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Abstract

We consider an Anonymous Multi-Agent Path-Finding
(AMAPF) problem where the set of agents is confined to a
graph, a set of goal vertices is given and each of these ver-
tices has to be reached by some agent. The problem is to
find an assignment of the goals to the agents as well as the
collision-free paths, and we are interested in finding the solu-
tion with the optimal makespan. A well-established approach
to solve this problem is to reduce it to a special type of a
graph search problem, i.e. to the problem of finding a maxi-
mum flow on an auxiliary graph induced by the input one. The
size of the former graph may be very large and the search on
it may become a bottleneck. To this end, we suggest a spe-
cific search algorithm that leverages the idea of exploring the
search space not through considering separate search states
but rather bulks of them simultaneously. That is, we implic-
itly compress, store and expand bulks of the search states as
single states, which results in high reduction in runtime and
memory. Empirically, the resultant AMAPF solver demon-
strates superior performance compared to the state-of-the-art
competitor and is able to solve all publicly available MAPF
instances from the well-known MovingAl benchmark in less
than 30 seconds.

Introduction

Multi-Agent Path Finding (MAPF) problem is the problem
which generally asks to find a set of collision-free paths for a
set of agents that operate in a shared environment and have
to reach predefined goal locations from the current (start)
ones. MAPF has many applications including automated
warehouses, autonomous vehicles, video games and is be-
ing widely studied in the literature. Depending on the appli-
cation, many variants of MAPF have been proposed (Stern
et al. 2019b) and numerous solutions have been already pre-
sented. One variant is the Anonymous MAPF (AMAPF). In
AMAPF the agents are interchangeable and each agent may
be assigned to any goal, assuming that in the end all goal
locations will be reached (in case the number of goal loca-
tions is smaller or equal to the number of agents) or each
agent will arrive to one goal location (otherwise). This prob-
lem naturally arises in such environments where the tasks
can be performed by any agent, e.g., think of the identi-
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cal robots that carry packages/inventory-pods in automated
warehouses.

In this work we are interested in solving AMAPF prob-
lem optimally w.r.t makespan cost function, which is the
arrival time of the last agent. That is, our task is to find a
solution where the last agent arrives at its goal location as
early as possible. State-of-the-art optimal AMAPF solvers
are reduction-based, i.e. the initial problem is reduced to an-
other one and the latter is solved with the off-shelf solvers.
In case of AMAPF the reduction is the following. Based on
the input graph another one is constructed and then a maxi-
mum flow problem on this auxiliary graph is formulated and
solved. The latter can be interpreted as finding several paths
(subject to certain constraints) on the reduced network. The
major bottleneck here is that the size of the network is much
larger, both in the number of vertices and edges, compared to
the initial AMAPF graph and finding paths on it is burden-
some. Moreover, the AMAPF reduction scheme in general
assumes that numerous networks may be consecutively con-
structed (each one being larger than the previous one) and
the search should be repeated.

To this end, we present an improved optimal AMAPF
solver that follows the reduction-to-the-flow-problem ap-
proach but utilizes a novel search method to find paths on
the (flow) networks. The crux of this search method is the
concept of bulk states and implicit expansions. In brief, in-
stead of generating and expanding numerous search states
we compress them into the bulks that form a sequence, ex-
ploiting the special structure of the underlying network, and
explicitly store in the search tree only the certain represen-
tatives of those bulks (while implicitly reasoning about all
other states in the bulk). On the theoretical side we show that
our search method, which we dub Bulk Search, is complete.
On the practical side we compare our improved AMAPF
solver, that utilizes Bulk Search, with the state-of-the-art op-
timal AMAPF solver and show that our algorithm notably
scales better to large maps (due to significantly lower num-
ber of expansions when finding the paths on the flow net-
works) and outperforms the competitor on all maps of the
well-known MAPF benchmark from (Stern et al. 2019a).

