
Agent Attention: On the Integration of Softmax and Linear Attention

Dongchen Han* Tianzhu Ye∗ Yizeng Han Zhuofan Xia Shiji Song Gao Huang†

Department of Automation, BNRist, Tsinghua University

Abstract

The attention module is the key component in Transform-
ers. While the global attention mechanism offers high ex-
pressiveness, its excessive computational cost restricts its
applicability in various scenarios. In this paper, we pro-
pose a novel attention paradigm, Agent Attention, to strike
a favorable balance between computational efficiency and
representation power. Specifically, the Agent Attention, de-
noted as a quadruple (Q,A,K, V), introduces an addi-
tional set of agent tokens A into the conventional atten-
tion module. The agent tokens first act as the agent for
the query tokens Q to aggregate information from K and
V , and then broadcast the information back to Q. Given
the number of agent tokens can be designed to be much
smaller than the number of query tokens, the agent attention
is significantly more efficient than the widely adopted Soft-
max attention, while preserving global context modelling
capability. Interestingly, we show that the proposed agent
attention is equivalent to a generalized form of linear at-
tention. Therefore, agent attention seamlessly integrates
the powerful Softmax attention and the highly efficient lin-
ear attention. Extensive experiments demonstrate the ef-
fectiveness of agent attention with various vision Trans-
formers and across diverse vision tasks, including image
classification, object detection, semantic segmentation and
image generation. Notably, agent attention has shown re-
markable performance in high-resolution scenarios, own-
ing to its linear attention nature. For instance, when applied
to Stable Diffusion, our agent attention accelerates gener-
ation and substantially enhances image generation qual-
ity without any additional training. Code is available at
https://github.com/LeapLabTHU/Agent-Attention.

1. Introduction
Originating from natural language processing, Transformer
models have rapidly gained prominence in the field of com-
puter vision in recent years, achieving significant success in
image classification [13, 15, 36], object detection [5, 38],

*Equal contribution.
†Corresponding Author.

Matmul

Softmax

𝑁 × 𝑁

𝑁 × 𝑑

Matmul

𝑁 × 𝑁

𝑁 × 𝑑 𝑁 × 𝑑𝑁 × 𝑑

𝑻

(a) Softmax Attention 𝟐

Matmul

𝑁 × 𝑑

Matmul

𝑑 × 𝑁

𝑑 × 𝑑

𝑁 × 𝑑 𝑁 × 𝑑𝑁 × 𝑑

𝑁 × 𝑑

𝑻

(b) Linear Attention 𝟐

Matmul

Softmax

Matmul

𝑛 × 𝑁

𝑛 × 𝑁

𝑛 × 𝑑

𝑻

Matmul

Softmax

𝑁 × 𝑛

𝑁 × 𝑛

𝑻

Matmul

𝑁 × 𝑑

𝑛 × 𝑑 𝑁 × 𝑑𝑁 × 𝑑𝑁 × 𝑑

(c) Agent Attention

(as key) (as query)

(as value)

Figure 1. Difference between Softmax attention, Linear atten-
tion and Agent attention. Softmax attention computes the simi-
larity between all query-key pairs, resulting in quadratic complex-
ity. Linear attention applies mapping function ϕ(·) to Q and K
respectively to change the computation order, reducing complex-
ity but suffering from insufficient expressive capability. Our Agent
attention employs a small group of agent tokens to aggregate and
broadcast global information, leading to an elegant integration of
Softmax and linear attention and naturally enjoying the advantages
of both high expressiveness and low computation complexity.

semantic segmentation [6, 42], and multimodal tasks [28].
Nevertheless, incorporating Transformers and self-

attention into the visual domain presents formidable chal-
lenges. Modern Transformer models commonly employ
Softmax attention [37], which computes the similarity be-
tween each query-key pair, resulting in quadratic computa-
tion complexity with respect to the number of tokens. As
a result, directly applying Softmax attention with global

1

ar
X

iv
:2

31
2.

08
87

4v
1

 [
cs

.C
V

]
 1

4
D

ec
 2

02
3

receptive fields to the visual tasks can lead to unmanage-
able computational demands. To tackle this issue, exist-
ing works [16, 24, 38, 40, 49] attempt to reduce computa-
tion complexity by designing efficient attention patterns. As
two representatives, Swin Transformer [24] reduces the re-
ceptive field and confines self-attention calculations to local
windows. PVT [38] employs a sparse attention pattern to al-
leviate the computational burden by reducing the number of
keys and values. Despite their effectiveness, these methods
inevitably compromise the capability to model long-range
relationships, and are still inferior to global self-attention.

In this paper, we innovatively introduce an additional set
of tokens A to the attention triplet (Q,K, V), yielding a
quadruplet attention paradigm (Q,A,K, V), dubbed Agent
Attention. As illustrated in Fig. 1(c), the resulting agent at-
tention module is composed of two conventional Softmax
attention operations. The first Softmax attention is applied
to the triplet (A,K, V), where the agent tokens A serve
as the queries to aggregate information from the value to-
kens V , with attention matrix calculated between A and K.
The second Softmax attention is performed on the triplet
(Q,A, VA), where VA is the result of the previous step,
forming the final output of the proposed agent attention. In-
tuitively, the newly introduced tokens A can be viewed as
“agents” for the query tokens Q, as they directly collect in-
formation from K and V , and then deliver the result to Q.
The query tokens Q no longer need to directly communicate
with the original keys K and values V . Hence we call the
tokens A the agent tokens.

Due to the intrinsic redundancy in global self-attention,
the number of agent tokens can be designed to be much
smaller than the number of query tokens. For example,
we find that simply pooling the original query tokens to
form the agent tokens works surprisingly well. This prop-
erty endows agent attention with high efficiency, reducing
the quadratic complexity (in the number of tokens) of Soft-
max attention to linear complexity. Meanwhile, the global
context modelling capability is preserved. Interestingly, as
illustrated in Fig. 1, the proposed agent attention can be
viewed as a generalized from of linear attention, which ex-
plains how agent attention addresses the dilemma between
efficiency and expressiveness from a novel perspective. In
other words, agent attention seamlessly integrates Softmax
and linear attention, and enjoys benefits from both worlds.

We empirically verify the effectiveness of our model
across diverse vision tasks, including image classification,
object detection, semantic segmentation and image gener-
ation. Our method yields substantial improvements in var-
ious tasks, particularly in high-resolution scenarios. Note-
worthy, our agent attention can be directly plugged into pre-
trained large diffusion models, and without any additional
training, it not only accelerates the generation process, but
also notably improves the generation quality.

2. Related Works

2.1. Vision Transformer

Since the inception of Vision Transformer [13], self-
attention has made notable strides in the realm of com-
puter vision. However, the quadratic complexity of the
prevalent Softmax attention [37] poses a challenge in ap-
plying self-attention to visual tasks. Previous works pro-
posed various remedies for this computational challenge.
PVT [38] introduces sparse global attention, curbing com-
putation cost by reducing the resolution of K and V . Swin
Transformer [24] restricts self-attention computations to lo-
cal windows and employs shifted windows to model the en-
tire image. NAT [16] emulates convolutional operations and
calculates attention within the neighborhood of each fea-
ture. DAT [40] designs a deformable attention module to
achieve a data-dependent attention pattern. BiFormer [49]
uses bi-level routing attention to dynamically determine ar-
eas of interest for each query.

However, these approaches inevitably constrain the
global receptive field of self-attention, hampering the
model’s ability to model long-range relationships.

2.2. Linear Attention

In contrast to the idea of restricting receptive fields, lin-
ear attention directly addresses the computational chal-
lenge by reducing computation complexity. The pioneer
work [19] discards the Softmax function and replaces it
with a mapping function ϕ applied to Q and K, thereby
reducing the computation complexity to O(N). However,
such approximations led to substantial performance degra-
dation. To tackle this issue, Efficient Attention [33] ap-
plies the Softmax function to both Q and K. SOFT [26]
and Nyströmformer [43] employ matrix decomposition to
further approximate Softmax operation. Castling-ViT [44]
uses Softmax attention as an auxiliary training tool and fully
employs linear attention during inference. FLatten Trans-
former [14] proposes focused function and adopts depth-
wise convolution to preserve feature diversity.

