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Abstract

Code generation aims to automatically generate code snippets that
meet given natural language requirements and plays an important
role in software development. Although Code LLMs have shown
excellent performance in this domain, their long generation time
poses a signification limitation in practice use. In this paper, we first
conduct an in-depth preliminary study with different Code LLMs
on code generation tasks and identify a significant efficiency issue,
i.e., continual generation of excess tokens. It harms the developer
productivity and leads to huge computational wastes. To address it,
we introduce CodeFast, an inference acceleration approach for
Code LLMs on code generation. The key idea of CodeFast is to
terminate the inference process in time when unnecessary excess
tokens are detected. First, we propose an automatic data construc-
tion framework to obtain training data. Then, we train a unified
lightweight model GenGuard applicable to multiple programming
languages to predict whether to terminate inference at the current
step. Finally, we enhance Code LLM with GenGuard to accelerate
its inference in code generation tasks. We conduct extensive exper-
iments with CodeFast on five representative Code LLMs across
four widely used code generation datasets. Experimental results
show that (1) CodeFast can significantly improve the inference
speed of various Code LLMs in code generation, ranging form 34%
to 452%, without compromising the quality of generated code. (2)
CodeFast is stable across different parameter settings and can gen-
eralize to untrained datasets. Our code and data are available at
https://github.com/DeepSoftwareAnalytics/CodeFast.

1 Introduction

Code generation aims to automatically generate code snippets that
meet given natural language requirements and plays an important
role in software development [1, 5, 6, 18–20, 22, 25–29, 31, 33–38, 42–
46, 48, 52, 56–64, 67, 68]. Recently, an increasing number of large

∗Yanlin Wang is the corresponding author.

1    def max_of_nth(test_list, N):
2          """
3 Write a function to find the maximum of nth 
            column from the given tuple list. """
4          assert max_of_nth([(5,6,7),(1,3,5),(8,9,10)],2)==19"""
5        # Your code here

6        return max(test_list,key=lambda x: x[N])
7    def max_of_nth_2(test_list, N):
8          """
9        Write a function to find the maximum of nth
            column from thegiven tuple list. 
10        assert max_of_nth_2([(5,6,7),(1,3,5),(8,9,10)],2)==19"""
11        # Your code here
12        return max(test_list,key=lambda x: x[N])

Expected  generation
(Line 6) 

Excess tokens
(Lines 7-12)

Prompt

Output

Method signature 
（Line 1）

Method description
(Lines 3-5)

Figure 1: A motivating example of code generated from

CodeLlama-7B.

language model for code (Code LLMs), such as Codex [38], Star-
Coder [28], and Code Llama [44], have achieved remarkable perfor-
mance in code generation [64, 67]. Among them, Code Llama [44]
stands out as a powerful open-source model in code generation
tasks. In particular, models fine-tuned based on Code Llama, such as
WizardCoder [33] and Phind CodeLlama [42], have demonstrated
performance surpassing GPT-4 [41] in code generation.

While Code LLMs [28, 33, 42, 44] have shown impressive code
generation capabilities, they exhibit inefficiencies, such as contin-
uing to generate unnecessary excess code snippets even after the
expected code is generated. For example, Fig. 1 presents a code snip-
pet generated by CodeLlama-7B [44], including two parts: prompt
(lines 1-5) and output (lines 6-12). Generally, we provide the prompt,
includingmethod signature (lines 1) andmethod description (lines 3-
5), as the input to CodeLlama-7B. The model generates the expected
code fragment in line 6, which already meets the specified require-
ment. However, the model fails to terminate its inference here and
continues to generate excess code (lines 7-12) until reaching the
predefined maximum token generation length. The unnecessary
generation of excess code not only wastes computational resources
but also leads to significant energy consumption. Moreover, devel-
opers have to check the generated results and remove this excess
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code, harming the development productivity. Therefore, there is a
clear need to understand to what extent Code LLMs are affected by
this excess token generation issue and how to effectively handle it.

