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Abstract

Transfer learning has become crucial in computer vision
tasks due to the vast availability of pre-trained deep learn-
ing models. However, selecting the optimal pre-trained
model from a diverse pool for a specific downstream task
remains a challenge. Existing methods for measuring the
transferability of pre-trained models rely on statistical cor-
relations between encoded static features and task labels,
but they overlook the impact of underlying representa-
tion dynamics during fine-tuning, leading to unreliable re-
sults, especially for self-supervised models. In this paper,
we present an insightful physics-inspired approach named
PED to address these challenges. We reframe the chal-
lenge of model selection through the lens of potential en-
ergy and directly model the interaction forces that influ-
ence fine-tuning dynamics. By capturing the motion of dy-
namic representations to decline the potential energy within
a force-driven physical model, we can acquire an enhanced
and more stable observation for estimating transferability.
The experimental results on 10 downstream tasks and 12
self-supervised models demonstrate that our approach can
seamlessly integrate into existing ranking techniques and
enhance their performances, revealing its effectiveness for
the model selection task and its potential for understanding
the mechanism in transfer learning. Code will be available
at https://github.com/lixiaotong97/PED.

1. Introduction
Transfer learning has achieved remarkable success in

computer vision by fine-tuning models pre-trained on large-
scale datasets (e.g., ImageNet [16]) for downstream tasks.
However, the proliferation of various network designs and
training strategies presents a challenge in selecting an opti-
mal model from the extensive range of options for a par-
ticular downstream task. While fine-tuning each poten-
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Figure 1. We analogy the physical concept and consider the trans-
fer learning dynamics in the perspective of potential energy. The
objective to push apart different classes can be viewed as an in-
teraction “force” to decline the system “potential energy” and the
dynamics can be seen as a process from unstable to stable point of
the energy plane.

tial model in a brute-force manner is a direct approach for
model selection, it is computationally infeasible due to the
growing number of model candidates.

To address this challenge, prior studies [31, 46, 40, 36]
have endeavored to efficiently measure the transferability
of pre-trained models related to the separability of encoded
representations. The principle underlying these approaches
is to select a pre-trained model that can effectively segregate
its initial features using the ground-truth labels (i.e., image
classes) in the downstream task.

While the aforementioned methodology is effective for
ranking supervised pre-trained models, which are originally
optimized toward class separability, it is not always reli-
able for ranking un/self-supervised pre-trained models [20].
These models have emerged as dominant in transfer learn-
ing and have exhibited superior performance compared to
supervised learning models. Nevertheless, self-supervised
models exhibit different properties due to the discrepancy
between pre-training target and downstream classification
objective [20]. We argue that the limitations of the exist-
ing separability-based methodology stem from its inability
to consider the underlying representation dynamics during
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the fine-tuning process of transfer learning and encounter
challenges for ranking self-supervised models.

Modeling the representation dynamics for model ranking
is a crucial yet challenging task. The present study focuses
on image classification tasks without loss of generality. To
understand the nature of model evolution in transfer learn-
ing, we examine the process of backward-propagating gra-
dients measured by classification cross-entropy loss. The
process aims to cluster features out of the same classes,
which can be viewed as creating a force that separates the
clusters and system potential energy gets decreased driven
by the force from a physical perspective [18, 48]. Refram-
ing model evolution through the lens of potential energy
reveals that the pre-trained model attains a state of equi-
librium after pre-training, with low interaction forces and
stable sample relationships. However, this stable state is
disrupted when the model is transferred to a downstream
task, leading to changes in the potential energy plane. In-
tuitively, predicting model transferability based on an un-
stable observation will hinder its predicting performance.
Drawing from the principles of physics [10], the present
unstable state is inclined to move towards a reduction in
potential energy and results in a more stable state. To prop-
erly predict a model’s transferability, it is essential to model
the force that determines the system’s tendency.

We therefore formulate the representation dynamics in
terms of potential energy1 and propose the approach to
tackle these challenges named Potential Energy Decline
(PED), as demonstrated in Fig.1. To quantify the inter-
action force acting on each class cluster and measure its
corresponding movement on the potential energy landscape
implicitly defined by the optimization objective, we con-
sider each class’s representations in the downstream task
as a ball in the latent space, with the class center indicat-
ing the coordinate and the variation representing the radius.
The interaction force between different classes is formu-
lated by the overlap radius of the two balls. We can simulate
the positions of dynamic representations without backward-
propagation by unfreezing the system and observing the
moving tendency that leads to a new state with lower po-
tential energy. Our force-directed dynamic representations
provide a better observation and can be readily integrated
into existing ranking algorithms, such as LogME [46], to
achieve better model transferability measurement.