While these methods are effective, they continue to
struggle with the issue of limited expressive power of lin-
ear attention. In the paper, rather than enhancing Softmax
or linear attention, we propose a novel attention paradigm
which integrates these two attention types, achieving supe-
rior performance in various tasks.

3. Preliminaries

In this section, we first review the general form of self-
attention in modern vision Transformers and briefly analyze
the pros and cons of Softmax and linear attention.

2

Generalized Linear Attention

· ·

· ·
Equals

�
� × �

�� � �
� × �

�� �
� × �

�
� × �

��

� × �
�

� × �
��

� × �
�

� × �

⭐ Step1 Agent Aggregation
⭐ Step2 Agent Broadcast

�

 �

�

�

�

Softm
ax A

ttention

Softm
ax A

ttention

��

��

��

Pooling
 �
(as query)

�

�

�

�
(as key)

��
(as value)

Agent Tokens

Agent
Features

Agent Bias

Feature Flow

Agent Flow

D
W

C

(b) Agent Attention Module(a) Agent Attention

Figure 2. An illustration of our agent attention and agent attention module. (a) Agent attention uses agent tokens to aggregate global
information and distribute it to individual image tokens, resulting in a practical integration of Softmax and linear attention. σ(·) represents
Softmax function. In (b), we depict the information flow of agent attention module. As a showcase, we acquire agent tokens through
pooling. Subsequently, agent tokens are utilized to aggregate information from V , and Q queries features from the agent features. In
addition, agent bias and DWC are adopted to add positional information and maintain feature diversity.

3.1. General Form of Self-Attention

With an input of N tokens represented as x ∈ RN×C , self-
attention can be formulated as follows in each head:

Q = xWQ,K = xWK , V = xWV ,

Oi =

N∑
j=1

Sim(Qi,Kj)∑N
j=1 Sim(Qi,Kj)

Vj ,
(1)

where WQ/K/V ∈RC×d denote projection matrices, C and
d are the channel dimension of module and each head, and
Sim(·, ·) represents the similarity function.

3.2. Softmax Attention and Linear Attention

When using Sim (Q,K)=exp(QKT /
√
d) in Eq. (1), it be-

comes Softmax attention [37], which has been highly suc-
cessful in modern vision Transformer designs. However,
Softmax attention compels to compute the similarity be-
tween all query-key pairs, resulting in O(N2) complexity.
Consequently, using Softmax attention with a global recep-
tive field leads to overwhelming computation complexity.
To tackle this issue, previous works attempted to reduce
the number of tokens N by designing sparse global atten-
tion [38, 39] or window attention [12, 24] patterns. While
effective, these strategies unavoidably compromise the self-
attention’s capability for long-range modeling.

Comparably, linear attention [19] efficiently addresses
the computation challenge with a linear complexity
of O(N). Specifically, carefully designed mapping
functions are applied to Q and K respectively, i.e.,
Sim (Q,K) = ϕ(Q)ϕ(K)T . This gives us the opportunity
to change the computation order from (ϕ(Q)ϕ(K)T)V to
ϕ(Q)(ϕ(K)TV) based on the associative property of ma-
trix multiplication. As illustrated in Fig. 1, by doing so,
the computation complexity with respect to token number
is reduced to O(N).

However, designing effective mapping function ϕ(·)
proves to be a nontrivial task. Simple functions [33] such
as ReLU lead to significant performance drop, whereas
more intricate designs [7] or matrix decomposition meth-
ods [26, 43] may introduce extra computation overhead. In
general, current linear attention approaches are still inferior
to Softmax attention, limiting their practical application.

4. Agent Transformer

As discussed in Sec. 3, Softmax and linear attention suf-
fer from either excessive computation complexity or insuf-
ficient model expressiveness. Previous research commonly
treated these two attention paradigms as distinct approaches
and attempted to either reduce the computation cost of Soft-
max attention or enhance the performance of linear atten-
tion. In this section, we propose a new attention paradigm
named Agent Attention, which practically forms an elegant
integration of Softmax and linear attention, enjoying bene-
fits from both linear complexity and high expressiveness.

4.1. Agent Attention

To simplify, we abbreviate Softmax and linear attention as:

OS= σ(QKT)V ≜ AttnS(Q,K, V),

Oϕ= ϕ(Q)ϕ(K)TV ≜ Attnϕ(Q,K, V),
(2)

where Q,K, V ∈ RN×C denote query, key and value ma-
trices and σ(·) represents Softmax function. Then our agent
attention can be written as:

OA = AttnS(Q,A,AttnS(A,K, V)︸ ︷︷ ︸
Agent Aggregation

)

︸ ︷︷ ︸
Agent Broadcast

.

(3)

3

It is equivalent to:

OA = σ(QAT) σ(AKT) V

= ϕq(Q)ϕk(K)TV

= Attnϕq/k(Q,K, V)︸ ︷︷ ︸
Generalized Linear Attn

,
(4)

where A ∈ Rn×C is our newly defined agent tokens.
As shown in Eq. (3) and Fig. 2(a), our agent attention

consists of two Softmax attention operations, namely agent
aggregation and agent broadcast. Specifically, we initially
treat agent tokens A as queries and perform attention calcu-
lations between A, K, and V to aggregate agent features VA

from all values. Subsequently, we utilize A as keys and VA

as values in the second attention calculation with the query
matrix Q, broadcasting the global information from agent
features to every query token and obtaining the final output
O. In this way, we avoid the computation of pairwise simi-
larities between Q and K while preserving information ex-
change between each query-key pair through agent tokens.

The newly defined agent tokens A essentially serve as
the agent for Q, aggregating global information from K
and V , and subsequently broadcasting it back to Q. Prac-
tically, we set the number of agent tokens n as a small
hyper-parameter, achieving a linear computation complex-
ity of O(Nnd) relative to the number of input features N
while maintaining global context modeling capability.

Interestingly, as shown in Eq. (4) and Fig. 2(a), we prac-
tically integrate the powerful Softmax attention and effi-
cient linear attention, establishing a generalized linear at-
tention paradigm by employing two Softmax attention op-
erations, with the equivalent mapping function defined as
ϕq(Q) = σ(QAT), ϕk(K) =

(
σ(AKT)

)T
.

In practice, agent tokens can be acquired through differ-
ent methods, such as simply setting as a set of learnable
parameters or extracting from input features through pool-
ing. It is worth noticing that more advanced techniques like
deformed points [40] or token merging [3] can also be used
to obtain agent tokens. In this paper, we employ the sim-
ple pooling strategy to obtain agent tokens, which already
works surprisingly well.

4.2. Agent Attention Module

Agent attention inherits the merits of both Softmax and lin-
ear attention. In practical use, we further make two im-
provements to maximize the potential of agent attention.
Agent Bias. In order to better utilize positional information,
we present a carefully designed Agent Bias for our agent
attention. Specifically, inspired by RPE [32], we introduce
agent bias within the attention calculation, i.e.,

OA= σ(QAT+B2) σ(AKT+B1) V, (5)

where B1 ∈ Rn×N , B2 ∈ RN×n are our agent biases.
For parameter efficiency, we construct each agent bias using
three bias components rather than directly setting B1, B2 as
learnable parameters (see Appendix). Agent bias augments
the vanilla agent attention with spatial information, help-
ing different agent tokens to focus on diverse regions. As
shown in Tab. 6, significant improvements can be observed
upon the introduction of our agent bias terms.
Diversity Restoration Module. Although agent attention
benefits from both low computation complexity and high
model expressiveness, as generalized linear attention, it also
suffers from insufficient feature diversity [14]. As a remedy,
we follow [14] and adopt a depthwise convolution (DWC)
module to preserve feature diversity.
Agent Attention Module. Building upon these designs, we
propose a novel attention module named Agent Attention
Module. As illustrated in Fig. 2(b), our module is composed
of three parts, namely pure agent attention, agent bias and
the DWC module. Our module can be formulated as:

O = σ(QAT+B2) σ(AKT+B1) V +DWC(V), (6)

where Q,K, V ∈ RN×C , B1 ∈ Rn×N , B2 ∈ RN×n and
A = Pooling(Q) ∈ Rn×C .