Related Works

In conventional MAPF formulation (Stern et al. 2019a) a
set of agents and their start and goal locations are given



as well the specification where each agent starts and what
goal it should reach. Even when both the time in discretized
into the time steps and workspace is discretized to a graph
(which are the two default assumptions in MAPF), obtaining
an optimal solution w.r.t. one the most widely-used objec-
tives, e.g. makespan or sum-of-costs, is known to be NP-
Hard problem (Yu and LaValle 2013b). Surprisingly, the
AMAPF problem, which is a combined problem of both
MAPF and goals assignment, can be optimally solved w.r.t.
makespan (but not sum-of-costs) in polynomial time (Yu and
LaValle 2013a). The seminal method, introduced in (Yu and
LaValle 2013a), is based on the reduction of AMAPF to a
series of specific graph-search problems, i.e. the problems
of finding a maximum flow (Ford Jr and Fulkerson 2015)
on a graph of special structure (network) induced by the
inpunt MAPF graph. For sum-of-costs objective an adap-
tation of the seminal MAPF solver, Conflict-Based Search
(CBS) (Sharon et al. 2015), was suggested in (Honig et al.
2018). Indeed, this algorithm is not polynomial. Subopti-
mal AMAPF was studied in (Okumura and Défago 2022)
and several computationally efficient algorithms were pro-
posed in this work which were empirically shown to provide
high-quality solutions (however no bound on sub-optimality
is theoretically guaranteed). A variant of the AMAPF prob-
lem with some additional practically-inspired assumptions,
i.e. that the number of goals exceeds the number of agents
and thus agents have to move to the new goals upon com-
pleting the current ones, was studied in (Nguyen et al. 2017)
and solved using the Answer Set Programming (ASP).

More involved variants of AMAPF were studied in (Ma
and Koenig 2016; Bartdk, Ivanovd, and Svancara 2021).
There it was assumed that the agents are partitioned into
the teams (colors) and each team is assigned a set of inter-
changeable targets (of the same color). In (Ma and Koenig
2016) a combination of CBS and min-cost max-flow algo-
rithm (Ford Jr and Fulkerson 2015) was suggested to solve
a problem. In (Bartdk, Ivanové, and Svancara 2021) several
solvers that utilize reduction to SAT were proposed. Indeed,
AMAPF can be viewed as a special instantiation of the col-
ored MAPF problem (i.e. when there exists only one team
of agents of the same color as all the goals).

Among the other problems that are closely related to
AMAPF one can name Lifelong MAPF (LMAPF) (Li et al.
2021) and Multi-agent Pickup and Delivery (MAPD) (Ma
et al. 2017). These MAPF variants assume that the agents
continuously operate in the environment reaching the speci-
fied goals (associated with certain pickup-and-delivery tasks
in case of MAPD). However the assignments of goals (tasks)
to agents is commonly assumed to be realized by an exter-
nal procedure and, thus, the assignment sub-problem is not
typically considered as a part of a LMAPF/MAPD problem.
However the works that consider a combined problem, in-
deed, exist (Chen et al. 2021; Xu et al. 2022).

Finally, there exist works that study AMAPF in continu-
ous domains, i.e. not assuming that the agents are confined
to a given graph but rather allowing them to freely move in
the (geometric) workspace (Adler et al. 2015; Solovey and
Halperin 2016).

Problem Statement

We follow a classical approach (Stern et al. 2019b) to define
the problem under investigation — AMAPF. We consider a
graph G = (V, E), whose vertices correspond to the loca-
tions in the environment and edges — to the transitions be-
tween them. k agents are confined to this graph, i.e., initially
each agent occupies a (distinct) vertex — s;, the start vertex,
and at each time step of the discretized timeline it can either
wait in its current vertex or move to an adjacent one. The
duration of both types of actions (move or wait) is 1 time
step. k goal vertices, g1, ..., gk, are also distinguished and it
is assumed that any agent can reach any goal, i.e. there is no
pre-defined assignment of agents to the goals.

A plan for an agent, (s, g), is a sequence of (move/wait)
actions, s.t. it begins at vertex s, ends at vertex g and each ac-
tion in a plan starts where the the previous action ends. The
cost of the plan is the time step by which g is reached. Two
plans are said to contain a vertex (similarly — edge) conflict
if the agents following them occupy the the same vertex (use
the same edge) at the same time step.