To the best of our knowledge, we are the first to explore
model transferabilty through the lens of potential energy
and simulate the underlying representation dynamics during
transfer learning in a physics-driven approach. To evaluate
our proposed method, we conduct extensive experiments on
a variety of self-supervised pre-trained models. Our method
can be easily integrated into existing approaches with neg-

1Throughout this paper, the “energy” is a quantitative property held by
features because of relative class positions in its latent space.

ligible time consumption. The experimental results on 10
downstream tasks and 12 self-supervised pre-trained mod-
els demonstrate our method can boost various metrics for
more accurate prediction. Our findings might have impli-
cations beyond the realm of image classification, as our ap-
proach is generic and can be extended to more pre-trained
models and other downstream tasks. We hope that our work
will inspire future studies and have a broader impact in the
field of transfer learning.

2. Related work
2.1. Transferability Metric

In the field of computer vision, transfer learning has be-
come a significant milestone due to the availability of a
model zoo of pre-trained deep learning models [20, 44].
As a result, selecting the most appropriate model from the
model zoo for a particular downstream task has become an
important challenge and model selection is therefore pro-
posed to tackle this problem with a low budget estimation.

Transferabilty Metric. Model transferability is a funda-
mental aspect in the field of transfer learning, and it has re-
ceived much attention from researchers in recent years for
designing various transferability metrics [34, 42, 46, 31, 40,
5, 36, 6, 19, 1, 47, 17, 3, 15]. For example, LEEP [34]
estimates the joint probability of the source and target la-
bel space, while NLEEP [31] predicts the label by fitting
a Mixture of Gaussian model. LogMe [46] propose to es-
timate the maximum value of label evidence given the en-
coded features. PARC [6] uses pairwise pearson product-
moment correlation between the features of each pair of
images. GBC [36] measures the pairwise class overlaps in
distribution density with a Bhattacharyya coefficient. SFDA
[40] measures model transferability using the class discrim-
ination in a Fisher space and proposes a self-challenging ap-
proach named ConfMix to simulate the hard negative sam-
ples in fine-tuning. These methods have made significant
contributions to the field of transfer learning, but there is
still challenge to deal with un/self-supervised pre-trained
models [22, 9, 11, 12, 30, 8], because the models be use-
ful as a starting point for many downstream tasks, they are
not sufficient on their own to separate different classes of
samples [20].

2.2. Energy-based Methods in Deep Learning

Energy-based methods have a long-standing history in
the field of machine learning and have been commonly em-
ployed to model interactions between objects [2, 39]. Early
works in this area can be traced back to Restricted Boltz-
mann Machines (RBM) [2] and DeepBM [39], that use a
series of layers of stochastic binary units to represent data
and is trained to minimize an energy function measured by



Figure 2. Pipeline of the proposed Potential Energy Decline (PED) approach for model selection. The models are first trained on a large-
scale dataset and then transferred to a given downstream task. We propose a novel approach through the perspective of potential energy to
alleviate the limitations of the initial observations. By treating the learning dynamics as minimizing the potential energy and considering
the system’s tendency to change, we model the interaction force of different clusters using a repulsion-based force to capture the moving
tendency. Subsequently, we unfreeze the state of the start point and apply the force to push each class away, leading to a decline of the
potential energy. This approach leads to a more stable observation of features, resulting in more accurate transferability score predictions.

the compatibility between the input data and the internal
representation. The Hopfield network [27] is also designed
to find a state of minimum energy, which corresponds to a
stable solution or equilibrium and is used for segmentation
[38]. In face recognition task, Uniformface[18] and Reg-
ularface [48] also borrow the force in potential energy to
model the inter-class regularization to design a optimized
loss. Inspired by these works, we reframe the challenge of
ranking self-supervised pre-trained model through the lens
of potential energy. To the best of our knowledge, we are
the first to consider transfer learning from an energy-based
perspective and propose a physical approach to model the
dynamic representation in model selection task.

3. Methodology
In this section, we first present the problem setup, rank-

ing metrics, and evaluation protocol of the model selection
problem. Then we state the inspiration from a physical view
and illustrate how we efficiently model the representation
dynamics in terms of potential energy. Without loss of gen-
erality, we take classification as an example throughout our
paper.

3.1. Preliminaries

Problem Setup. Consider a model zoo {Φi}Ni=1 from
which the selected pre-trained model can be transferred to
a downstream dataset T = {X,Y }. The purpose of model
selection is to predict model transferability with minor com-
putational costs without fine-tuning.

Ranking Metric. Given a model Φi, we encode the fea-

tures Z for the downstream dataset X , then feed the features
and labels to a metric M(Z, Y ) to estimate a transferability
score Pi. Intuitively, the metric measures the transferability
based on the separability of the encoded features.

Evaluation Protocol. To evaluate different model se-
lection algorithms, we follow previous arts to estimate the
weighted Kendalls’ τw [46] between ground-truth model
rankings and the predicted rankings. Specifically, we obtain
the ground-truth rankings {Gi}Ni=1 via fully fine-tuning.
Then τw can be formulated as

τw =
2

N(N − 1)

∑
1≤i<j≤N

sign(Gi −Gj) · sign(Pi − Pj).

