.748 0.9651

Table 10: Effect of Softmax vs. Double Softmax for all
datasets.

w/o Double Softmax w/ Double Softmax

Metrics Dtr Dtf Time (s) US Dtr Dtf Time (s) US

CIFAR-10

VGG16 92.02 0 3.88 0.9472 92.18 0 3.76 0.9405
ResNet18 93.10 0 4.46 0.9430 93.53 0 4.37 0.9504
ResNet50 92.53 0 7.56 0.9393 93.52 0 7.76 0.9503

ViT 78.73 0 69.42 0.8484 81.14 0 25.93 0.8640

Fashion-MNIST

VGG16 84.74 0 10.90 0.8880 93.89 0 8.75 0.9531
ResNet18 91.42 0.1 25.87 0.9341 94.54 0 5.19 0.9579
ResNet50 80.91 0 93.49 0.8625 94.48 0 9.13 0.9575

ViT 87.01 0 61.37 0.9036 87.44 0 13.39 0.9066

VGGFace2

VGG16 92.94 0 3.71 0.9505 96.70 0 5.60 0.9743
ResNet18 93.54 0 8.75 0.9468 95.34 0 6.51 0.9639
ResNet50 93.03 0 26.90 0.9461 93.28 0 17.77 0.9485

ViT 94.91 0 8.49 0.9608 95.50 0 6.74 0.9651

knowledge distillation. In our experiments, T = 4 yielded the
best performance; however, variations in T showed a differ-
ence in accuracy of 0.2% as indicated in Table 7 under Dtr.
Table 8 illustrates the variation in unlearning performance
based on the exponent of T x in Eq. 7, T is fixed at 4. In our
experiments, x = 2 yielded the best performance, whereas
values greater than 3 demonstrated poorer performance. Ex-
periments with hyper-parameters tuning show that appropri-
ately selecting values in knowledge distillation can yield the
better performance in the unlearning task.

D Original PGD vs. Partial-PGD
We conduct experiments on various models and datasets to
demonstrate the temporal efficiency and performance ad-
vantage of Partial-PGD. In Table 9, the original PGD also
presents an excellent performance in terms of unlearning.



However, we show that Partial-PGD exhibits comparable
or superior performance to original PGD, notably in VG-
GFace2 with ResNet50. On the other hand, it can save un-
learning process time up to 16.77 times. The original PGD
requires more time as the model has to utilize the complete
model layers. In contrast, as depicted in Fig. 1, Partial-PGD
can be considered more effective, as it only uses particular
layers to achieve the desired objectives faster.

E Effectiveness of Double Softmax
As shown in Eq. 5, double Softmax provides performance
robustness across various datasets and models. In Table 10,
we conduct experiments to examine the effects of dou-
ble Softmax across different datasets and models. Over-
all, double Softmax facilitates a faster unlearning conver-
gence speed. Furthermore, though the difference is marginal,
our experimental results demonstrate higher accuracy per-
formance across most models. Especially in the case of
Fashion-MNIST, notable improvements can be observed.
Double Softmax generates softer logits, enhancing robust-
ness against outliers of adversarial examples and improving
training stability.

F Additional Ablation on Data Usage Ratio
We conduct an Ablation Study to investigate whether re-
ducing the amount of randomly selected forgetting data in-
volved in our algorithm’s unlearning process impacts perfor-
mance while maintaining the possibility of unlearning. Ta-
ble 11 presents the results when reducing the data used in
the unlearning process across various datasets. The remark-
able finding is that even with a reduction in the quantity of
forgetting data, there is no significant decline in performance
from an accuracy perspective. Additionally, a decrease in the
completion time of the unlearning process can also be ob-
served. It can be observed that for ViT on Fashion-MNIST,
the accuracy of Dtf remains at 0.1%.

G Unlearning Performance on Every Class
We conduct experiments on our method for all classes
to showcase its robust performance regardless of datasets
and classes. Table 12 presents experiments on CIFAR-10,
demonstrating our method’s ability to quickly erase an en-
tire class, while retaining other information in as little as 2.5
seconds. Table 13 shows experiments on Fashion-MNIST,
where although perfect erasure of a single class might not
always be achieved, our method consistently demonstrates
efficient and effective performance across all other exper-
iments. Finally, Table 14 highlights experiments on VG-
GFace2, showing our method’s remarkable performance
even on face datasets with high inter-class similarity.