Combining the merits of Softmax and linear attention,
our module offers the following advantages:

(1) Efficient computation and high expressive capa-
bility. Previous work usually viewed Softmax attention and
linear attention as two different attention paradigms, aim-
ing to address their respective limitations. As a seamless
integration of these two attention forms, our agent attention
naturally inherits the merits of the two, enjoying both low
computation complexity and high model expression ability
at the same time.

(2) Large receptive field. Our module can adopt a large
receptive field while maintaining the same amount of com-
putation. Modern vision Transformer models typically re-
sort to sparse attention [38, 39] or window attention [12, 24]
to mitigate the computation burden of Softmax attention.
Benefited from linear complexity, our model can enjoy the
advantages of a large, even global receptive field while
maintaining the same computation.

4.3. Implementation

Our agent attention module can serve as a plug-in mod-
ule and can be easily adopted on a variety of modern vi-
sion Transformer architectures. As a showcase, we empir-
ically apply our method to four advanced and representa-
tive Transformer models including DeiT [36], PVT [38],
Swin [24] and CSwin [12]. We also apply agent attention to
Stable Diffusion [29] to accelerate image generation. De-
tailed model architectures are shown in Appendix.

4

(c) Swin (d) CSwin

(a) DeiT (b) PVT

Method Reso #Params FLOPs Top-1

DeiT-T [36] 2242 5.7M 1.2G 72.2
Agent-DeiT-T 2242 6.0M 1.2G 74.9 (+2.7)
DeiT-S 2242 22.1M 4.6G 79.8
Agent-DeiT-S 2242 22.7M 4.4G 80.5 (+0.7)

PVT-T [38] 2242 13.2M 1.9G 75.1
Agent-PVT-T 2242 11.6M 2.0G 78.4 (+3.3)
PVT-S 2242 24.5M 3.8G 79.8
Agent-PVT-S 2242 20.6M 4.0G 82.2 (+2.4)
PVT-M 2242 44.2M 6.7G 81.2
Agent-PVT-M 2242 35.9M 7.0G 83.4 (+2.2)
PVT-L 2242 61.4M 9.8G 81.7
Agent-PVT-L 2242 48.7M 10.4G 83.7 (+2.0)

Swin-T [24] 2242 29M 4.5G 81.3
Agent-Swin-T 2242 29M 4.5G 82.6 (+1.3)
Swin-S 2242 50M 8.7G 83.0
Agent-Swin-S 2242 50M 8.7G 83.7 (+0.7)
Swin-B 2242 88M 15.4G 83.5
Agent-Swin-B 2242 88M 15.4G 84.0 (+0.5)
Swin-B 3842 88M 47.0G 84.5
Agent-Swin-B 3842 88M 46.3G 84.9 (+0.4)

CSwin-B [12] 2242 78M 15.0G 84.2
Agent-CSwin-B 2242 73M 14.9G 84.7 (+0.5)
CSwin-B 3842 78M 47.0G 85.4
Agent-CSwin-B 3842 73M 46.3G 85.8 (+0.4)

Figure 3. Comparison of different models on ImageNet-1K. See the full comparison table in Appendix.

5. Experiments

To verify the effectiveness of our method, we conduct ex-
periments on ImageNet-1K classification [9], ADE20K se-
mantic segmentation [48], and COCO object detection [21].
Additionally, we integrate agent attention into the state-of-
the-art generation model, Stable Diffusion [29]. Further-
more, we construct high-resolution models with large re-
ceptive fields to maximize the benefits of agent attention. In
addition, sufficient ablation experiments are conducted to
show the effectiveness of each design.

5.1. ImageNet-1K Classification

ImageNet [9] comprises 1000 classes, with 1.2 million
training images and 50,000 validation images. We imple-
ment our module on four representative vision Transform-
ers and compare the top-1 accuracy on the validation split
with various state-of-the-art models.
Training settings are shown in Appendix.
Results. As depicted in Fig. 3, substituting Softmax atten-
tion with agent attention in various models results in signifi-
cant performance improvements. For instance, Agent-PVT-
S surpasses PVT-L while using just 30% of the parameters
and 40% of the FLOPs. Agent-Swin-T/S outperform Swin-
T/S by 1.3% and 0.7% while maintaining similar FLOPs.
These results unequivocally prove that our approach has ro-
bust advantages and is adaptable to diverse architectures.
Inference Time. We further conduct real speed measure-
ments by deploying the models on various devices. As

(a) Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
Agent-PVT-T 230G 1x 41.4 64.1 45.2 38.7 61.3 41.6
PVT-S 305G 1x 40.4 62.9 43.8 37.8 60.1 40.3
Agent-PVT-S 293G 1x 44.5 67.0 49.1 41.2 64.4 44.5
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
Agent-PVT-M 400G 1x 45.9 67.8 50.4 42.0 65.0 45.4
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
Agent-PVT-L 510G 1x 46.9 69.2 51.4 42.8 66.2 46.2
Swin-T 267G 1x 43.7 66.6 47.7 39.8 63.3 42.7
Agent-Swin-T 276G 1x 44.6 67.5 48.7 40.7 64.4 43.4
Swin-T 267G 3x 46.0 68.1 50.3 41.6 65.1 44.9
Agent-Swin-T 276G 3x 47.3 69.5 51.9 42.7 66.4 46.2
Swin-S 358G 1x 45.7 67.9 50.4 41.1 64.9 44.2
Agent-Swin-S 364G 1x 47.2 69.6 52.3 42.7 66.6 45.8

(b) Cascade Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-T 745G 1x 48.1 67.1 52.2 41.7 64.4 45.0
Agent-Swin-T 755G 1x 49.2 68.6 53.2 42.7 65.6 45.9
Swin-T 745G 3x 50.4 69.2 54.7 43.7 66.6 47.3
Agent-Swin-T 755G 3x 51.4 70.2 55.9 44.5 67.6 48.4
Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
Agent-Swin-S 843G 3x 52.6 71.3 57.1 45.5 68.9 49.2
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
Agent-Swin-B 990G 3x 52.6 71.1 57.1 45.3 68.6 49.2

Table 1. Results on COCO dataset. The FLOPs are computed
over backbone, FPN and detection head with an input resolution of
1280×800. We appropriately increase the number of agent tokens
in downstream tasks to better model high-resolution images.

Fig. 4 illustrates, our models attain inference speeds 1.7 to
2.1 times faster on the CPU while simultaneously improv-
ing performance. On RTX3090 GPU and A100 GPU, our
models also achieve 1.4x to 1.7x faster inference speeds.

5

(a) i5 CPU (c) A100 GPU(b) RTX3090 GPU

Figure 4. Accuracy-Runtime curve on ImageNet. Runtime is tested with image resolution 224×224.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
Agent-PVT-T S-FPN 147G 15M 40.18 51.76
PVT-S S-FPN 225G 28M 41.95 53.02
Agent-PVT-S S-FPN 211G 24M 44.18 56.17
PVT-L S-FPN 420G 65M 43.49 54.62
Agent-PVT-L S-FPN 434G 52M 46.52 58.50
Swin-T UperNet 945G 60M 44.51 55.61
Agent-Swin-T UperNet 954G 61M 46.68 58.53

Table 2. Results of semantic segmentation. The FLOPs are com-
puted over encoders and decoders with an input image at the reso-
lution of 512×2048. S-FPN is short for SemanticFPN [20] model.

5.2. Object Detection

COCO [21] object detection and instance segmentation
dataset has 118K training and 5K validation images. We
apply our model to RetinaNet [22], Mask R-CNN [17] and
Cascade Mask R-CNN [4] frameworks to evaluate the per-
formance of our method. A series of experiments are con-
ducted utilizing both 1x and 3x schedules with different de-
tection heads. As depicted in Tab. 1, our model exhibits
consistent enhancements across all configurations. Agent-
PVT outperforms PVT models with an increase in box AP
ranging from +3.9 to +4.7, while Agent-Swin surpasses
Swin models by up to +1.5 box AP. These substantial im-
provements can be attributed to the large receptive field
brought by our design, demonstrating the effectiveness of
agent attention in high-resolution scenarios.