In this paper, we conduct extensive preliminary studies on five
Code LLMs across four popular code generation benchmarks to
study to what extent Code LLMs are affected by the excess token
generation issue and then introduce CodeFast, a straightforward
and effective inference acceleration approach for Code LLMs to
address it.

In preliminary study, we first randomly select 100 problems from
the training sets of the studied datasets (MBPP [4], MBJSP [3],
MBGP [3], and MBCPP [3]). Next, we build prompts from these
problems and sample generations from five representative Code
LLMs, totaling 2000 generations. Then, we have three experienced
programmers to conduct a human evaluation to verify and analyze
the excess generation issue. The result of human evaluation shows
that excess generation is a prevalent issue in contemporary

code LLMs. To further study the implications of excess genera-
tion issue on the inference efficiency of Code LLMs, we conduct
comparative experiments. We terminate the inference process of
models early when detecting excess generation, which simulates an
ideal scenario without excess generation. Fig. 2 shows the compar-
ative experiment result of Code Llama series models on the MBPP
dataset. By comparing the inference time under the ideal scenario
and the real scenario, we can find that the excess generation issue
significantly increases the inference time. This result shows that
excess token generation is a significant bottleneck that limits

the inference speed of Code LLMs in code generation tasks.

Based on the findings in our preliminary study, we propose a
straightforward and effective inference acceleration approach for
Code LLMs, called CodeFast. The key idea of our approach is
to promptly terminate the inference when the continual genera-
tion of excess tokens is detected. To achieve this, we design a core
component GenGuard, which is a unified and lightweight gating
classifier attached to a Code LLM. When generating the next to-
ken, GenGuard receives the last hidden states generated from a
Code LLM and predicts whether to terminate inference at this step.
To train GenGuard, we propose an automatic training framework
that includes three stages: sampling, labeling, and training. In the
sampling stage, the framework leverages sampling prompts and
a Code LLM to generate examples with excess generation issues.
In the labeling stage, the framework utilizes two code analyzers
to distinguish between expected and excess code in the sampled
outputs and then labels them accordingly. Finally, in the training
stage, we freeze the parameters of the Code LLM and train Gen-
Guard to predict the probability of excess tokens. This framework
only necessitates users to provide sampling prompts, relieving the
need and burden of manual data labeling. In the inference stage
of CodeFast, we propose a line-wise voting mechanism that can
reduce misjudgments and achieve a trade-off between generation
accuracy and speed. Specifically, instead of stopping the inference
process of the Code LLM immediately when GenGuard predicts to
stop inference for a single token, the line-wise voting mechanism
collects all the predictions made by GenGuard for the whole code
line. After completing a code line, it uses majority voting to decide
whether to terminate the inference process.

Code Llama-7B
Code Llama-13B

Code Llama-34B
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Figure 2: Experimental results of Code LLMs on the MBGP

dataset: a comparison between original and expected scenar-

ios.

To evaluate the effectiveness of CodeFast, we conduct extensive
experiments on five mainstream Code LLMs: the Code Llama series
(7B, 13B, 34B) [44], StarCoder-15.5B [28], and Phind-CodeLlama [42],
across four code generation datasets in different programming lan-
guages (PLs): MBPP [4], MBJSP [3], MBGP [3], and MBCPP [3].
Then, we conduct ablation studies to investigate the effectiveness
of each component of our approach and explore the impact of
different parameter settings on the performance of our approach.
Finally, we evaluate the generalizability of our approach on three
untrained code generation datasets: HumanEval [7], HumanEval-
JavaScript [3], and HumanEval-Go [3]. The experimental results
demonstrate that: (1) CodeFast can significantly increase the gen-
eration speed of Code LLMs without compromising the quality of
the generated code. Besides, our approach is effective across dif-
ferent Code LLMs and different programming languages. (2) Each
component of our approach plays an important role in model per-
formance. (3) Our approach exhibits great stability across different
parameter settings. (4) Our approach exhibits great generalization
capabilities on untrained datasets.