The problem now is to find a set of plans II =
{m1, ...y}, s.t. (1) each pair of plans is conflict-free and
(2) all goals are reached. This problem is, in essence, a com-
bination of the assignment problem, where one needs to de-
cide which agent goes to which goal, and the (multi-agent)
pathfinding problem, where one need to construct a set of
the conflict-free plans.

We  consider the

following cost  objective:

is the cost of the individual plan (i.e. the earliest time step
when an agent reaches a goal vertex). In this work, we are
interested in obtaining makespan-optimal solutions of the
problem at hand (AMAPF).

Background
Network Flow

Generally, network flow problem might come in different
flavours, see (Ahuja, Magnanti, and Orlin 1995) for an
overview. Here we focus on a specific variant of the prob-
lem needed for solving AMAPF problems.

A network is a tuple N = (G, cap, s, g), where G =
(V, E) is a directed graph, cap : E — Z* is the mapping
defining the capacities of the edges, s € V is the source
vertex and g € V is the sink vertex. For a vertex v € V,
let o (v) (resp. o~ (v)) denote the set of edges of G going
to (resp. leaving) v. A feasible s, g-flow on the network is
amapping f : E — Z7 that satisfies three types of con-
straints: edge capacity constraints,

Ve € E, f(e) < cap(e), (1
the flow conservation constraints at non terminal vertices,
VoeV\{sg}, Y, fle)— Y. fle)=0,
ecot(v) e€o—(v)
and the flow conservation constraints at terminal vertices,

F(fy=>_ fleo= > fle) 3)

eCo—(s) ecot(g)



The quantity F'(f) is called the value of the flow f. An-
other interpretation of the flow as defined above is that the
flow is a set of s-g paths in G (possibly overlapping or even
duplicating), where each path caries a unit of flow from s to
g, such that the sum of units passing through any edge does
not exceed its capacity.

The standard single-commodity maximum flow problem
asks the question: given a network /N, what is the maximum
F(f) that can be pushed through the network? Alternatively,
find a set of s-g paths that carry the maximum units of flow
through the network.

From AMAPF to Network Flow

In (Yu and LaValle 2013b), the authors reduced the T-steps
AMAPF problem, i.e. the one which allows any agent to do
at most 7" actions, to a maximum flow (MF) problem. In
specific, it was proved that a T'-steps AMAPF problem has a
solution iff the reduced MF problem has a flow equal to the
number of agents. The makespan for an AMAPF instance
can therefore be found by finding the smallest 7" such that
T-steps AMAPF instance has a solution. We now explain
the suggested reduction with a slight modification suggested
by (Liu et al. 2019) that simplifies it.

Consider a T-steps AMAPF instance with the graph G =
(V, E). We first create 2T + 1 copies of V' and mark them
as follows: 0,1,17,2,2', ..., T" — see Fig. 1. Hereinafter, we
will use the term vertices to denote the elements of the origi-
nal AMAPF graph and the term nodes to denote the elements
of the constructed network. We will also call copies ¢’ (with
apostrophe) and copies ¢t for t = 0,1,..7" as outer and in-
ner copies, respectively. The copied vertices of the original
graph form the nodes of the network. Each node is identi-
fied by (v, h), where h stands for the copy, alternatively re-
ferred to as height. Higher node means greater copy, and i’
is higher than h. Indeed, the node (v, h) (as well as (v, h’))
corresponds to the state of an agent located in vertex v at
time step h.

Then, for each edge e(u, v) in the original graph, we con-
nect the nodes (u, h’) and (v, h+1) for h > 0, and also con-
nect (u,0) and (v, 1). These edges correspond to the move
actions and we call them the move edges. Then we add the
wait edges that connect the nodes (u, k') and (u, h + 1) for
h > 0 and the nodes (u, 0) and (u, 1). Additionally, we add
the edges between the nodes (u, h) and the (u,h'). These
edges do not denote to any action but are added to forbid any
two s-g paths in the network to share any node and therefore
to avoid node-collisions. We call them the restriction edges.
Finally, we add the source s and sink g nodes and connect s
to all nodes (u, 0) where w is a start vertex, and connect g to
nodes (v, T”) where v is a goal vertex.