5.3. Semantic Segmentation

ADE20K [48] is a well-established benchmark for semantic
segmentation which encompasses 20K training images and
2K validation images. We apply our model to two exem-
plary segmentation models, namely SemanticFPN [20] and
UperNet [41]. The results are presented in Tab. 2. Remark-
ably, our Agent-PVT-T and Agent-Swin-T achieve +3.61
and +2.17 higher mIoU than their counterparts. The results
show that our model is compatible with various segmenta-
tion backbones and consistently achieves improvements.

1.50 1.75 2.00 2.25 2.50
s/img

28

29

FI
D

SD
ToMeSD
AgentSD

1.69x 0.2

1.84x 0.4
0.9

Figure 5. Quantitative Results of Stable Diffusion, ToMeSD
and our AgentSD. For ToMeSD, we take the merging ratios
{0.1, 0.2, 0.3, 0.4, 0.5} to construct five different models. Fur-
thermore, we apply agent attention to each ToMeSD model to ob-
tain the corresponding AgentSD model.

5.4. Agent Attention for Stable Diffusion

The advent of diffusion models makes it possible to gener-
ate high-resolution and high-quality images. However, cur-
rent diffusion models mainly use the original Softmax at-
tention with a global receptive field, resulting in huge com-
putation cost and slow generation speed. In the light of this,
we apply our agent attention to Stable Diffusion [29], hop-
ing to improve the generation speed of the model. Surpris-
ingly, after simple adjustments, the Stable Diffusion model
using agent attention, dubbed AgentSD, shows a significant
improvement in generation speed and produces even better
image quality without any extra training.
Applying agent attention to Stable Diffusion. We practi-
cally apply agent attention to ToMeSD model [1]. ToMeSD
reduces the number of tokens before attention calculation in
Stable Diffusion, enhancing generation speed. Nonetheless,
the post-merge token count remains considerable, resulting
in continued complexity and latency. Hence, we replace
the Softmax attention employed in ToMeSD model with our
agent attention to further enhance speed. We experimentally
find that when producing agent tokens through token merg-
ing [3], our agent attention can be directly applied to Stable
Diffusion and ToMeSD model without any extra training.
However, we are unable to apply the agent bias and DWC

6

SD

ToMeSD

AgentSD

(Ours)

cls
“ goldfinch,

Carduelis carduelis ”
“ desk ” “ mitten ” “ bell pepper ”

Figure 6. Samples generated by Stable Diffusion, ToMeSD (r =
40%) and AgentSD (r = 40%). The prompt is “A high quality
photograph of a {cls}.”.

in this way. As a remedy, we make two simple adjustments
to the agent attention, which are described in detail in Ap-
pendix. In addition, we get a significant boost by applying
agent attention during early diffusion generation steps and
keeping the later steps unchanged.
Quantitative Results. We follow [1] and quantitatively
compare AgentSD with Stable Diffusion and ToMeSD. As
displayed in Fig. 5, ToMeSD accelerates Stable Diffusion
while maintaining similar image quality. AgentSD not only
further accelerates ToMeSD but also significantly enhances
image generation quality. Specifically, while maintaining
superior image generation quality, AgentSD achieves 1.84x
and 1.69x faster generation speeds compared to Stable Dif-
fusion and ToMeSD, respectively. At an equivalent gener-
ation speed, AgentSD produces samples with a 0.9 lower
FID score compared to ToMeSD. See the experimental de-
tails and full comparison table in Appendix.
Visualization. We present some visualizations in Fig. 6.
AgentSD noticeably reduces ambiguity and generation er-
rors in comparison to Stable Diffusion and ToMeSD. For
instance, in the first column, Stable Diffusion and ToMeSD
produce birds with one leg and two tails, while AgentSD’s
sample does not exhibit this issue. In the third column,
when provided with the prompt “A high quality photo of
a mitten.”, Stable Diffusion and ToMeSD erroneously gen-
erate a cat, whereas AgentSD produces the correct image.
AgentSD for finetuning. We apply agent attention to
SD-based Dreambooth [30] to verify its performance un-
der finetuning. When finetuned, agent attention can be in-
tegrated into all diffusion generation steps, reaching 2.2x
acceleration in generation speed compared to the original
Dreambooth. Refer to Appendix for details.

5.5. Large Receptive Field and High Resolution

Large Receptive Field. Modern vision Transformers often
confine self-attention calculation to local windows to reduce
computation complexity, such as Swin [24]. In Tab. 3, we
gradually enlarge the window size of Agent-Swin-T, rang-

Window FLOPs #Param Acc. Diff.

Agent-Swin-T

72 4.5G 29M 82.0 -0.6
142 4.5G 29M 82.2 -0.4
282 4.5G 29M 82.4 -0.2
562 4.5G 29M 82.6 Ours

Swin-T 72 4.5G 29M 81.3 -1.3

Table 3. Ablation on window size based on Agent-Swin-T.

Method Reso #Params Flops Top-1

DeiT-B [36] 2242 86.6M 17.6G 81.8
DeiT-S 4162 22.2M 18.8G 82.9 (+1.1)
Agent-DeiT-B 2242 87.2M 17.6G 82.0 (+0.2)
Agent-DeiT-S 4482 23.1M 17.7G 83.1 (+1.3)

PVT-L [38] 2242 61.4M 9.8G 81.7
PVT-M 2562 44.3M 8.8G 82.2 (+0.5)
Agent-PVT-L 2242 48.7M 10.4G 83.7 (+2.0)
Agent-PVT-M 2562 36.1M 9.2G 83.8 (+2.1)

Swin-B [24] 2242 88M 15.4G 83.5
Swin-S 2882 50M 14.7G 83.7 (+0.2)
Agent-Swin-B 2242 88M 15.4G 84.0 (+0.5)
Agent-Swin-S 2882 50M 14.6G 84.1 (+0.6)

Table 4. Scaling up by increasing resolution. All these models are
trained for 300 epochs from scratch.

10 20 30 40
FLOPs (G)

83.5

84.0

84.5
Ac

cu
ra

cy
 (%

)

Swin-S
Swin-B
Agent-Swin-S

Figure 7. Increasing resolution to {2562, 2882, 3202, 3522,
3842}. All these models are finetuned for 30 epochs from the
corresponding 2242 resolution models.

ing from 72 to 562. Clearly, as the receptive field expands,
the model’s performance consistently improves. This indi-
cates that while the window attention pattern is effective, it
inevitably compromises the long-range modeling capabil-
ity of self-attention and remains inferior to global attention.
Due to the linear complexity of agent attention, we can ben-
efit from a global receptive field while preserving identical
computation complexity.
High Resolution. Limited by the quadratic complexity of
Softmax attention, current vision Transformer models usu-
ally scale up by increasing model depth and width. Building
on insights from [35], we discover that enhancing resolution
might be a more effective approach for scaling vision Trans-
formers, particularly those employing agent attention with
global receptive fields. As shown in Tab. 4, Agent-DeiT-B
achieves a 0.2 accuracy gain compared to DeiT-B, whereas
Agent-DeiT-S at 4482 resolution attains an accuracy of 83.1
with only a quarter of the parameters. We observed analo-
gous trends when scaling the resolution of Agent-PVT-M

7

(a) Comparison on DeiT-T Setting
Linear Attention FLOPs #Param Acc.
Hydra Attn [2] 1.1G 5.7M 68.3

Efficient Attn [33] 1.1G 5.7M 70.2
Linear Angular Attn [44] 1.1G 5.7M 70.8
Focused Linear Attn [14] 1.1G 6.1M 74.1

Ours 1.2G 6.0M 74.9

(b) Comparison on Swin-T Setting
Linear Attention FLOPs #Param Acc.
Hydra Attn [2] 4.5G 29M 80.7

Efficient Attn [33] 4.5G 29M 81.0
Linear Angular Attn [44] 4.5G 29M 79.4
Focused Linear Attn [14] 4.5G 29M 82.1

Ours 4.5G 29M 82.6

Table 5. Comparison of different linear attention designs on DeiT-
Tiny and Swin-Tiny structures.