We summarize the contributions of this paper as follows:

• Though extensive experiments and human evaluation in a pre-
liminary study, we identify a significant issue of excess token
generation in Code LLMs. We find that this is a prevalent issue
and has a severe impact on the efficiency of code generation. To
the best of our knowledge, we are the first to investigate the
excess generation issue in Code LLMs.
• We introduce GenGuard, a unified and lightweight gating clas-
sifier designed to predict the probability of stopping generation
during the generation process. To obtain training data for Gen-
Guard, we build an automated data construction framework. To
make GenGuard unified across various PLs, we curate the data
from datasets in multiple PLs and validate its generality
by comparing it with its Mono-PL counterparts.
• We propose an effective inference acceleration method CodeFast
by utilizing GenGuard to promptly terminate the generation
process. In addition, we adopt a line-voting mechanism that can
reduce misjudgments and achieve a trade-off between generation
accuracy and speed.
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2 Background

2.1 Code Large Language Models

Code Large Language Models (Code LLMs) refer to large language
models that are specifically trained for coding tasks [64, 67]. Typi-
cally, Code LLM is a Transformer-based model with a large num-
ber of parameters and has strong abilities in code generation and
understanding, achieved through training on a large amount of
code data [67]. For example, open-source Code LLMs such as Code
Llama [44] and StarCoder [28] have also shown impressive capabil-
ities in code generation tasks. Phind-CodeLlama [42], fine-tuned
from CodeLlama-34B using high-quality code data, has surpassed
the performance of GPT-4 [41] on HumanEval. Based on different
Transformer architectures, current Code LLMs can be classified into
two types: decoder-only Transformer models and encoder-decoder
Transformermodels [67]. Considering that most current Code LLMs
are decoder-only Transformer models, such as Code Llama [44]
and StarCoder [28], in this paper, we will focus on discussing Code
LLMs with decoder-only architecture.

2.2 Inference of Code LLMs

The decoder-only Transformer architecture is initially introduced in
GPT [43]. In contrast to the original Transformer [51], the decoder-
only architecture is composed solely of stacked decoder layers and
does not include the encoder component [43]. The core of the de-
coder layers is its masked attention layer. This layer employs masks
to allow the model to focus only on previously generated tokens
and prevents it from attending to future tokens during the decod-
ing process [65]. This mechanism determines the autoregressive
generation characteristics of the decoder-only Transformer model.

Given an input token sequence 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, the model
first maps them to context vectors 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} in word em-
bedding layer, where 𝑛 is the length of the sequence. We use the
word vectors as the initial hidden states 𝐻0 = {ℎ01, ℎ

0
2, ..., ℎ

0
𝑛} = 𝐶 ,

which serve as the input to the decoder layer. And then we take
the hidden states output of the previous decoder layer as input to
calculate the hidden states for the next decoder layer, following
the Equation 1, where 𝐿 represents the number of decoder layers, 𝑖
represents the current index of decoder layer and M represents the
mask matrix.

𝐻 𝑖 = 𝐷𝑒𝑜𝑐𝑑𝑒𝑟𝐿𝑎𝑦𝑒𝑟 (𝐻 𝑖−1, 𝑀 ), 𝑖 ∈ [1, 𝐿] (1)

After computing the hidden states of the final decoder layer, we
choose the final hidden state of the last token ℎ𝐿𝑛 as the represen-
tation of the input sequence. Then, we input the representation
into Language Modeling Head (LM Head) to predict the next token,
following Equation2, where𝑊𝑇

𝑙𝑚
is the LM Head Matrix.

𝑃 (𝑥𝑛+1 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝐿𝑛𝑊𝑇
𝑙𝑚
), (2)

After obtaining probability vectors of next token 𝑃 (𝑥𝑛+1), we de-
code the next token 𝑥𝑛+1 using greedy decoding, which means
selecting the token with the highest probability following Equa-
tion 3.