Hereinafter whenever a path in a network is mentioned
we mean s-g path. The matching between the AMAPF and
MF is now straightforward. Each plan for an agent can be
matched to a path in the network by matching the agent ac-
tions with the move or wait edges, and using the restric-
tion edges to connect between them. In the same way, a
path in the network is matched to a plan for an agent where
the move/wait edges are matched to move/wait actions. See
Fig. 1 for an self-contained example. It was proved that there
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Figure 1: Example of the flow network (left) for a T-steps
AMAPF instance (right). Each line in the flow network
presents the copies of a single vertex in the original AMAPF
graph. The diagonal, solid horizontal and dashed horizon-
tal edges in the network denote move, wait and restriction
edges. In this example, the AMAPF instance has two start
vertices A, B and two goal vertices C, D, so the source node
s in the network is connected to the nodes (4, 0), (B, 0) and
the sink g is connected to (C,T"), (D, T"). The example also
shows the matching between the plans for the agents and the
s-g paths in the network (green and yellow edges).

are no shared nodes in any two paths in the network (that
form the solution to the MF problem) which infers that all
matched plans have no node-collisions. Edge-collision may
happen if two paths pass the edges ((u, h') — (v, h+1)) and
((v,h') = (u, h+1)) as these two different edges in the net-
work refer to the same edge in the original graph. However,
using the approach suggested in (Liu et al. 2019) these col-
lision can be eliminated in the following fashion. Instead of
two conflicting agents move to their next vertices they swap
plans and continue moving by each others plan. As a result,
the agents’ plans can be obtained by finding the maximum
number of paths (maximum flow) in the described network.

Solving Maximum Flow

Ford-Fulkerson algorithm (Ford and Fulkerson 1956) was
suggested in (Yu and LaValle 2013b) to solve the maximum
flow problem. The algorithm is simple, easy to implement
and its complexity on the reduced networks is O(kEV) (for-
mulated in (Yu and LaValle 2013b)) , where E, V stand for
the number of nodes and edges in the original graph. Since
in our MF problem, all edges have a capacity of one and
the value of the flow is bounded by the number of agents
(as each path is to be matched to an agent’s plan), Ford-
Fulkerson can be considered as one of the most efficient
solvers for our case (see (Cruz-Mejia and Letchford 2023)
for more wider details about Maximum Flow algorithms).

We refer the reader to original paper for the detailed de-
scription of Ford-Fulkerson and here just briefly describe
how the algorithm works specifically for the reduced net-
work. In particular, the following two steps are sequentially
repeated. First, we find a path p from s to g in the network.
Second, we reverse all edges of p. We keep repeating these
two steps until no path can be found. The found paths form
the maximum flow in the network (in our case, they form the
plans of the agents in the original AMAPF problem).



Solving MF Efficiently On The Introduced
Networks

The maximum value of 7" needed to solve AMAPF problem
canbe up to k+V —2 (as shown by (Yu and LaValle 2013b)).
This implies that the network size may be quadratic in the
number of vertices of the original graph. Therefore, finding
an s-g path may become a bottleneck when solving AMAPF
instances involving large input graphs. To this end, we pro-
pose an algorithm to enhance the search process taking ad-
vantage from the specific structure of the reduced network
and as a result solving AMAPF problem much faster.

First, we present some definitions to use in the algorithm
description. In our algorithm, the search state corresponds to
the network node. We will use n(v, h) to denote the search
states. Recall that the network node is defined by the vertex
in original graph, v, and the height (copy) h (higher node
means higher copy, and i’ is higher than h). Let us define
a connected-sequence as a sequence of nodes with the same
vertex in which we can achieve the last node from the first
node using only wait and restriction not-reversed edges, and
it cannot be extended in neither side (i.e. it has maximum
length). An example is depicted in Fig. 2. Initially, for each
vertex v of the original graph we have only one connected-
sequence (v, [0,77]) i.e. the one that starts with the node
with height 0 and ends with the node of height 7" (shown
by yellow crossbars). After a path (green path) is found, its
edges are reversed (red edges in lower graph). As a result,
some connected-sequences disconnect which results in sev-
eral connected-sequences at the same vertex (see the lower
network).