(1)
Although existing ranking methods [46, 31, 40, 36, 6]

are effective for supervised pre-trained models, they are
not always reliable for un/self-supervised pre-trained mod-
els which are not trained toward class separability and need
to be fine-tuned for downstream tasks. We argue that it is
actually due to the fact that they mostly ignore the underly-
ing representation dynamics during the fine-tuning process
of transfer learning. Properly and efficiently modeling such
dynamics is called for.

3.2. Understanding Transfer Learning from a Dual
View

It is of great significance to rethink the fine-tuning op-
timization process and dive into the dynamics of learning
representations. In this section, we provide a novel dual
view to reframe gradient-based optimization into a physics
perspective.



3.2.1 A Gradient-based View

When transferring a pre-trained model Φ parameterized by
θ to a particular downstream task {X,Y }, the model is gen-
erally optimized toward minimizing a loss function L (e.g.,
cross-entropy loss) through gradient backpropagation, such
as

θt+1 = θt − ∂L(Zt, Y )

∂θt
,

Zt = Φ(X|θt).
(2)

As a result of the iterative optimization in Eq. (2), the abil-
ity of Φ to discriminate between different classes has been
improved. The separability of different classes in the latent
space has also been enhanced. The underlying representa-
tion dynamics can be thought of as the state evolution from
Z0 to ZT , where T is the total number of iterations. Ob-
viously, optimizing the network and updating its encoded
features is non-trivial for the model selection process, and
what we need is to simulate the dynamics representation
without resorting to fine-tuning.

3.2.2 An Energy-based View

Every coin has two sides, we discover that the learning ob-
jective in optimization shows resemblances to the concept
of potential energy in physics. Intuitively, the loss function
L and the gradient ∂L

∂θ show similarities in form with po-
tential energy U and force F , i.e., −∂U

∂s , respectively. The
loss gradient minimizes the loss and distinguishes between
different class features by adjusting the network parame-
ters, in a similar way to how an object’s position affects
the force acting on it to decrease potential energy. Building
upon this insight, we reformulate the optimization process
during transfer learning from the lens of potential energy in
physics.

From the physics perspective, the direction of object
movement under the influence of an interaction force F can
be denoted by the path n. As the object moves in the path of
n, the potential energy of the system decreases, as expressed
in the following equation:

U(Zt+1) = U(Zt)−
∫
n

Fds,

Zt+1 = Zt +

∫
n

ds,

(3)

where
∫
n
ds is the relative position movement along the

path of n. By viewing optimization in terms of physics,
we shed light on the behavior of the loss function and the
optimization process. The concepts of potential energy and
network gradients can be seen as two sides of the same coin,
which can help us understand the nature of the optimization
process and model the representation dynamics without loss
backpropagation.

Rethinking transfer learning from the energy view.
Based on the above findings, we propose to revisit trans-
fer learning through the lens of potential energy. When the
pre-trained model converges, the model “system” defined
by the training objective reaches a state of relative stability
with equilibrium potential energy. When the model is trans-
ferred to downstream tasks, this initial state becomes unsta-
ble due to changes in the potential energy landscape, result-
ing in an unreliable observation (representation). Therefore,
it is inappropriate to predict the model transferability solely
based on the current observations (static representations).

Figure 3. By treating the problem as minimizing the potential en-
ergy and viewing each cluster as a ball with overlap (ri + rj − dij)
to another, we can simulate the system’s dynamics by releasing the
start point and observing how each ball is pushed away under the
resulting forces.

During fine-tuning, the objective is to separate different
classes in the latent space, which can be seen as a force
separating clusters, similar to objects interacting in physics.
In this context, the loss function L creates a potential en-
ergy plane U based on the relative positions of training
sample features Z, with the current state being unstable
and favoring a decrease in potential energy [10]. There-
fore, it is crucial to capture the movement of the system
to model the changing tendency of the current observation.
To achieve this, we propose a physical scene for represen-
tation dynamics based on the concept of elastic potential
energy that arises when an object is deformed under tension
or stress. We use a repulsive force to simulate the interac-
tions between different classes, improving the effectiveness
and accuracy of the learning dynamics.

3.3. Modeling Representation Dynamics with Me-
chanical Motion

We propose a physical modeling approach named Poten-
tial Energy Decline (PED), that leverages potential energy
to develop a mechanical motion process for representation
dynamics. Specifically, each class of feature points Zi in
the embedding space is modeled as a multi-variate Gaus-
sian distribution N (ci, σi

2) with mean feature ci and vari-
ance σi

2. Then we simplify it as a ball with ci as its cen-



troid, λ∥σi∥2 as its radius ri, and a unit mass mi. The force
that repels different features is modeled as an elastic defor-
mation force between the balls, similar to Hooke’s law [26]
(i.e., F = kx). Whenever two balls overlap, a force pro-
portional to the deformation xe is exerted in the direction
of the vector n connecting the centers of the two balls (as
shown in Fig. 4):

xe = max(ri + rj − dij , 0),
F ij = kxe · n,

(4)

where k is a hyper-parameter of elasticity resisting co-
efficient, and dij denotes the distance ∥ci − cj∥2 between
centers of the two balls.