𝑥𝑛+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃 (𝑥𝑛+1 ) ) (3)

We update the output sequence 𝑂 = {𝑜1} = {𝑥𝑛+1}, and input
token sequence 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛+1}, and repeat the above in-
ference process until the inference termination condition is reached.

Table 1: Dataset statistics.

Benchmark Language #Train #Valid #Test

MBPP Python 374 90 500
MBJSP JavaScript 420 46 500
MBGP Go 396 43 500
MBCPP C++ 314 34 500
HumanEval Python \ \ 164
HumanEval-JS JavaScript \ \ 161
HumanEval-Go Go \ \ 160

Here are two types of inference termination conditions: (1) Spe-
cial end token is generated. When the special token <EOS> is
generated, the model will stop generation. (2) The length of the

generated tokens exceeds the maximum value. For example, in
Transformer1 library, there is a parameter max_new_tokens, when
the length of the generated token sequence exceeds the value of
max_new_tokens, the inference of the model will be terminated.

3 Experimental Design

3.1 Datasets

We use four public datasets on code generation, including MBPP [4]
in Python, MBJSP [3] in JavaScript, MBGP [3] in Go, andMBCPP [3]
in C++. We use the above datasets in both the preliminary study
and evaluation sections. Additionally, to further validate the gen-
eralizability of our proposed approach, we utilize HumanEval [7],
HumanEval-Go [3] and HumanEval-JavaScript [3]. The statistics of
datasets are listed in Table 1, and the detailed description of these
datasets are as follows:

• MBPP [4] is a frequently used benchmark in code generation,
comprising 974 crowd-sourced Python programming problems.
Each problem includes a task description, a solution, and three
test cases.
• HumanEval [8] is a popular benchmark in code generation,
which includes 164 hand-written Python programming problems.
Every problem contains a function signature, docstring, function
body, and several unit tests.
• MBXP and Multilingual HumanEval [3] are the multilingual
versions of theMBPP and HumanEval benchmarks, sharing a sim-
ilar data format. For MBXP, we useMBJSP,MBGP, andMBCPP,
which are datasets in three popular programming languages. Be-
cause these three datasets are not pre-partitioned, we selected
500 samples to form the test set. The remaining samples are split
in a 9:1 ratio to create the training and validation sets, respec-
tively. As for Multilingual HumanEval, due to the lack of a C++
dataset, we use HumanEval-JavaScript and HumanEval-Go

to verify the PL generalization ability of our approach.

3.2 Metrics and Notations

Following previous code generation studies [25, 26], we employ
Pass@k (k = 1, 3, 5) as our evaluation metric to measure code
generation accuracy. A requirement is considered solved if the gen-
erated program passes all test cases, and Pass@k is the percentage
of solved problems in total problems. Additionally, we use the fol-
lowing metrics/notations to measure code generation quality and

1https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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speed. Length represents the average number of tokens of gener-
ated solutions. Time represents the average time (in seconds) taken
by a Code LLM to generate a program per sample. Speedup mea-
sures the improvement in code generation speed of a Code LLM,
relative to its corresponding baseline performance. ER (Excess

Ratio) quantifies the percentage of generated results that contain
excess tokens. PGWE (percentage of generation without <EOS>
Ending) indicates the percentage of results where an excess gener-
ation issue is detected and the special ending token <EOS> is not
generated. This means the model will keep generating excess code
until the token length reaches the maximum generation length.
3.3 Base LLMs for Code

In the preliminary study and evaluation, we select five mainstream
Code LLMs as the base models for our experiments. The details of
these models are as follows:
• Code Llama Series [44] is a series of models pre-trained on code
data using Llama 2 [50], with parameter sizes ranging from 7B,
13B, to 34B. These models are currently the most powerful open-
source foundation Code LLMs available. In our experiments, we
select the multilingual versions of the models CodeLlama-7B,
CodeLlama-13B, and CodeLlama-34B.
• StarCoder [28] is a 15.5B parameter model trained on 80+ pro-
gramming languages, which has demonstrated remarkable per-
formance on code generation tasks. In our experiments, we select
StarCoder-15.5B as a base model.
• Phind-CodeLlama [42] is an advanced Code LLM fine-tuned
from CodeLlama-34B on a proprietary dataset of about 80k high
quality programming problems and solutions. This model outper-
forms GPT-4 on the HumanEval benchmark, achieving state-of-
the-art performance. In our experiments, we use Phind-CodeLlama-
v2 as the base model, which is the state-of-the-art version of the
Phind series of models.
Although ChatGPT [39] and GPT-4 [41] have achieved notable