Idea The suggested algorithm is a graph traversal algo-
rithm where the order of the search states in the search set
(OPEN) is determined by their heights, i.e. the states with
the lower heights are expanded first. The crucial idea of the
algorithm is to expand states in bulks while searching. That
is, instead of expanding one search state, i.e. generating its
successors and marking it as visited (adding it to CLOSED),
in each search iteration we (implicitly) expand a bulk of
states at once. Such a bulk expansion can be effectively im-
plemented using the introduced notion of the connected se-
quence, resulting in the reduction of the expansions number,
time and memory compared to expanding states individu-
ally. Next, we describe how we can form the bulks of states
and how the successors can be found compactly and fast.
We note that a similar but a more specific concept
(in time-spaces), was used in (Phillips and Likhachev
2011), (Gonzalez, Dornbush, and Likhachev 2012) to im-
plicitly compress and expand the states generated by the wait
actions of agents !. Let us assume that while traversing the
graph naively by single nodes, we are to expand a state (v, k)
which is located in a connected-sequence (v, [Amin, Pmaz))-

'The mentioned algorithms were originally tailored to graph-
based pathfinding in the presence of dynamic obstacles where each
vertex of the graph had to be annotated with the (safe) time inter-
vals and the search utilized implicit move-then-wait actions. Our
suggested algorithm on the other hand handles explicit graphs, and
the notion of connected sequence in general is not obliged to relate
to time dimension, as will be shown later in the paper.

We can note that the nodes with the higher heights in-
side the connected-sequence (i.e. the nodes (v,z) : = €
[h+1, hinas]) are all achievable from (v, h) via the waif and
restriction edges. Hence, the idea is to directly (and implic-
itly) generate all of these states ((v,z) : € [h+ 1, himaz)),
form an implicit bulk consisting of these states (including
the originally picked-up node (v, h)), and expand them all
at once. We will refer to the described mechanism of gener-
ating the sequential successors of states that uses only wait
and restriction edges as to the straightforward generation.
Note that it is enough to store the vertex and the height
bounds of the bulk to define it. So technically when form-
ing a bulk (for future expansion) we only need to find the
last straightforwardly achievable state (i.e. the highest state
in the connected-sequence).

When the bulk is ready, it is expanded in the following
fashion. First, let us assume the naive expansion of a bulk
when for every node that resides in it we generate all of its
immediate successors. Now observe that as a result of such
procedure we are likely to have numerous successors that are
characterized by the same graph vertex and different heights.
Moreover many of these successors may belong to the same
connected sequence. Thus, instead of explicit generation of
them we generate only the ones with lower heights in their
sequences. As the other search states from these sequences
will be straightforwardly generated later on (i.e. when the
search state with the lowest copy will be picked for expan-
sion and its bulk will be formed as described above).

In other words, to expand a bulk of states (v, [, hy]), we
do the following. We iterate over all connected-sequences
in neighbor vertices of v, in which we can achieve at least
one node (from a node (v, ) : & € [hy, hy]). Then, we only
generate the accessible node with the minimum height in
each of these connected-sequences. The periodic structure
of the reduced networks allows us to find the node with min-
imal height fast (as we will show later). As the number of
connected-sequences is much less than the number of indi-
vidual nodes, this leads to high reduction in the number of
generated states. We call the algorithm that utilizes the de-
scribed concepts Bulk-Search (BS). Next, we describe the
details of the implementation.

Details Algorithm 1 shows the pseudo-code of a graph
traversal algorithm with our modifications i.e. bulk search.
First we order the states inside the search set (OPEN) by
their height i.e. we always choose the state with the mini-
mum height for the expansion. This will help us in reduc-
ing the number of expansions as we will see later. Second
change is that whenever we need to check whether a cho-
sen state was expanded before, we additionally check if the
state can be straightforwardly generated from the previously
opened states. In this case, we do not need to expand it, as we
assume that it was implicitly expanded before, and its suc-
cessors were already generated and inserted into the search
set. This can be done by checking if any state in the same
connected-sequence and lower height was expanded before
(i.e. stored in CLOSED set)(lines 11-14). This check should
also be done when inserting new states into OPEN set (lines
20-23).