As shown in Eq. (4), the force between two clusters be-
comes larger as the overlap becomes larger, and becomes
zero when they move apart and no longer overlap. We fur-
ther model the force from each ball to every other ball and
sum up the forces to obtain the joint force F i acting on ball
i. To model the moving tendency, it is revealed by the ac-
celeration ai by Newton’s second law of motion [33]:

ai =
F i

mi
=

∑
j ̸=i F ij

mi
. (5)

In the field of physics, it is often assumed that force re-
mains constant over a very short period of time. Follow-
ing such a philosophy, we propose a method for simulating
the phase position or relative position changes of a system
by releasing it within a brief time interval ∆t. The motion
equation is then used to compute the position changes.

Zi = Zi +∆Zi = Zi +
1

2
ai ·∆t2. (6)

By applying force to the samples in the system, they are
effectively driven towards the direction of decreasing po-
tential energy. By repeating this process multiple times, we
obtain an even better system state Z with lower potential
energy.

Discuss the feasibility of physical modeling. We can
view our physics-inspired approach back to the other side of
the coin, i.e., conventional gradient-based perspective. We
model the elastic potential of the system following Hooke’s
law [26] (i.e., U = 1

2kx
2) and the formulation is as follows,

U(Z) =
∑

i

∑
j ̸=i

1

2
kx2

ij

=
∑

i

∑
j ̸=i

1

2
kmax(ri + rj − dij , 0)

2,

(7)

where xij describes the overlap of the feature clusters be-
tween Zi and Zj . It is found that the form in Eq. (7) is

analogous to gradient-based optimization methods that aim
to minimize the overlaps of different clusters, which can be
viewed as a pairwise loss to enhance class prototype sepa-
ration in metric learning. In contrast, our approach offers a
more efficient alternative to the optimization-based method
by using a physical modeling approach to decrease energy
potential, which can be easily integrated into existing meth-
ods for transfer learning dynamics.

3.4. Overall

Our physical modeling approach provides a refined ob-
servation Z of the system to take over the initial obser-
vation without performing updating the network. The dy-
namic representation is achieved by mechanical motion and
more details of the proposed physics-driven approach can
be found in Alg. 1. An arbitrary model selection metric,
such as LogMe[46], M(Z, Y ) can be adopted subsequently
to rank the models, i.e., obtaining {Pi}Ni=1. This approach
allows us to gain a better understanding of the system’s dy-
namics and boost existing model ranking algorithms.

Algorithm 1: Algorithm of the proposed Potential
Energy Decline (PED)

Input: Model zoo {Φi}Ni=1; Downstream labeled dataset
T = {X,Y } including C classes; The hyper-parameter
λ, ∆t, k; Maximum iteration steps M , early termination
condition ϵ; The model selection metricM;

Output: The transferability score Pi for each model in the model
zoo.

1 for Φi in Model zoo do
2 Encode images X to feature embeddings Z = Φi(X) and

normalize features with mean µ̂ and standard deviation σ̂
of ImageNet features: Z ← (Z − µ̂)/σ̂;

3 while step ≤ M do
4 Compute the mean feature as ball center cj and

standard deviation σj of each class cluster Zj

5 cj = E[Zj ], rj = λ||σj ||2;
6 Compute distances of the feature clusters

djl = ||cj − cl||2, j ̸= l ∈ {1, ..., C};
7 Compute the force and the acceleration of each cluster

Fj =
∑
l ̸=j

k(rj + rl − djl) ·
µ̂j−µ̂l

||µ̂j−µ̂l||2
, aj =

Fj

mj
;

8 Simulate the moving process and obtain a more stable
state of features Z
z ← z + 1

2
a ·∆2

t , z ∈ Zj , j ∈ {1, ..., C};
9 Calculate the ternminal condition

ω[step]← ||
∑C

j=1
1
2
a ·∆2

t ||1;
10 if ω[step] ≤ ϵ · ω[0] then
11 break;
12 end
13 step← step+1;
14 end
15 Features revert back to the original space Z ← Z · σ̂ + µ̂;

Feed Z and Y into transferability predicting metric
M(Z, Y ) to obtain a score P i ;

16 end
17 Rank models in Φ i i = 1N according to their scores {Pi}Ni=1.;



Table 1. The experiment results of different transferability metrics on various self-supervised learning models, with the weighted Kendall’s
τw employed as the ranking correlation protocol. A larger τw represents a better prediction rank order to the ground truth rank. The best
results are denoted in bold.