FLOPs #Param Acc. Diff.
Vanilla Linear Attention 4.5G 29M 77.8 -4.8
Agent Attention 4.5G 29M 79.0 -3.6

+ Agent Bias 4.5G 29M 81.1 -1.5
+ DWC 4.5G 29M 82.6 Ours

Swin-T 4.5G 29M 81.3 -1.3

Table 6. Ablation on each module of agent attention.

FLOPs #Param Acc. Diff.
Static Agent 4.5G 29M 82.2 -0.4

Dynamic Agent 4.5G 29M 82.6 Ours
Swin-T 4.5G 29M 81.3 -1.3

Table 7. Ablation on the type of agent tokens.

and Agent-Swin-S. In Fig. 7, we progressively increase the
resolution of Agent-Swin-S, Swin-S, and Swin-B. It is ev-
ident that in high-resolution scenarios, our model consis-
tently delivers notably superior outcomes.

5.6. Comparison with Other Linear Attention

We conduct a comparison of our agent attention with other
linear attention methods using DeiT-T and Swin-T. As de-
picted in Tab. 5, substituting the Softmax attention em-
ployed by DeiT-T and Swin-T with various linear attention
methods usually results in notable performance degrada-
tion. Remarkably, our models outperform all other methods
as well as the Softmax baseline.

5.7. Ablation Study

In this section, we ablate the key components in our agent
attention module to verify the effectiveness of these designs.
We report the results on ImageNet-1K classification based
on Agent-Swin-T.
Agent attention, agent bias and DWC. We first assess the
effectiveness of our agent attention’s three key designs. We
substitute Softmax attention in Swin-T with vanilla linear
attention, followed by a gradual introduction of agent at-
tention, agent bias, and DWC to create Agent-Swin-T. As
depicted in Tab. 6, the inclusion of these three designs led
to respective accuracy gains of 1.2, 2.1, and 1.5.
The type of agent tokens. As discussed in Sec. 4.1, agent
tokens can be acquired through various methods. As a

Num of Agent Tokens FLOPS #Param Acc. Diff.Stage1 Stage2 Stage3 Stage4
49 49 49 49 4.7G 29M 82.6 -0.0
9 16 49 49 4.5G 29M 82.6 Ours
9 16 25 49 4.5G 29M 82.2 -0.4
4 9 49 49 4.5G 29M 82.4 -0.2

Swin-T 4.5G 29M 81.3 -1.3

Table 8. Ablation on the number of agent tokens.

Stages w/ Agent Attn FLOPS #Param Acc. Diff.Stage1 Stage2 Stage3 Stage4
✓ 4.5G 29M 81.7 -0.9
✓ ✓ 4.5G 29M 81.8 -0.8
✓ ✓ ✓ 4.5G 29M 82.6 Ours
✓ ✓ ✓ ✓ 4.5G 29M 82.5 -0.1

Swin-T 4.5G 29M 81.3 -1.3

Table 9. Ablation on applying agent attention module on different
stages of the Swin-T structure.

showcase, we roughly categorize agent tokens into two
types: static and dynamic. The former sets agent tokens
as learnable parameters, while the latter uses pooling to ac-
quire agent tokens. As illustrated in Tab. 7, dynamic agent
tokens yield better results.
Ablation on number of agent tokens. The model’s com-
putation complexity can be modulated by varying the num-
ber of agent tokens. As shown in Tab. 8, we observe that
judiciously reducing the number of agent tokens in the
model’s shallower layers has no adverse effect on perfor-
mance. However, reducing agent tokens in deeper layers
results in performance degradation.
Agent attention at different stages. We substitute Softmax
attention with our agent attention at different stages. As de-
picted in Tab. 9, substituting the first three stages results in
a performance gain of 1.3, while replacing the final stage
marginally decreases overall accuracy. We attribute this
outcome to the larger resolutions in the first three stages,
which are more conducive to agent attention module with a
global receptive field.

6. Conclusion
This paper presents a new attention paradigm dubbed Agent
Attention, which is applicable across a variety of vision
Transformer models. As an elegant integration of Softmax
and linear attention, agent attention enjoys both high ex-
pressive power and low computation complexity. Exten-
sive experiments on image classification, semantic segmen-
tation, and object detection unequivocally confirm the ef-
fectiveness of our approach, particularly in high-resolution
scenarios. When integrated with Stable Diffusion, our agent
attention accelerates image generation and substantially en-
hances image quality without any extra training. Due to
its linear complexity with respect to the number of tokens
and its strong representation power, agent attention may
pave the way for challenging tasks with super long token
sequences, such as video modelling and multi-modal foun-
dation models.

8

References
[1] Daniel Bolya and Judy Hoffman. Token merging for fast

stable diffusion. In CVPRW, 2023. 6, 7, 11
[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao

Zhang, and Judy Hoffman. Hydra attention: Efficient at-
tention with many heads. In ECCVW, 2022. 8

[3] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token
merging: Your ViT but faster. In ICLR, 2023. 4, 6

[4] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In CVPR, 2018. 6, 15

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1

[6] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. In NeurIPS, 2021. 1

[7] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. In ICLR, 2021.
3

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPRW, 2020. 13

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5, 11

[10] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettle-
moyer. 8-bit optimizers via block-wise quantization. In
ICLR, 2022. 13

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 11

[12] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining Guo.
Cswin transformer: A general vision transformer backbone
with cross-shaped windows. In CVPR, 2022. 3, 4, 5, 13

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 1,
2

[14] Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao
Huang. Flatten transformer: Vision transformer using fo-
cused linear attention. In ICCV, 2023. 2, 4, 8

[15] Yizeng Han, Dongchen Han, Zeyu Liu, Yulin Wang, Xuran
Pan, Yifan Pu, Chao Deng, Junlan Feng, Shiji Song, and Gao
Huang. Dynamic perceiver for efficient visual recognition.
In ICCV, 2023. 1

[16] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and
Humphrey Shi. Neighborhood attention transformer. In
CVPR, 2023. 2

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 6, 15

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 11

[19] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In ICML, 2020. 2, 3

[20] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In CVPR, 2019.
6, 14, 15

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 5, 6, 13

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 6, 14, 15

[23] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In
ICLR, 2022. 11

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2, 3, 4, 5, 7, 13

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2018. 13

[26] Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang
Xu, Weiguo Gao, Chunjing Xu, Tao Xiang, and Li Zhang.
Soft: Softmax-free transformer with linear complexity. In
NeurIPS, 2021. 2, 3

[27] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM Journal on
Control and Optimization, 1992. 13

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
1

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 4, 5, 6,
11

[30] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 7, 12, 13

[31] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid,
2020. Version 0.3.0. 11

[32] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-
attention with relative position representations. In ACL,
2018. 4

[33] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Efficient attention: Attention with linear
complexities. In WACV, 2021. 2, 3, 8

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 13

9

https://github.com/mseitzer/pytorch-fid

[35] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 7

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 1, 4, 5, 7, 13

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
2, 3

[38] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021. 1, 2, 3, 4, 5, 7,
13

[39] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 2022. 3, 4

[40] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao
Huang. Vision transformer with deformable attention. In
CVPR, 2022. 2, 4

[41] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 6, 14, 15

[42] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 1

[43] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
Nyströmformer: A nyström-based algorithm for approximat-
ing self-attention. In AAAI, 2021. 2, 3

[44] Haoran You, Yunyang Xiong, Xiaoliang Dai, Bichen Wu,
Peizhao Zhang, Haoqi Fan, Peter Vajda, and Yingyan Celine
Lin. Castling-vit: Compressing self-attention via switching
towards linear-angular attention at vision transformer infer-
ence. In CVPR, 2023. 2, 8

[45] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 13

[46] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 13

[47] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, 2020.
13

[48] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. IJCV, 2019.
5, 6, 14

[49] Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and
Rynson WH Lau. Biformer: Vision transformer with bi-level
routing attention. In CVPR, 2023. 2

10

Appendix

A. Composition of Agent Bias
As mentioned in the main paper, to better utilize positional
information, we present a carefully designed Agent Bias for
our agent attention, i.e.,

OA= σ(QAT+B2) σ(AKT+B1) V, (7)

where B1 ∈ Rn×N , B2 ∈ RN×n are our agent biases.
For parameter efficiency, we construct each agent bias using
three bias components rather than directly setting B1, B2 as
learnable parameters. For instance, values in B1 are derived
from column bias B1c ∈ Rn×1×w, row bias B1r ∈ Rn×h×1

and block bias B1b ∈ Rn×h0×w0 , where h,w are the height
and width of feature map or attention window, while h0, w0

are predefined hyperparameters much smaller than h,w.
During the computation of attention weights, B1c, B1r, B1b

are resized to B′
1c, B

′
1r, B

′
1b ∈ Rn×h×w by repeating or in-

terpolating, and B1 = (B′
1c + B′

1r + B′
1b).reshape(n,N)

is used as the full agent bias.