Algorithm 1: Bulk Search

Input: Network N(G, cap, s, g)
Output: Path from s to g if exists
1: OPEN < ¢, CLOSED « ¢

2: insert s — OPEN
3: while OPEN # ¢ do
4:  remove n(v, h) with the minimum A from OPEN
5 if n = g then
6 return path from s ton
7:  endif
8.
9
0
1

if n € CLOSED then
continue
end if
x(v, h') « the state from CLOSED in the same connected-
sequence of n and minimum height
12:  if z exists and b’ <= h then

13: continue

14:  endif

15:  succ + getSuccessors(n)

16:  for n'(u,h’) in succ do

17: if n’ € OPEN U CLOSED then

18: continue

19: end if

20: x(u, h'") < the state from OPEN U CLOSED in the
same connected-sequence of n’ and minimum height

21: if z exists and h'' <=}’ then

22: continue

23: end if

24: insert n’ — OPEN

25:  end for

26: end while
27: return no answer

Algorithm 2: Generating successors

Input: Network N (G, cap, s, g), Node n(v, h)
Output: The successors of n(v, h)
if n = s then
return all neighbor nodes of n in G
: end if
T succ <— ¢
¢ [Mmin, hmaz] < height bounds of the connected-sequence
where n is located
if h = hpmin then
insert all neighbor nodes of n in G — succ
: end if
: insert all neighbor nodes of node (v, Amaz) in G — succ
. for each connected-sequence cs(u, [hi, h.,]) with vertex u is a
neighbor of v do
11:  jpom < the height of the minimum outer copy in
[mam(hmm + 1, h), hmaz - 1]
12: Cto < the height of the minimum inner copy in [hy, ]
13: if ¢} + 1 <= hy and ¢to — 1 <= himaz then

Soxrxo

Ju—

14: Cmin < maz(cio, c}mm +1)
15: insert (u, Cmin) — Succ

16: end if

17: end for

18: return succ

The third change is how we generate the successors of
all states (the taken one from OPEN along with its straight-
forwardly generated states) fast. The pseudo-code is pre-

Figure 2: Example showing the connected-sequences on
the network. Yellow crossbars denote to the connected-
sequences on each vertex. Initially, we have the connected-
sequences as shown in the upper figure. After a path (green
one) is found and its edges are reversed, the connected-
sequences are divided as shown in the lower figure.

sented in Algorithm 2. Firstly (lines 1-3), if the node is the
source node then we have only one node as input (i.e. no im-
plicit states) and thus we need to only generate neighboring
successors (i.e. connected nodes in the network) and return
them. Otherwise, if the input node n(v, h) is an inner node in
the connected-sequence (v, [lmin, Pmaz]), We should gen-
erate the successors of all states n(v,z) : & € [h, hmaz)-
This can be done as follows. If the state (v, h) is located in
the beginning of the connected-sequence (i.e. h = huin),
this state may have reversed edges, so we always gener-
ate all neighboring nodes of this state in the network. The
same thing is applied on (v, k4. ) Where we also generate
all its neighboring nodes in the network. Other nodes (i.e.
nodes (v,z) : ¢ € [max(hmin + 1, ), Amaer — 1]) have
only move edges to connect to nodes in other connected-
sequences, so we can do the following (lines 10-17) to gener-
ate their successors. We iterate over all connected-sequences
cs in neighbor vertices of v. We then check whether we
can achieve at least one node in ¢s (from nodes (v,z) :
z € [max(hmin + 1,h), hmaz — 1]). As shown in lines
11-13, this can be done by checking whether there is at
least one move edge which starts from an outer copy in
[max(hmin + 1, 1), hmaz — 1] and ends at inner copy in
cs. If so, we generate the node with the minimum accessible
height in c¢s and added to successors set (lines 14-15).