Method Reference Aircraft Caltech101 Cars Cifar10 Cifar100 Flowers VOC Pets Food DTD
NLEEP [31] CVPR’21 -0.029 0.525 0.486 -0.044 0.276 0.534 -0.101 0.792 0574 0.641
PARC [6] NIPS’21 -0.03 0.196 0.424 0.147 -0.136 0.622 0.618 0.496 0.359 0.447
LogME [46] ICML’21 0.223 0.051 0.375 0.295 -0.008 0.604 0.158 0.684 0.570 0.627
LogME+Ours this paper 0.509 0.505 0.516 0.511 0.667 0.715 0.620 0.795 0.650 0.780
SFDA [40] ECCV’22 0.254 0.523 0.515 0.619 0.548 0.773 0.568 0.586 0.685 0.749
SFDA+Ours this paper 0.464 0.614 0.647 0.673 0.568 0.777 0.583 0.462 0.581 0.907
GBC [36] CVPR’22 0.048 -0.18 0.424 0.008 -0.249 0.532 -0.041 0.655 0.268 0.05
GBC+Ours this paper 0.462 0.285 0.547 0.017 0.359 0.768 -0.035 0.684 0.402 0.576

4. Experiment
In recent years, self-supervised learning has emerged as

a dominant approach in vision pre-training, showing supe-
rior transferability compared to supervised learning meth-
ods. However, the potential learning dynamics can signif-
icantly impact the performance of traditional model trans-
ferability prediction metrics for self-supervised pre-trained
models. Therefore, in this paper, we analyze the perfor-
mance on self-supervised learning models to evaluate our
proposed approach.

Downstream Dataset. In this study, we utilize a variety
of widely-used datasets for transfer learning in downstream
classification tasks, including FGVC Aircraft [32], Caltech-
101 [21], Standford Cars [28], Cifar-10 [29], Cifar-100 [29],
DTD [14], Oxford102 Flowers [35], Food-101 [7], and
Oxford-IIIT Pets [37]. These datasets include diverse and
comprehensive characteristics, such as street view, texture,
and coarse/fine-grained scenes are suitable for our setting
with diversity.

Pre-trained Model Zoo. To assess the generality of our
method for self-supervised learning models, we consider
12 different types of pre-trained models with ResNet-50
[25], which have been developed using state-of-the-art self-
supervised learning methods, including BYOL [22], In-
fomin [41], PCLv1 [30], PCLv2 [30], Selav2 [4], InsDis
[45], SimCLRv1 [11], SimCLRv2 [12], MoCov1 [24], Mo-
Cov2 [13], DeepClusterv2 [8], and SWAV [9] [23]. Due to
the limited space, some detailed information are provided
in Appendix.

Ground Truth Model Rank. The construction of the
ground truth rank {Gi}Ni=1 for model zoo follows the im-
plementation in [40, 46], where a grid search strategy is
employed to compute the ground truth performance of each
model in downstream task. Specifically, the grid search
strategy includes a range of learning rates from the set
{10−1, 10−2, 10−3, 10−4} and weight decay values from

the set {10−6, 10−5, 10−4, 10−3}. To ensure robustness,
each experiment was run with an average of 5 seeds. Ob-
viously, it is observed from the above process that selecting
the most suitable model through fine-tuning incurs a sig-
nificant computational cost in terms of time and GPU re-
sources.

Results of Existing Methods. We show the experiment
results in the Table 1 and it is evident that the state-of-
the-art methods encounter significant challenge in predict-
ing transferability of self-supervised models, and even show
inability to provide recommendations for some particular
datasets, e.g., the Kendall’ weights are less than 0. For ex-
ample, GBC, which achieves impressive performance in su-
pervised learning scenarios by directly measuring the over-
lap degree of different clusters, exhibits a significant decline
in prediction accuracy when tasked with an unstable ini-
tial state. Among the techniques evaluated, NLEEP and
SFDA exhibit better performances due to their implicit in-
clusion of a learning process aimed at adapting to down-
stream tasks. Nevertheless, the limited initial observations
still hinder their performance, e.g., the relative low perfor-
mance in Aircraft. The above experiment results show that
predicting the model performances of self-supervised mod-
els are not reliable with solely the initial observation and it
is of great significance to take the representation dynamics
into consideration.

Results of Our method. To evaluate the efficacy of our
approach, we integrate our method upon different state-
of-the-art transferability metrics, including evidence-based
LogME [46], discrimination-based SFDA [40], separation-
based GBC [36]. Through taking the dynamics represen-
tations into consideration, the performance combined with
ours approach show obvious gains in many downstream
scenes. For instance, our approach yields a significant per-
formance gain of +0.675 and +0.608 compared to LogME
and GBC on Cifar100, respectively. Even though SFDA
has specifically designed Confix to alleviate the dynamics
of fine-tuning by augmenting hard examples, it remains or-



thogonal to our method. For example, it achieves a gain of
+0.210 and +0.158 on Aircraft and DTD, respectively. Al-
though existing methods have achieved remarkable perfor-
mance in experimental results (B), achieving above 0.6 in
Kendall weight, our method can still provide diverse bene-
fits upon different metrics. Our experiments confirm the ef-
fectiveness of our physics-inspired modeling approach and
highlight the significance of considering representations in
self-supervised models.

5. Ablation Study

In this section, we perform an ablation study of our
method on downstream datasets of Cars, Flowers, and
DTD. Specifically, we investigate the impact of the hyper-
parameters and implementation details of our method.
Through these experiments, we aim to gain a deeper un-
derstanding of our method’s performance and identify key
factors that contribute to its effectiveness.