Table 11: Unlearning performance with varying amounts of data used for unlearning.

Model VGG16 ResNet18 ResNet50 ViT

Total Extra Data Used 100% 50% 10% 100% 50% 10% 100% 50% 10% 100% 50% 10%

CIFAR-10

Dtr 92.18 92.42 92.38 93.53 93.51 93.38 93.52 93.63 93.37 81.14 81.14 81.60
Dtf 0 0 0 0 0 0 0 0 0 0 0 0
Time 3.76 1.91 1.21 4.37 2.28 1.45 7.76 3.81 1.62 25.93 25.63 14.55
US 0.9405 0.9422 0.9420 0.9504 0.9503 0.9493 0.9503 0.9512 0.9493 0.8640 0.8640 0.8662

Fashion-MNIST

Dtr 93.89 94.23 93.74 94.54 94.67 97.19 94.48 94.21 84.88 87.44 87.09 87.46
Dtf 0 0 0 0 0 0 0 0 0 0 0 0.1
Time 8.75 2.20 0.48 5.19 1.96 0.63 9.14 4.54 1.04 13.39 4.88 2.69
US 0.9531 0.9556 0.9520 0.9579 0.9589 0.9487 0.9575 0.9555 0.8890 0.9066 0.9042 0.9060

VGGFace2

Dtr 96.70 95.83 95.88 95.34 94.35 94.46 93.28 94.24 93.13 95.50 95.82 95.88
Dtf 0 0 0 0 0 0 0 0 0 0 0 0
Time 5.60 5.12 5.36 6.51 4.22 1.8 17.77 23.09 15.35 6.74 2.46 2.04
US 0.9743 0.9677 0.9681 0.9639 0.9565 0.9573 0.9485 0.9557 0.9475 0.9651 0.9676 0.9680

Table 12: Unlearning performance for each class on CIFAR-10

Forgetting Class 0 1 2 3 4 5 6 7 8 9

V
G

G
16

Dr 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.97 99.97
Df 0 0 0 0 0 0 0 0 0 0
Dtr 92.7 92.2 93.35 94.44 93.17 93.98 93.54 92.47 92.24 92.35
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 3.75 7.31 3.7 3.71 3.68 3.66 2.5 3.68 3.65 3.72
US 0.9443 0.9406 0.9491 0.9572 0.9477 0.9537 0.9431 0.9426 0.9409 0.9417

R
es

N
et

18

Dr 99.97 99.98 99.98 99.98 99.97 99.97 99.98 99.98 99.98 99.98
Df 0 0 0 0 0 0 0 0 0 0
Dtr 93.84 93.44 94.39 95.26 93.86 94.53 93.53 93.48 93.58 93.51
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 4.37 4.42 4.44 4.41 3.52 3.25 3.32 4.40 4.42 4.47
US 0.9527 0.9497 0.9568 0.9633 0.9528 0.9578 0.9504 0.9500 0.9508 0.9502

R
es

N
et

50

Dr 99.94 99.93 99.94 99.94 99.94 99.97 99.94 99.92 99.93 99.89
Df 0 0 0 0 0 0 0 0 0 0
Dtr 93.93 93.07 94.45 95.26 94.06 94.54 93.56 93.48 93.58 92.97
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 7.42 7.41 7.52 7.60 7.49 7.86 7.49 7.54 7.47 7.47
US 0.9534 0.9470 0.9572 0.9633 0.9543 0.9579 0.9506 0.9500 0.9508 0.9463

V
iT

Dr 88.43 88.2 88.42 89.74 87.83 88.96 86.48 86.72 87.52 88.07
Df 0 0 0.02 0 0 0 0 0 0 0
Dtr 82.68 81.60 83.31 84.10 82.14 82.65 80.73 80.84 81.13 82.07
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 15.20 16.68 250.82 21.16 46.01 33.49 104.40 33.68 25.20 8.65
US 0.8742 0.8670 0.8776 0.8837 0.8706 0.8732 0.8613 0.8620 0.8639 0.8701



Table 13: Unlearning performance for each class on Fashion-MNIST

Forgetting Class 0 1 2 3 4 5 6 7 8 9
V

G
G

16
Dr 99.84 99.75 99.74 99.62 99.84 99.2 99.88 99.88 99.78 99.85
Df 0 0 0 0 0 0 0 0 0 0
Dtr 96.02 94.1 95.27 94.93 95.37 93.53 97.3 94.83 94.31 94.5
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 4.35 8.56 4.24 4.32 4.3 4.36 4.33 4.36 4.35 4.33
US 0.9691 0.9546 0.9634 0.9608 0.96422 0.9504 0.9789 0.9601 0.9562 0.9576