As a result, any achievable node from the source node is
either explicitly or implicitly (from a node with lower height
in the same connected-sequence) expanded. Therefore, we
can immediately state the following theorem.

Theorem 1. BS is a complete algorithm.

Theoretical analysis The search states inside the search
set are sorted according to the height. This helps in reduc-
ing the number of expansions as lower height states implic-
itly expands the higher height states in the same connected-
sequence but the opposite is not applicable. Theoretically



. 100.0 T
§
o 75.0
=)
£
g 50.0
2 25.0 == flow-BS
ﬁ H flow
0.0
01 10 20 30
Time (s)

Figure 3: The (normalized) number of instances solved by a
certain time cap.

multiple single states in one connected-sequence may be
expanded individually e.g. if they opened in descending-
height way. This is possible even if we order the states
according to heights as we have reversed edges which
generates states with lower height. However, in practice
only few states are expanded in each connected-sequence
and thus the algorithm mainly depends on the number of
connected-sequences. Fortunately, the number of connected-
sequences is much smaller than the size of the network.
Initially, we have a number of connected-sequences equals
to the number of original graph vertices |V'|. After each
path is found, T (the length of the path) new connected-
sequences appear. As a result, in the whole search for all &
agents, the number of appeared connected-sequences equal
Zilf V|+T( —1) = k|V|+Tk(k—1)/2. Therefore, we
have a theoretical reduction in the number of nodes (com-
paring with k|V'|T, the number of nodes without compress-
ing in connected-sequences) equals min(|V|/k,T/2). This
reduction is significantly high that allows us to obtain the
fastest full success (to our knowledge) in optimally solving
all public MAPF benchmarks for a MAPF-family problem,
as will be shown in next section.

Experimental Evaluation

We implemented the improved AMAPF solver in C++2 and
compare it with the state-of-the-art AMAPF solver that does
not use the introduced bulk search to solve MF but rather
utilizes the standard Ford-Fulkerson as suggested in (Yu and
LaValle 2013b). The code of the competitor was taken from
public repo 3 that accompanied the paper (Okumura and
Défago 2022). We kept all the optimization techniques de-
signed by the code authors. We will denote these two solvers
as flow-BS (ours) and flow (state of the art). The experiments
were conducted on a PC with Intel Core i7-10700F CPU @
2.90GHz x 16 and 32Gb of RAM.

The MAPF maps and instances were taken from the pub-
licly available MAPF benchmark (Stern et al. 2019b). We
use all 33 maps available in this benchmark and all 25 ran-
dom scenarios. Each scenario on each map (except some
small ones), contains 1000 pairs of start-goal positions. To

Zhttps://github.com/PathPlanning/AMAPF-with-MF-and-
Bulk-Search.git
3https://github.com/Keil8/tswap

. . Algorithm

Map Width | Height flow flow-BS
empty-8-8 8 8 100% 100%
empty-16-16 16 16 100% 100%
maze-32-32-2 32 32 100% 100%
room-32-32-4 32 32 100% 100%
maze-32-32-4 32 32 100% 100%
random-32-32-20 32 32 100% 100%
random-32-32-10 32 32 100% 100%
empty-32-32 32 32 100% 100%
empty-48-48 48 48 100% 100%
den312d 65 81 100% 100%
room-64-64-8 64 64 100% 100%
random-64-64-20 64 64 100% 100%
room-64-64-16 64 64 100% 100%
random-64-64-10 64 64 100% 100%
warehouse-10-20-10-2-1 161 63 100% 100%
ht_chantry 162 141 100% 100%
maze-128-128-1 128 128 3% 100%
ht_mansion_n 133 270 96% 100%
warehouse-10-20-10-2-2 170 84 100% 100%
It_gallowstemplar_n 251 180 82% 100%
maze-128-128-2 128 128 4% 100%
ost003d 194 194 57% 100%
lak303d 194 194 44% 100%
maze-128-128-10 128 128 17% 100%
warehouse-20-40-10-2-1 321 123 91% 100%
den520d 256 257 16% 100%
w_woundedcoast 642 578 1% 100%
warehouse-20-40-10-2-2 340 164 8% 100%
brc202d 530 481 1% 100%
Paris_1_256 256 256 5% 100%
Berlin_1_256 256 256 6% 100%
Boston_0256 256 256 4% 100%
orz900d 1491 656 0% 100%

Table 1: Succes rates of flow-BS and flow solvers with a
timeout of 30 seconds.

test a solver on a scenario, we run it with the first 1, 2, 4, 8,
16, 32, 64, 128, 256, 512, 1000 pairs, sequentially. When-
ever a solver fails to solve a problem under a time limit of
30 seconds, we terminate testing on this scenario and move
to the next one.