5.1. Period of Time

The period of time ∆t is a crucial factor that determines
the degree of the dynamic process. In Fig. 4, we con-
duct ablation experiments to investigate the effect of vary-
ing ∆t. The results demonstrate that increasing the time
of movement drives the clusters to decline the potential en-
ergy, which in turn leads to improved observation and per-
formance gain.

Figure 4. The performance gain in Kendell τ with respect to dif-
ferent λ and ∆t.

In physics, force conditions are typically approximated
as constant over a short period of time. However, as the
time period increases, the clusters move further apart, caus-
ing the force to change significantly and introducing errors
into the physical assumption. Consequently, we set the time
period to a small value of 0.1 for all experiments.

5.2. The Radius Coefficient λ

As we represent the features of each cluster as a Gaussian
distribution, and simplify it as a ball in a physical view, we
adopt the radius coefficient λ controls the degree of mod-
eling the overlaps among different clusters and set hyper-
parameter k to be 1.0 by default.

Through ablation experiments presented in Fig. 4, we in-
terestingly observed that setting λ to 0.3 yields in better per-
formance in datasets with significant data cluster overlaps,
such as Cars, whereas setting λ to 0.6 was more effective
for datasets with less cluster differences, such as Cifar10.
Consequently, we use the set of {0.3, 0.6} as candidate ra-
dius coefficients for all downstream tasks. Our findings in-
dicate that controlling the dynamic process can enhance the
model’s performance and that selecting an appropriate ra-
dius coefficient is crucial in achieving optimal results.

5.3. Multiple Step Moving

To decrease the potential energy and achieve the desired
effect, we employ a multi-step moving process, where the
exit ratio ϵ and the maximum number of steps M determine
the end condition. As shown in Fig. 5, it is evident that the
force decreases rapidly within a few steps, indicating that
the clusters are being pushed apart and the interaction force
is decreasing.

Figure 5. The left picture is the decay curve of force changing
with steps M and the right picture shows the influence of different
end condition to the performance.

According to the results, we set the attenuation condi-
tion and the maximum number of steps to be 5 to termi-
nate the moving process when the current force is less than
ϵ = 0.5 of the initial force in the experiments. The multiple
step moving approach allows us to model the movement in
a short period of time, while taking into account the updated
feature positions and re-calculating the interaction force.

6. Visualization and Analysis
In this section, we present visualization results to as-

sess the effectiveness of our proposed method and to gain
a deeper understanding of its mechanisms.

6.1. Different Cluster Change

The visualization in Fig. 6 reveals that the initial state
of clusters, encoded by self-supervised pre-trained models,
is not well-distributed. While the different clusters should
be apart from the others when transferring to downstream
task. Therefore, this highlights the potential for improve-
ment that our method offers. To further investigate the un-
derlying processes, we take the BYOL model on Cifar100



dataset and employ the t-SNE algorithm [43] to visualize
our dynamic modeling process.

Figure 6. The dynamic representation of our modeling process on
self-supervised models.

As shown in Fig. 6, the initial observations are rather
chaotic and samples are not clearly separated by class in
the t-SNE visualization, which is due to the lack of class
information in the self-supervised pre-training. Therefore,
predicting the transferability of the initial state is unreliable.
However, our dynamic modeling process improves the sep-
arability of the feature clusters, achieving a similar effect to
fine-tuning without requiring network updates. Overall, the
visualization results provide strong evidence in support of
the effectiveness of our proposed method, and offer insights
into the underlying processes that contribute to its success.

6.2. Model Rank

By utilizing our proposed method, we are able to refine
models that have a relatively low transferability score as a
result of initial unstable observations. To evaluate the ef-
ficacy of our approach, we generated a visualization of the
model rank comparisons between the initial observation and
our refined observation, as shown in Fig. 7.

Figure 7. We present a visualization of the variation in model rank-
ing concerning the prediction of transferability scores, utilizing
both our own observations and initial observations. The depicted
progression spans three datasets: DTD, Flowers, and Cars, ar-
ranged from left to right.

The results demonstrate a significant improvement in the
calibration of model rankings when utilizing our refined ob-

servation, where the optimal model is positioned near the
reference line in the figure. Notably, some models that be-
gin with an unfavorable starting point can be rapidly im-
proved to achieve a superior ranking, highlighting the ef-
fectiveness of our refinement methodology.

7. Efficiency Analysis
In the results of our experiment, we have demonstrated

the effectiveness of our proposed method in enhancing var-
ious transferability prediction techniques. Additionally, we
highlight in this section that our approach exhibits compu-
tational efficiency in terms of algorithmic complexity and
practical running time. Our method is computationally ef-

Table 2. The comparisons of running time on Flowers.