B. Agent Attention for Stable Diffusion
B.1. Adjustments

As discussed in the main paper, when producing agent to-
kens through token merging, our agent attention can be di-
rectly applied to the Stable Diffusion model without any
extra training. However, we are unable to apply the agent
bias and DWC without training. As a remedy, we make two
simple adjustments to the agent attention. On the one hand,
we change our agent attention module from

O = σ(QAT+B2) σ(AKT+B1) V +DWC(V), (8)

to

O = σ(QAT) σ(AKT) V + kV, (9)

where k is a predefined hyperparameter. On the other hand,
compared to the original softmax attention, the two soft-
max attention operations of agent attention may result in
smoother feature distribution without training. In the light
of this, we slightly increase the scale used for the second
Softmax attention, i.e., agent broadcast.

B.2. Experiment Details

To quantitatively compare AgentSD with Stable Diffusion
and ToMeSD, we follow [1] and employ Stable Diffusion
v1.5 to generate 2,000 5122 images of ImageNet-1k [9]
classes, featuring two images per class, using 50 PLMS [23]
diffusion steps with a cfg scale [11] of 7.5. Subsequently,
we calculate FID [18] scores between these 2,000 samples

Method r FID s/img GB/img

SD [29] 0 28.84 2.62 3.13

ToMeSD [1]

0.1 28.64 2.40 2.55
0.2 28.68 2.15 2.03
0.3 28.82 1.90 2.09
0.4 28.74 1.71 1.69
0.5 29.01 1.53 1.47

0.1 27.79 1.97 1.77
0.2 27.77 1.80 1.60

AgentSD 0.3 28.03 1.65 2.05
0.4 28.15 1.54 1.55
0.5 28.42 1.42 1.21

Table 10. Quantitative Results of Stable Diffusion, ToMeSD and
our AgentSD. GB/img is measured as the total memory usage
change when increasing batch size by 1.

k 0 0.025 0.075 0.15
FID 28.80 28.67 28.42 28.61

Table 11. Ablation on factor k of Eq. (9).

Scale d−0.5 d−0.25 d−0.15 d−0.05

FID 28.86 28.64 28.42 28.60

Table 12. Ablation on scale used for the second Softmax attention.

and 50,000 ImageNet-1k validation examples, employing
[31]. To assess speed, we calculate the average generation
time of all 2,000 samples on a single RTX4090 GPU.

Complete quantitative results are presented in Tab. 10.
Compared to SD and ToMeSD, our AgentSD not only ac-
celerates generation and reduces memory usage, but also
significantly improves image generation quality.

B.3. Ablation

We further ablate the adjustments we made when applying
agent attention to Stable Diffusion. As evident in Tab. 11
and Tab. 12, both adjustments to agent attention enhance
the quality of AgentSD generation. Tab. 13 demonstrates
that applying agent attention in the early stages yields sub-
stantial performance enhancements.

B.4. AgentSD for finetuning

Our agent attention module is also applicable in finetuning
scenarios. To verify this, we select subject-driven task as
an example and apply agent attention to SD-based Dream-

11

Dream-

booth

“ photo of a sks dog

in a bucket ”

Agent

Attention

Only

During

Generation

Agent

Attention

During

Finetuning

&

Generation

(Ours)

“ photo of a sks toy

by the river ”

“ photo of a sks toy

with the Eiffel Tower

in the background ”

Input

Images

Prompt

“ photo of a sks candle

with a city in the

background ”

“ photo of a sks cat

in the snow ”

“ photo of a sks cat

wearing a red hat ”

Figure 8. Samples generated by Dreambooth and our Agent Dreambooth with the same seed. In the second-to-last line, we apply agent
attention to all diffusion steps only during generation, leading to a slight decline in image quality as expected. In the last row, agent
attention is incorporated into all steps in both finetuning and generation, resulting in a 2.2x speedup without compromising image quality.
Zoom in for best view.

Steps early 20% early 40% early 60% early 80%
FID 28.58 28.42 28.83 29.77

s/img 1.50 1.42 1.39 1.34

Table 13. Ablation on how many diffusion steps to apply agent
attention.

booth [30]. We experimentally find that finetuning enables
the integration of the agent attention module into all diffu-
sion generation steps, reaching 2.2x acceleration in gener-
ation speed compared to the original Dreambooth without
sacrificing image quality. Additionally, time and memory
cost during finetuning can be reduced as well.

Task and baseline. The diffusion subject-driven generation
task entails maintaining the appearance of a given subject
while generating novel renditions of it in different contexts,
e.g., generating a photo of your pet dog dancing. Dream-
booth [30] effectively addresses this task by finetuning a
pretrained text-to-image diffusion model, binding a unique

identifier with the given subject. Novel images of the sub-
ject can then be synthesized with the unique identifier.

Applying agent attention to Dreambooth. As previously
discussed, Dreambooth[30] involves an additional finetun-
ing process. We explore two approaches to applying agent
attention to Dreambooth: (1) applying it only during gener-
ation and (2) applying it during both finetuning and gener-
ation. The first method is the same as the AgentSD detailed
in the main paper, where we commonly apply agent atten-
tion to the early 40% of generation steps, achieving around
a 1.7x speedup (merging ratio r = 0.4). However, applying
agent attention to more diffusion steps for further acceler-
ation leads to a decrease in image details and quality, as
shown in Tab. 13 and the penultimate line of Fig. 8. Con-
versely, adopting the second approach, where the agent at-
tention module is applied to all steps in both finetuning and
generation, results in a 2.2x speedup in generation without
sacrificing performance. Additionally, both time and mem-
ory costs in finetuning are reduced by around 15%, enabling

12

model finetuning with less than 12GB of GPU memory in
approximately 7 minutes on a single RTX4090 GPU. The
last row in Fig. 8 shows the results of this setting.
Dataset and experiment details. We adopt the dataset pro-
vided by Dreambooth [30], which comprises 30 subjects of
15 different classes. It features live subjects and objects cap-
tured in various conditions, environments, and angles. We
employ pretrained Stable Diffusion v1.5 and apply agent at-
tention to all diffusion generation steps. The merging ratio
r is set to 0.4, k is set to 0.075 and the scale for the second
softmax attention is set to d−0.15. We finetune all models
for 800 iterations with a learning rate of 1e-6, utilizing 8-bit
AdamW [10] as the optimizer. We follow [30] and select sks
as the unique identifier for all settings. Novel synthesized
images are sampled using the DDIM [34] sampler with 100
generation steps on a single RTX4090 GPU.
Visualization and discussion. Synthesized subject-driven
images are shown in Fig. 8. We make two key observa-
tions: (1) Dreambooth with agent attention applied during
finetuning and generation equals or surpasses the baseline
Dreambooth in terms of fidelity and editability, and (2) em-
ploying agent attention during finetuning further enhances
the fidelity and detail quality of synthesized images, en-
abling us to apply agent attention to all diffusion steps for
more speedup. For the first observation, the first column
shows that our method ensures the synthesized dog’s color
aligns more consistently with input images compared to the
original Dreambooth and maintains comparable editability.
For the second observation, comparing the last two rows
of the third column reveals that applying agent attention to
all diffusion steps without finetuning yields a blurry image,
whereas our method produces a clearer and sharper depic-
tion of the duck toy. Additionally, in the fifth column, our
method accurately generates the cat’s eyes, whereas agent
attention without finetuning fails in this aspect.