In the first experiment we used a precise estimator of T’
suggested by (Okumura and Défago 2022) (which solves
bottleneck assignment problem (Gross 1959)) to estimate
the lower bound of the makespan. As this estimator takes
non-negligible time (up to 10 seconds) and both algorithms
use it, we did not account its time from the 30s time budget.

For each map, we collected the total number of success
instances over all scenarios. The table 1 summarizes the re-
sults. As can be shown, our solver was able to solve all in-
stances in all maps under 30s. However, this was not the
case for flow solver. The latter searches the network node-
by-node and, therefore, was able to solve accomplish test
only on the the small maps. When maps are large (like city
maps that are 256 X 256) or the makespan is high (like in the
maze maps), it often was not able to produce solution under
the imposed limit. Fig. 3, shows the total success rate for all
instances in all maps every one second. In fact, flow-BS was
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Figure 4: The number of expanded nodes with different number of agents on different maps.
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able to solve the hardest instance (orz900d map, scenario
20 with 256 agents) in 17s. On the other hand, flow showed
very small increase of SR after solving the easy instances
(75% of instances) around the 8th second.

In the second experiment, we investigated how the num-
ber of agents affects the performance. For this purpose,
we selected three maps of different topology and size and
plotted the average number (over all scenarios) of ex-
panded nodes (machine-independent metric) while search-
ing, against the number of agents. The results (plotted in
Fig. 4) show that our algorithm expands much less nodes
than standard algorithm (as expected). This again proves the
dependence of our algorithm on the number of connected-
sequences in the network but not the network size. More-
over, the number of connected-sequences increases linearly
with the number of agents (it approaches to quadratically
when the number of agents approaches the size of the net-
work) as was deduced theoretically earlier in this paper.
For standard Ford-Fulkerson algorithm, the search also in-
creases linearly with the number of agents, but with the
size of the whole network. It worth to note here, that the
relation between the runtime and number of expansions
is not fixed but also increases. This is because the single
memory-access/read/write operation takes more time when
the amount of the stored data increases.

So far, we assumed that we have a good estimator which
can estimate an optimal or near-optimal lower bound (7°) of

the makespan. However this may be not the case, therefore
the search may be repeated several times until finding the
optimal solution. Therefore, we also conducted experiments
to show the practical performance of both solvers for dif-
ferent 7' when we fix the map and the number of agents.
The tests were designed as follows. For each one of three
fixed maps (the maps warehouse-20-40-10-2-2,
maze—-128-128-10 and room-64-64-16 were cho-
sen), and for a number of agents € {256,1000}, we run
the solvers on networks with maximum height (copy) equal
one of the values {T1in /4, Tinin/2, Trmin, Tmin * 2}, Where
Tonin 1s the optimal makespan. Again, we recorded the av-
erage number of expanded nodes over all scenarios (see
Fig. 5). Obviously, the number of nodes expanded by flow
significantly increases with the value of 7', while flow-BS
does not demonstrate such growth. That means that our
solver is especially useful when one can not estimate the
optimal makespan accurately before actually solving an
AMAPF problem instance.

Conclusion

In this paper we have revisited the reduction-based approach
to optimally solving Anonymous MAPF problem, when the
latter is reduced to a search problem on an auxiliary graph of
a special structure. We have suggested an improved AMAPF
solver that is based on a specific search algorithm, tailored
to find paths on the auxiliary graphs exploiting their spe-



cific topology. We have showed that our improved AMAPF
solver significantly outperforms state of the art on a large
variety of setups, due to its better scalability to the size of
the input graph.
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