Metrics PARC LogME NLEEP SFDA GBC Ours
Running Time 27s 8s 392s 82s 11s 2s

ficient due to the simplification in physics that we have
adopted. Specifically, we model the same class features as a
whole ball and consider the stress of the class center exclu-
sively, resulting in a computational complexity of O(C2D),
where C represents the number of classes and D denotes
the feature dimension. Consequently, our method produces
a relatively small time overhead in comparison to the trans-
ferability prediction process. We present our experimental
findings on the running time of our approach in Table 2.
Notably, our method contributes minimal overhead to the
transferability prediction process, further attesting to its ef-
fectiveness and efficiency in computation.

8. Conclusions and Future Work
This paper presents a fresh insight to reframe transfer

learning as a process of decreasing the system potential en-
ergy. To this end, we propose physically motivated mod-
eling technique that effectively captures the dynamics of
representations. Despite being a simplified physical mod-
eling approach, our method consistently boosts the existing
metrics for ranking the self-supervised pre-trained models.
In the future work, we intend to enhance the sophistica-
tion of our physical model by incorporating adaptive hyper-
parameters and expanding its applicability to more trans-
fer learning scenes. We hope our work will shed light on
the representation dynamics in transfer learning and inspire
further research in this field.
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A. Compared Methods
In this paper, we evaluate the efficacy of our proposed

method by applying it to three distinct transferability pre-
diction metrics, i.e., LogME [46], GBC [36], and SFDA
[40]. To enhance understanding of their underlying prin-
ciples and mechanisms, we provide detailed descriptions of
these metrics in this section.

LogME [46]. LogME is an evidence-based metric, which
uses the marginal evidence to measure the transferability.
Unlike the approach in [5], LogME does not directly min-
imize the Gaussian-based log-likelihood. Instead, it adopts
Bayesian averaging to address the overfitting problem:

p(y|F ) =

∫
p(w)p(y|F,w)dw,

where p(w) and p(y|F,w) are modeled as two Gaussian
distributions specified by two positive parameters. p(y|F )
denotes the probability density of the compatibility between
features F and labels y, which is based on the marginal ev-
idence of the target task.

SFDA [40]. SFDA is a class-discrimination based met-
ric, which utilizes a Fisher Discriminant Analysis (FDA)
approach and propose ConfMix to produce hard-negative
samples in a self-challenge manner. The aim of SFDA is
to find a transformation U to maximize between scatter of
classes and minimize within scatter of each class:

U = arg max
U

=
|U⊤SBU |

|U⊤(1− λ)SW + λI)U |
,

where S B and S W are the between and within class
scatter matrix. The solution can be solved with a close-
form solution and then SFDA acquires transformed feature
{x̂ n = U⊤xn} {n = 1}N . Finally, SFDA adopts Bayes
theorem to obtain the score function δc(x̂n) and use the
probability likelihood to measure the transferability score.

δc(x̂n) = x̂nUU⊤µc −
1

2
µcUU⊤µc + logqc.

GBC [36]. GBC is a class-separation based metric that
employs the Gaussian Bhattacharyya Coefficient (GBC) to
estimate the pairwise class separability.

GBC = −
∑
i ̸=j

exp(−BC(i, j))

BC(i, j) =
1

8
(µci − µcj )

⊤Σ⊤(µci − µcj )

+
1

2
ln(

|Σ|√
|Σci ||Σcj |

),

where µ and Σ represent the distribution mean and variance
of the corresponding class, and coefficient BC(i, j) denotes
the overlaps between classes i and j. The final transferabil-
ity score is based on the overlaps of all classes by summing
up the pairwise negative exponential coefficients.

B. Implementation Details
The implementation details are presented in the section

of experiment setup and ablation study. Additionally, we
present supplementary studies in this section.

Hyper-parameter k. The hyper-parameter k denotes the
elastic coefficient of the repulsive-based elastic force and a
higher value of k yields a stronger force, as shown in Sec-
tion 3.3. Since that the elastic hyper-parameter k is coupled
with the radius coefficient λ, we set the default value of the
hyper-parameter k to 1.0 and adjust λ in our experiments
accordingly. As suggested by [40], we further conduct a
grid search on k for optimal performance using values of
[0.6, 0.8, 1.0, 1.2, 1.5, 2.0] and the results are presented in
Table 3.

Feature Pre-processing. In our implementation, we
adopt a pre-processing step to analyze the motion in the
embedding space. Specifically, downstream features are
normalized with ImageNet feature mean and standard de-
viation, based on a subset of 50,000 images. To evaluate
the impact of normalization on the modeling process, we
present our findings in Fig 9. Through the normalization,
the feature values in each dimension are largely normal-
ized in a certain region (e.g., [−3σ, 3σ] due to the prop-
erty of Gaussian distribution), creating a suitable condition
for physical modeling. We discovered that the normaliza-
tion can prevent the occurrence of highly imbalanced di-
mensions caused by the divergence in numerical value and
stabilize the physical modeling process.