R
es

N
et

18

Dr 97.44 97.21 97.94 97.65 96.35 97.05 98.72 98.31 97.9 98.41
Df 0 0 0 0 0 0 0 0 0 0
Dtr 94.94 93.75 95.36 94.63 93.84 93.48 96.71 94.94 94.48 95.08
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 7.77 15.87 53.49 25.62 15.44 20.89 15.32 10.24 5.15 5.22
US 0.9609 0.9520 0.96415 0.9578 0.9527 0.9500 0.9743 0.9609 0.9575 0.9620

R
es

N
et

50

Dr 97.47 98.02 96.45 98.05 97.22 98.16 98.35 98.13 98.20 98.27
Df 0.05 0 0 0 0 0 0 0 0 0
Dtr 94.94 94.26 94.11 95.23 94.76 94.53 96.37 94.62 94.63 95.05
Dtf 0 0 0 0.1 0 0 0 0 0 0

Time (s) 105.24 118.87 99.68 9.14 99.77 8.83 25.99 17.50 10.86 9.33
US 0.9609 0.9558 0.9547 0.9631 0.9596 0.9578 0.9718 0.9585 0.9586 0.9617

V
iT

Dr 93.03 90.52 91.02 91.72 92.82 89.82 93.22 91.99 89.82 91.63
Df 0 0 0 0 0 0 0 0 0 0
Dtr 90.37 87.63 88.72 89.23 90.74 86.91 91.45 88.93 87.17 88.54
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 9.88 4.93 19.8 9.77 19.7 4.95 14.71 4.93 9.82 4.91
US 0.9273 0.9079 0.9156 0.9192 0.9300 0.9029 0.9351 0.9171 0.9047 0.9143

Table 14: Unlearning performance for each class on VGGFace2

Forgetting Class 0 1 2 3 4 5 6 7 8 9

V
G

G
16

Dr 99.71 99.89 99.78 99.59 99.52 99.38 99.87 99.74 99.44 99.73
Df 0 0 0 0 0 0 0 0 0 0
Dtr 96.01 97.11 96.39 96.34 95.87 96.03 97.12 96.25 95.72 96.82
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 19.27 20.01 15.25 5.92 6.35 5.74 6.45 7.63 5.86 6.42
US 0.9690 0.9774 0.9719 0.9715 0.9679 0.9692 0.9775 0.9708 0.9668 0.9752

R
es

N
et

18

Dr 99.85 99.85 99.60 99.82 99.68 99.79 99.54 99.83 99.72 99.94
Df 0 0 0 0 0 0 0 0 0 0
Dtr 94.58 94.70 94.59 95.23 95.39 95.08 95.21 95.11 95.25 95.55
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 17.94 19.22 10.91 16.62 8.81 8.27 9.1 10.64 8.38 8.84
US 0.9582 0.9591 0.958 0.9631 0.9643 0.9620 0.9630 0.9622 0.9633 0.9655

R
es

N
et

50

Dr 95.19 98.51 98.42 97.84 98.07 98.67 98.62 98.61 98.72 98.61
Df 0.05 0 0 0 0 0 0 0 0 0
Dtr 95.88 93.9 93.94 93.64 93.49 94.61 94.73 94.46 94.62 94.76
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 22.78 20.06 22.17 17.57 17.65 16.84 18.26 21.6 16.92 18.74
US 0.9680 0.9531 0.9534 0.9512 0.9501 0.9584 0.9593 0.9573 0.9585 0.9596

V
iT

Dr 94.88 94.93 95.23 94.77 95.09 94.92 95.91 95.27 95.33 95.22
Df 0 0 0 0 0 0 0 0 0 0
Dtr 95.38 95.02 94.76 95.23 95.55 95.40 95.21 95.43 95.88 95.23
Dtf 0 0 0 0 0 0 0 0 0 0

Time (s) 6.19 6.23 6.93 4.94 5.01 9.99 6.02 6.03 5.31 5.72
US 0.9642 0.9615 0.9596 0.9631 0.9655 0.9644 0.9630 0.9646 0.96802 0.9631