C. Dataset and Training Setup

C.1. ImageNet

Training settings. To ensure a fair comparison, we train
our agent attention model with the same settings as the
corresponding baseline model. Specifically, we employ
AdamW [25] optimizer to train all our models from scratch
for 300 epochs, using a cosine learning rate decay and 20
epochs of linear warm-up. We set the initial learning rate
to 1 × 10−3 for a batch size of 1024 and linearly scale it
w.r.t. the batch size. Following DeiT [36], we use Ran-
dAugment [8], Mixup [46], CutMix [45], and random eras-
ing [47] to prevent overfitting. We also apply a weight de-
cay of 0.05. To align with [12], we incorporate EMA [27]
into the training of our Agent-CSwin models. For finetun-
ing at larger resolutions, we follow the settings in [12, 24]
and finetune the models for 30 epochs.

Method Reso #Params Flops Top-1

DeiT-T [36] 2242 5.7M 1.2G 72.2
Agent-DeiT-T 2242 6.0M 1.2G 74.9 (+2.7)

DeiT-S 2242 22.1M 4.6G 79.8
Agent-DeiT-S 2242 22.7M 4.4G 80.5 (+0.7)

DeiT-B [36] 2242 86.6M 17.6G 81.8
Agent-DeiT-B 2242 87.2M 17.6G 82.0 (+0.2)

Agent-DeiT-S 4482 23.1M 17.7G 83.1 (+1.3)

PVT-T [38] 2242 13.2M 1.9G 75.1
Agent-PVT-T 2242 11.6M 2.0G 78.4 (+3.3)

PVT-S 2242 24.5M 3.8G 79.8
Agent-PVT-S 2242 20.6M 4.0G 82.2 (+2.4)

PVT-M 2242 44.2M 6.7G 81.2
Agent-PVT-M 2242 35.9M 7.0G 83.4 (+2.2)

PVT-L 2242 61.4M 9.8G 81.7
Agent-PVT-L 2242 48.7M 10.4G 83.7 (+2.0)

Agent-PVT-M 2562 36.1M 9.2G 83.8 (+2.1)

Swin-T [24] 2242 29M 4.5G 81.3
Agent-Swin-T 2242 29M 4.5G 82.6 (+1.3)

Swin-S 2242 50M 8.7G 83.0
Agent-Swin-S 2242 50M 8.7G 83.7 (+0.7)

Swin-B 2242 88M 15.4G 83.5
Agent-Swin-B 2242 88M 15.4G 84.0 (+0.5)

Agent-Swin-S 2882 50M 14.6G 84.1 (+0.6)

Swin-B 3842 88M 47.0G 84.5
Agent-Swin-B 3842 88M 46.3G 84.9 (+0.4)

CSwin-T [12] 2242 23M 4.3G 82.7
Agent-CSwin-T 2242 21M 4.3G 83.1 (+0.4)

CSwin-S 2242 35M 6.9G 83.6
Agent-CSwin-S 2242 33M 6.8G 83.9 (+0.3)

CSwin-B [12] 2242 78M 15.0G 84.2
Agent-CSwin-B 2242 73M 14.9G 84.7 (+0.5)

CSwin-B 3842 78M 47.0G 85.4
Agent-CSwin-B 3842 73M 46.3G 85.8 (+0.4)

Table 14. Comparisons of agent attention with other vision trans-
former backbones on the ImageNet-1K classification task.

C.2. COCO

Training settings. COCO [21] object detection and in-
stance segmentation dataset has 118K training and 5K val-
idation images. We use a subset of 80k samples as train-
ing set and 35k for validation. Backbones are pretrained
on ImageNet dataset with AdamW, following the training
configurations mentioned in the original paper. Standard
data augmentations including resize, random flip and nor-

13

(a) Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
Agent-PVT-T 230G 1x 41.4 64.1 45.2 38.7 61.3 41.6
PVT-S 305G 1x 40.4 62.9 43.8 37.8 60.1 40.3
Agent-PVT-S 293G 1x 44.5 67.0 49.1 41.2 64.4 44.5
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
Agent-PVT-M 400G 1x 45.9 67.8 50.4 42.0 65.0 45.4
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
Agent-PVT-L 510G 1x 46.9 69.2 51.4 42.8 66.2 46.2
Swin-T 267G 1x 43.7 66.6 47.7 39.8 63.3 42.7
Agent-Swin-T 276G 1x 44.6 67.5 48.7 40.7 64.4 43.4
Swin-T 267G 3x 46.0 68.1 50.3 41.6 65.1 44.9
Agent-Swin-T 276G 3x 47.3 69.5 51.9 42.7 66.4 46.2
Swin-S 358G 1x 45.7 67.9 50.4 41.1 64.9 44.2
Agent-Swin-S 364G 1x 47.2 69.6 52.3 42.7 66.6 45.8
Swin-S 358G 3x 48.5 70.2 53.5 43.3 67.3 46.6
Agent-Swin-S 364G 3x 48.9 70.9 53.6 43.8 67.9 47.3

(b) Cascade Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-T 745G 1x 48.1 67.1 52.2 41.7 64.4 45.0
Agent-Swin-T 755G 1x 49.2 68.6 53.2 42.7 65.6 45.9
Swin-T 745G 3x 50.4 69.2 54.7 43.7 66.6 47.3
Agent-Swin-T 755G 3x 51.4 70.2 55.9 44.5 67.6 48.4
Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
Agent-Swin-S 843G 3x 52.6 71.3 57.1 45.5 68.9 49.2
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
Agent-Swin-B 990G 3x 52.6 71.1 57.1 45.3 68.6 49.2

Table 15. Results on COCO dataset. The FLOPs are computed
over backbone, FPN and detection head with input resolution of
1280×800.

malize are applied. We set learning rate to 1e-4 and follow
the 1x learning schedule: the whole network is trained for
12 epochs and the learning rate is divided by 10 at the 8th
and 11th epoch respectively. For some models, we utilize
3x schedule: the network is trained for 36 epochs and the
learning rate is divided by 10 at the 27th and 33rd epoch.
All mAP results in the main paper are tested with input im-
age size (3, 1333, 800).
Numbers of agent tokens. We use the ImageNet pretrained
model as the backbone, which is trained with numbers
of agent tokens n set to [9, 16, 49, 49] for the four stages
respectively. As dense prediction tasks involve higher-
resolution images compared to ImageNet, we appropriately
increase the numbers of agent tokens to better preserve
the rich information. Specifically, for all the Agent-PVT
models, we assign the numbers of agent tokens for the

RetinaNet Object Detection on COCO (Sch. 1x)
Method FLOPs AP AP50 AP75 APs APm APl

PVT-T 221G 36.7 56.9 38.9 22.6 38.8 50.0
Agent-PVT-T 211G 40.3 61.2 42.9 25.5 43.4 54.3
PVT-S 286G 38.7 59.3 40.8 21.2 41.6 54.4
Agent-PVT-S 274G 44.1 65.3 47.3 29.2 47.5 59.8
PVT-M 373G 41.9 63.1 44.3 25.0 44.9 57.6
Agent-PVT-M 382G 45.8 66.9 49.1 28.8 49.2 61.7
PVT-L 475G 42.6 63.7 45.4 25.8 46.0 58.4
Agent-PVT-L 492G 46.8 68.2 50.7 30.9 50.8 62.9

Table 16. Results on COCO object detection with RetinaNet [22].
The FLOPs are computed over backbone, FPN, and detection head
with an input resolution of 1280×800.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
Agent-PVT-T S-FPN 147G 15M 40.18 51.76
PVT-S S-FPN 225G 28M 41.95 53.02
Agent-PVT-S S-FPN 211G 24M 44.18 56.17
PVT-M S-FPN 315G 48M 42.91 53.80
Agent-PVT-M S-FPN 321G 40M 44.30 56.42
PVT-L S-FPN 420G 65M 43.49 54.62
Agent-PVT-L S-FPN 434G 52M 46.52 58.50
Swin-T UperNet 945G 60M 44.51 55.61
Agent-Swin-T UperNet 954G 61M 46.68 58.53
Swin-S UperNet 1038G 81M 47.64 58.78
Agent-Swin-S UperNet 1043G 81M 48.08 59.78
Swin-B UperNet 1188G 121M 48.13 59.13
Agent-Swin-B UperNet 1196G 121M 48.73 60.01

Table 17. Results of semantic segmentation. The FLOPs are com-
puted over encoders and decoders with an input image at the reso-
lution of 512×2048. S-FPN is short for SemanticFPN [20] model.

four stages as [144, 256, 784, 784], while for all Agent-Swin
models, we allocate [81, 144, 196, 49]. We employ bilin-
ear interpolation to adapt the agent bias to the increased
numbers of agent tokens n. The same strategy is applied
to ADE20k experiments as well.