performance in code generation tasks, we do not use them in our
experiments. This is because OpenAI only provides API access
for these models and does not open-source their parameters. This
limitation restricts our exploration of the details of these models’
inference processes.

3.4 Experimental Settings

We provide detailed experimental settings as follows.
Code generation settings. In our experiments, we deploy Code

LLMs on the GPU using the bfloat16 [12] precision format. The
max generated length is set to 300. We employ greedy decoding for
calculating Pass@1 and nucleus sampling for calculating Pass@3
and Pass@5. Empirically, we set the temperatures following the
original settings, which is 0.8 for function-level tasks [25, 26] and
0.2 for class-level tasks [11]. Notably, following previous stud-
ies [3, 25, 27, 68], our prompts for function-level code generation
is designed in a partial code format, including the signature of the
target function, comments with requirements, and relevant test
cases. Across the experiments conducted in § 6.1, 6.2, and 6.3, we
set the parameter 𝜃𝑠𝑡𝑜𝑝 to 0.5. In experiments of § 6.4, we set a
𝜃𝑠𝑡𝑜𝑝 of 0.7 when evaluating our approach on untrained datasets.

Training stage settings. In the sampling stage, we sample
raw generations for each Code LLM mentioned in § 3.3 from the

training sets of MBPP, MBJSP, MBGP, and MBCPP. Subsequently,
each Code LLM’s raw generations from different programming
languages are merged and labeled to construct a dataset, referred
to as the Multi-PL training data. When labeling data with ChatGPT,
we choose gpt-3.5-turbo-16k [40] to label data. In the training stage,
the parameters of each Code LLM are frozen, and a linear classifier
is trained to act as its GenGuard. The training process uses the
AdamW [32] optimizer with a learning rate of 5e-4 and lasts for
ten epochs. Our experiments are conducted on a machine with 216
GB main memory and a Tesla A100 80GB GPU.

4 Preliminary Study

In this section, we find an efficiency issue in the inference of Code
LLMs, which is the continual generation of excess tokens. This
issue means that after the model generates code corresponding
to a given requirement, the generation of tokens does not cease.
Instead, it continues to produce undesired content that offers no
assistance in solving the current problem. Considering the high
inference time complexity of Code LLMs, this issue significantly
increases inference time.

To gain a deeper and more comprehensive understanding of this
efficiency issue in Code LLMs, we conduct extensive preliminary
studies. First, we randomly select 100 problems from training sets
of MBPP, MBJSP, MBGP, and MBCPP. Next, we build prompts from
these problems and sample generations from the five Code LLMs
described in § 3.3, totaling 2000 generations. Then, we involve three
annotators, each with over five years of coding experience, and
manually identify and label the excess code tokens in generations.
Annotators consist of two authors and a Ph.D. student in computer
science. Given prompts and generated code, annotators indepen-
dently truncate the generated code to remove excess tokens without
changing its functionality and annotate truncated line numbers as
labels. For any inconsistent or uncertain annotations, we conduct
face-to-face discussions to resolve disagreements. The agreement
among annotators is verified using Krippendorff’s alpha [17], and
the value is 0.998, indicating a high agreement among annotators
and confirming the reliability of annotated results.

• PSRQ1: Is the phenomenon of excess token generation a preva-
lent issue in contemporary code LLMs?
• PSRQ2: What are the implications of excess token generation
on the inference efficiency of Code LLMs?