Maximum Phase Position. We calculate the phase posi-
tion s of each cluster using the motion equation. In our im-
plementation, we set a maximum phase position constraint,
i.e., min(s, xe). This constraint ensures that the force de-
creases accordingly as the movement s surpasses the over-
lap xe between two clusters. By adding this boundary con-
dition to the motion equation, we can enhances the algo-
rithm’s robustness and avoid extreme situations.

C. Comparing to Fine-tuning
In this paper, we have shown the effectiveness of our

method without the need for fine-tuning, Additionally, we
highlight the advantages of our method over fine-tuning in
this section. The t-SNE visualization in Fig. 8 reveals that
during the initial stage of fine-tuning, the clusters are not



Table 3. The supplementary experiment results of different transferability metrics on various self-supervised learning models under grid-
search of hyper-parameter k, showing that our method still has further potential with fine-grained tuning on hyper-parameter.

Self-Supervised Reference Aircraft Caltech101 Cars Cifar10 Cifar100 Flowers VOC Pets Food DTD
NLEEP [31] CVPR’21 -0.029 0.525 0.486 -0.044 0.276 0.534 -0.101 0.792 0574 0.641
PARC [6] NIPS’21 -0.03 0.196 0.424 0.147 -0.136 0.622 0.618 0.496 0.359 0.447
LogME [46] ICML’21 0.223 0.051 0.375 0.295 -0.008 0.604 0.158 0.684 0.570 0.627
LogME+Ours this paper 0.509 0.611 0.624 0.633 0.668 0.728 0.781 0.795 0.737 0.837
SFDA [40] ECCV’22 0.254 0.523 0.515 0.619 0.548 0.773 0.568 0.586 0.685 0.749
SFDA+Ours this paper 0.505 0.661 0.666 0.741 0.744 0.798 0.613 0.592 0.689 0.907
GBC [36] CVPR’22 0.048 -0.18 0.424 0.008 -0.249 0.532 -0.041 0.655 0.268 0.05
GBC+Ours this paper 0.549 0.340 0.629 0.149 0.431 0.779 0.552 0.758 0.672 0.611

Figure 8. The t-SNE visualization of dynamic feature representation achieved through fine-tuning.

Figure 9. The influence of feature pre-processing.

well separated due to the random initialized classifier layer
and further adaptation to downstream tasks is required. For
comparison, the t-SNE visualization of our approach is
shown in Section 6.1.

We display the ranking performance achieved through
fine-tuning in Fig. 10, which reveals a performance pattern
of initial decline followed by improvement. This suggests
that fine-tuning requires multiple iterations to adapt to new
tasks for learning the classifier layer. In contrast, our pro-
posed physics-inspired method can simulate the dynamic
feature representation without the need for this adaptation
process.

Furthermore, fine-tuning involves a grid search strategy
to select the best hyper-parameters, and fine-tuning the en-
tire model on the downstream dataset. This process requires

Figure 10. The ranking performance of different fine-tuning iter-
ations.

testing 30 hyper-parameter setups, with each training pro-
cess consisting of 5000 iterations taking 16 minutes, mak-
ing it more time-consuming compared to our physics-driven
approach.

D. Ground Truth Results
We obtained the ground truth results by fine-tuning the

models using a grid-search strategy, following the the im-
plementation of [40, 46]. More information on this process
can be found in Section 4. In Table 4, we present the ground
truth results of the 12 self-supervised learning models and
10 downstream tasks.



Table 4. The ground truth results of the 12 self-supervised pre-trained models on 10 downstream tasks.

Self-Supervised Aircraft Caltech101 Cars Cifar10 Cifar100 Flowers VOC Pets Food DTD
BYOL [22] 82.1 91.9 89.83 96.98 83.86 96.8 85.13 91.48 85.44 76.37
Deepclusterv2 [8] 82.43 91.16 90.16 97.17 84.84 97.05 85.38 90.89 87.24 77.31
Infomin [41] 83.78 80.86 86.9 96.72 70.89 95.81 81.41 90.92 78.82 73.74
InsDis [45] 79.7 77.21 80.21 93.08 69.08 93.63 76.33 84.58 76.47 66.4
MoCov1 [24] 81.85 79.68 82.19 84.15 71.23 94.32 77.94 85.26 77.21 67.36
MoCov2 [13] 83.7 82.76 85.55 96.48 71.27 95.12 78.32 89.06 77.15 72.56
PCLv1 [30] 82.16 88.6 87.15 86.42 79.44 95.62 91.91 88.93 77.7 73.28
PCLv2 [30] 83.0 87.52 85.56 96.55 79.84 95.87 81.85 88.72 80.29 69.3
Sela-v2 [4] 85.42 90.53 89.85 96.85 84.36 96.22 85.52 89.61 86.37 76.03
SimCLRv1 [11] 80.54 90.94 89.98 97.09 84.49 95.33 83.29 88.53 82.2 73.97
SimCLRv2 [12] 81.5 88.58 88.82 96.22 78.91 95.39 83.08 89.18 82.23 94.71
Swav [9] 83.04 89.49 89.81 96.81 83.78 97.11 85.06 90.59 87.22 76.68