C.3. ADE20K

Training settings. ADE20K [48] is a well-established
benchmark for semantic segmentation which encompasses
20K training images and 2K validation images. Backbones
are pretrained on ImageNet dataset with AdamW, following
the training configurations mentioned in the original paper.
For UperNet [41], we use AdamW to optimize, and set the
initial learning rate as 6e-5 with a linear warmup of 1,500 it-

14

Original

Image

Agent Attention Distribution

Figure 9. The distribution of attention weights corresponding to the 49 agent tokens from the third block of Agent-Swin-T.

erations. Models are trained for 160K iterations in total. For
Semantic FPN [20], we optimize the models using AdamW
for 40k iterations with an initial learning rate of 2e-4. We
randomly resize and crop the image to 512 × 512 for train-
ing, and re-scale to have a shorter side of 512 pixels during
testing.

D. Complete Experimental Results

Full classification results. We provide the full ImageNet-
1K classification results in Tab. 14. It is obvious that substi-
tuting Softmax attention with our agent attention in various
models results in consistent performance improvements.
Additional downstream experiments. We provide addi-
tional experiment results on object detection and seman-
tic segmentation in Tab.16, Tab.15 and Tab.17. For ob-
ject detection, results on RetinaNet [22], Mask R-CNN [17]
and Cascade Mask R-CNN [4] frameworks are presented,
while for semantic segmentation, we show results on Se-
manticFPN [20] and UperNet [41]. It can be observed

that our models achieve consistent improvements over their
baseline counterparts across various settings.

E. Agent Attention Visualization
We visualize agent attention distribution in Fig. 9. It can
be seen that various agent tokens focus on distinct regions,
such as ears (second in the second row) and nose/mouth
(fourth in the sixth row). This diversity ensures that differ-
ent queries can focus on their areas of interest during the
agent broadcast process.

F. Model Architectures
We present the architectures of four Transformer models
used in the main paper, including Agent-DeiT, Agent-PVT,
Agent-Swin and Agent-CSwin in Tab.18-22. Considering
the advantage of enlarged receptive field, we mainly replace
Softmax attention blocks with our agent attention module at
early stages of vision Transformer models.

15

stage output
Agent-DeiT-T Agent-DeiT-S Agent-DeiT-B

Agent DeiT Block Agent DeiT Block Agent DeiT Block

res1 14× 14

win 14×14

dim 192

head 3

agent 49

×12 None

win 14×14

dim 384

head 6

agent 49

×12 None

win 14×14

dim 768

head 12

agent 81

×4

 win 14×14

dim 768

head 12

×8

Table 18. Architectures of FLatten-DeiT models.

stage output
Agent-PVT-T Agent-PVT-S

Agent PVT Block Agent PVT Block

res1 56× 56

Conv1×1, stride=4, 64, LN
win 56×56

dim 64

head 1

agent 9

×2 None

win 56×56

dim 64

head 1

agent 9

×3 None

res2 28× 28

Conv1×1, stride=2, 128, LN
win 28×28

dim 128

head 2

agent 16

×2 None

win 28×28

dim 128

head 2

agent 16

×3 None

res3 14× 14

Conv1×1, stride=2, 320, LN
win 14×14

dim 320

head 5

agent 49

×2 None

win 14×14

dim 320

head 5

agent 49

×6 None

res4 7× 7

Conv1×1, stride=2, 512, LN
win 7×7

dim 512

head 8

agent 49

×2 None

win 7×7

dim 512

head 8

agent 49

×3 None

Table 19. Architectures of Agent-PVT models (Part1).

16

stage output
Agent-PVT-M Agent-PVT-L

Agent PVT Block Agent PVT Block

res1 56× 56

Conv1×1, stride=4, 64, LN
win 56×56

dim 64

head 1

agent 9

×3 None

win 56×56

dim 64

head 1

agent 9

×3 None

res2 28× 28

Conv1×1, stride=2, 128, LN
win 28×28

dim 128

head 2

agent 16

×3 None

win 28×28

dim 128

head 2

agent 16

×8 None

res3 14× 14

Conv1×1, stride=2, 320, LN
win 14×14

dim 320

head 5

agent 49

×18 None

win 14×14

dim 320

head 5

agent 49

×27 None

res4 7× 7

Conv1×1, stride=2, 512, LN
win 7×7

dim 512

head 8

agent 49

×3 None

win 7×7

dim 512

head 8

agent 49

×3 None

Table 20. Architectures of Agent-PVT models (Part2).

stage output
Agent-Swin-T Agent-Swin-S Agent-Swin-B

Agent Swin Block Agent Swin Block Agent Swin Block

res1 56× 56

concat 4× 4, 96, LN concat 4× 4, 96, LN concat 4× 4, 128, LN
win 56×56

dim 96

head 3

agent 9

×2 None

win 56×56

dim 96

head 3

agent 9

×2 None

win 56×56

dim 128

head 3

agent 9

×2 None

res2 28× 28

concat 4× 4, 192, LN concat 4× 4, 192, LN concat 4× 4, 256, LN
win 28×28

dim 192

head 6

agent 16

×2 None

win 28×28

dim 192

head 6

agent 16

×2 None

win 28×28

dim 256

head 6

agent 16

×2 None

res3 14× 14

concat 4× 4, 384, LN concat 4× 4, 384, LN concat 4× 4, 512, LN

None

 win 7×7

dim 384

head 12

×6 None

 win 7×7

dim 384

head 12

×18

win 14×14

dim 512

head 12

agent 49

×2

 win 7×7

dim 512

head 12

×16

res4 7× 7

concat 4× 4, 768, LN concat 4× 4, 768, LN concat 4× 4, 1024, LN

None

 win 7×7

dim 768

head 24

×2 None

 win 7×7

dim 768

head 24

×2 None

 win 7×7

dim 1024

head 24

×2

Table 21. Architectures of Agent-Swin models.

17

stage output
Agent-CSwin-T Agent-CSwin-S Agent-CSwin-B

Agent CSwin Block Agent CSwin Block Agent CSwin Block

res1 56× 56

Conv7×7, stride=4, 64, LN Conv7×7, stride=4, 96, LN
win 56×56

dim 64

head 2

agent 9

×2 None

win 56×56

dim 64

head 2

agent 9

×3 None

win 56×56

dim 96

head 4

agent 9

×3 None

res2 28× 28

Conv7×7, stride=4, 128, LN Conv7×7, stride=4, 192, LN
win 28×28

dim 128

head 4

agent 16

×4 None

win 28×28

dim 128

head 4

agent 16

×6 None

win 28×28

dim 192

head 8

agent 16

×6 None

res3 14× 14

Conv7×7, stride=4, 256, LN Conv7×7, stride=384, LN

None

 win 7×14

dim 256

head 8

×18 None

 win 7×14

dim 256

head 8

×29 None

 win 7×14

dim 384

head 16

×29

res4 7× 7

Conv7×7, stride=4, 512, LN Conv7×7, stride=4, 768, LN

None

 win 7×7

dim 512

head 16

×1 None

 win 7×7

dim 512

head 16

×2 None

 win 7×7

dim 768

head 32

×2

Table 22. Architectures of Agent-CSwin models.

18

	. Introduction
	. Related Works
	. Vision Transformer
	. Linear Attention

	. Preliminaries
	. General Form of Self-Attention
	. Softmax Attention and Linear Attention

	. Agent Transformer
	. Agent Attention
	. Agent Attention Module
	. Implementation

	. Experiments
	. ImageNet-1K Classification
	. Object Detection
	. Semantic Segmentation
	. Agent Attention for Stable Diffusion
	. Large Receptive Field and High Resolution
	. Comparison with Other Linear Attention
	. Ablation Study

	. Conclusion