4.1 Excess Token Phenomenon (PSRQ1)

4.1.1 Qualitative Analysis. Through case studies, we find that there
are three major types of issues. Type 1: endless generation of

excess functions. The first case in Fig. 3 presents a typical exam-
ple, showcasing a result generated by CodeLlama-7B on the MBPP
dataset. After generating the expected function body (line 6), the
generation process does not stop. The model continues to generate
tokens until line 15, where it is forcibly truncated when the maxi-
mum sequence length is reached. It is notable that the extra content
generated in lines 7-15 are excess functions with unhelpful content.
Considering the high inference time complexity of Code LLM, such
redundant generation significantly increases the inference time of
models. Type 2: undesirable test code. The second case in Fig. 3
presents a typical example generated by Phind CodeLlama-34B
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1    def reverse_list_lists(lists):
2          """
3          Write a function to reverse each list in a given list of lists.
4          assert reverse_list_lists([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], 

[13, 14, 15, 16]])==[[4, 3, 2, 1], [8, 7,  6, 5], [12, 11, 10, 9],
[16, 15, 14, 13]]"""

5          #Your code here
6          return [list(reversed(l)) for l in lists]
7
8    def reverse_list_lists_2(lists):
9        """
10        Write a function to reverse each list in a given list of lists.
11        assert reverse_list_lists_2([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], 

[13, 14, 15, 16]])==[[4, 3, 2, 1], [8, 7, 6, 5], [12,   11, 10, 9], 
[16, 15, 14, 13]]"""

12        # Your code here
13        return [l[::-1] for l in lists]
14
15  def reverse_list_lists_3(lists):
16        """
17        Write a function to reverse each list in a given list of lists.
18        assert reverse_list_lists_2([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], 

[13, 14, 15, 16]])==[[4, 3, 2, 1], [8, 7, 6, 5], [12,   11, 10, 9], 
[16, 15, 14, 13]]"""

   

1    def remove_similar_row(test_list):
2          """
3          Write a function to remove similar rows rom the given 
            tuple matrix.
4          assert remove_similar_row([[(4, 5), (3, 2)], [(2, 2), (4, 6)],

[(3, 2), (4, 5)]] )  == {((2, 2), (4, 6)), ((3, 2), (4, 5))}
5          # Your code here
6          # return set(test_list)
7          # return set(test_list)
8    # return set(test_list)
9          # return set(test_list)
10        # return set(test_list)
11        # return set(test_list)
12        # return set(test_list)
13        # return set(test_list)
14.       # return set(test_list)
15  # return set(test_list)
16        # return set(test_list)
17        # return set(test_list)
18        # return set(test_list)
19        # return set(test_list)
20        # return set(test_list)
21        # return set(test_list)
22        # return set(test_list)

1    #include <bits/stdc++.h>
2    using namespace std;
3    /**
4    * Write a c++ function to find the sum of xor of all pairs

of numbers in the given array
5    * > pairOrSum(vector<int>{5, 9, 7, 6}, 4)
6    * 47
7    * > pairOrSum(vector<int>{7, 3, 5}, 3)
8    * 12
9    * > pairOrSum(vector<int>{7, 3}, 2)
10  * 4
11  */
12  int pairOrSum(vector<int> arr, int n) {
13      int sum = 0;
14      for(int i=0; i<n; i++) {
15            for(int j=i+1; j<n; j++) {
16                  sum += (arr[i] ^ arr[j]);
17          }
18      }
19      return sum;
20  }
21  int main() {
22      cout << pairOrSum(vector<int>{5, 9, 7, 6}, 4) << endl;
23      cout << pairOrSum(vector<int>{7, 3, 5}, 3) << endl;
24      cout << pairOrSum(vector<int>{7, 3}, 2) << endl;
25 }

Type 1: endless generation of excess functions Type 2: undesirable test code Type 3: endless comments

Case 1: A generation example from CodeLlama-7B in MBPP Case 2: A generation example from CodeLlama-34B in MBCPP Case 3: A generation example from CodeLlama-13B in MBPP

: Prompt : Expected Generation : Excess Generation 

Figure 3: Results of qualitative analysis in the preliminary study.

on MBCPP. After generating the expected function (lines 12-19),
the model continues to produce test code (lines 20-24). Although
these test codes are somewhat related to expected generations, they
are generally useless and lead to additional inference time. Type
3: endless comments. The third case in Fig. 3 presents a typical
example generated by CodeLlama-13B on MBPP. After receiving
the prompt (lines 1-5), the model generates an extensive amount
of repetitive comments (lines 6-15), continuing until the maximum
sequence length is reached. In this case, the model fails to gen-
erate code that solves the problem and instead produces endless
comments. Ideally, we would want the model to stop inference be-
fore generating repetitive comments, thereby reducing unnecessary
time consumption.

We believe that this issue mainly stems from the pre-training
process of Code LLMs. During its pre-training, Code LLMs typically
utilize a large dataset of code files [28, 50], which often contain
multiple functions, test codes, and comments. As a result, when
these models are used for function-level code generation, they tend
to produce content akin to training data, leading to the generation
of excess functions, test codes, etc.

4.1.2 Quantitative Analysis. To investigate to what extent this is-
sue exists in different Code LLMs across various programming
languages, we randomly select 100 prompts from MBPP, MBJSP,
MBGP, MBCPP, and sample generations from five Code LLMs as
shown in § 3.3, totaling 2000 generations. Then, we manually check
the outputs and mark the expected generation and excess gener-
ation for each sample. We can derive two observations from the
human evaluation results shown in Table 2.

Observation 1: all Code LLMs have the excess generation

issue across different programming languages. From Table 2,
we find that all Code LLMs exhibit a high ER (from 59% to 100%),
indicating a high frequency of excess generation. For example, out-
puts of CodeLlama-7B in MBPP show an ER of 100%, which means
all results include excess generation. Moreover, we find that models
with smaller parameter sizes, such as CodeLlama-7B, CodeLlama-
13B, and StarCoder-15.5B, exhibit a higher PGWE. This means that,
in some extreme cases, these models not only output excess gen-
erations but also continue generating content until reaching the
maximum length of generated tokens.

Observation 2: supervised fine-tuning can mitigate the

issue of excess generations in Code LLMs. Phind-CodeLlama is
a model fine-tuned on CodeLlama-34B using a proprietary dataset
of high-quality programming problems and solutions. From Table 2,
we can see that Phind-CodeLlama, compared to CodeLlama-34B,
exhibits a lower ER and shorter token length on the MBPP and
MBJSP datasets. Additionally, it also demonstrates a lower PGWE
on both MBPP and MBJSP. We believe this is due to the high-quality
fine-tuning data enabling the model to better understand the intent
of requirements, thereby mitigating the issue of excess generations.

PSRQ1 Summary: Overall, all five Code LLMs have severe
issues of excess generations across four programming languages.

4.2 Implications on Inference Efficiency

(PSRQ2)

Firstly, to explore the impact of this issue on the length of the
generated token sequences, we calculate and compare the average
lengths of outputs with and without excess generations. Addition-
ally, to investigate the impact on the inference speed of Code LLMs,
we prematurely terminated the model’s output generation upon
the occurrence of excess generations and measured its effect on
inference speed. From the experimental results shown in Table 2,
we have Observation 3: the issue of excess generations sig-

nificantly increases the length of generated sequences and

hence significantly increases generation time. For instance,
the average output sequence length for CodeLlama-34B on MBJSP
is 158.2 (“Original”). Ideally, if there were no excess generation, the
output length should decrease to 81.8 (“Expected”). Considering the
high inference time complexity of Code LLMs, these additional gen-
erated tokens will significantly increase the inference time of Code
LLMs. By prematurely terminating the inference process upon the
occurrence of excess generations, all Code LLMs obtain a significant
increase in inference speed. For example, through early stopping,
the inference speed of CodeLlama-34B on MBGP increased to 3.17
times its original speed.

PSRQ2 Summary: The issue of excess generations is a primary
factor limiting the generation efficiency of Code LLMs.
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Table 2: Human evaluation results of preliminary study. “Original” represents the raw output result of the model; “Expected”

represents the result after manually removing excess tokens.

Model Type

MBPP (Python) MBJSP (JavaScript) MBGP (Go) MBCPP (C++)

Length Time ER PGWE Length Time ER PGWE Length Time ER PGWE Length Time ER PGWE

CodeLlama-7B Original 300 9.31 100% 100% 276.8 8.49 97% 81% 270.7 7.96 98% 81% 292.8 8.75 100% 96%
Expected 51.4 1.59 0% 0% 87.6 2.65 0% 0% 72.2 2.21 0% 0% 82.5 2.56 0% 0%

CodeLlama-13B Original 300 12.15 100% 100% 300 11.92 100% 100% 297.2 10.87 99% 97% 298.3 11.51 100% 99%
Expected 41.8 1.65 0% 0% 83.8 3.29 0% 0% 78.7 3.03 0% 0% 79.4 3.15 0% 0%

CodeLlama-34B Original 269.8 14.97 97% 82% 158.2 8.87 98% 3% 260.1 14.58 98% 61% 180.4 10.08 100% 14%
Expected 52.0 2.89 0% 0% 81.8 4.60 0% 0% 81.0 4.60 0% 0% 72.8 4.12 0% 0%

StarCoder-15.5B Original 202.3 5.29 98% 53% 231.8 6.23 100% 52% 284.6 7.69 98% 87% 257.9 7.19 100% 68%
Expected 81.3 2.32 0% 0% 78.3 2.38 0% 0% 106.5 2.90 0% 0% 108.2 3.42 0% 0%

Phind-CodeLlama Original 120.7 6.70 59% 4% 184.2 10.42 81% 7% 245.0 13.71 99% 45% 187.6 10.52 90% 13%
Expected 60.7 3.39 0% 0% 93.7 5.28 0% 0% 81.3 4.62 0% 0% 74.8 4.28 0% 0%

5 Approach

In this section, we propose an effective code generation acceleration
approach called CodeFast as shown in Fig. 4. The key idea is
to terminate the inference early when a continual generation of
excess tokens is detected. CodeFast achieves this through a key
component: GenGuard, which is an additional module to predict
whether to stop inference at the current step.

5.1 Data Construction Framework

Our data construction framework is shown in Fig. 4(a). By sim-
ply providing sampling prompts, our approach can automatically
generate labeled data to train a specialized GenGuard for a Code
LLM. This approach includes two stages, the sampling stage and the
labeling stage.

5.1.1 The sampling stage. In the sampling stage, we utilize sam-
pling prompts to collect raw generations from the model, which po-
tentially has the issue of excess generations. The sampling prompts
are in the format of partial code snippets, each including a function
signature and comments that contain requirements and test cases.
We collect sampling prompts from the training sets of MBPP, MB-
JSP, MBGP, and MBCPP. Then, we input these prompts into Code
LLMs to obtain a large number of raw outputs.

5.1.2 The labeling stage. A key challenge for labeling data is how
to differentiate between expected generation and excess genera-
tions in raw outputs. We design a labeling pipeline as shown in
Algorithm 1. We utilize two types of code analyzers to label raw
outputs from Code LLMs. (1) Syntax-based code analyzer. It
can label the first two types of generations shown in § 4.1.1 easily
by analyzing the syntax structure of generated code. This code
analyzer considers all code lines related to the target function as
expected generation. This includes not only the main body of the
target function but also all functions that it calls. The rest of code
lines are then labeled as excess generations. To achieve this, we
utilize tree-sitter2, an efficient parser generator that can analyze
the structure of code via abstract syntax trees (ASTs). First, it builds
the ASTs from the raw outputs and extracts the node of the target
function using its signature. Then, it extracts all nodes called by the
target function by traversing the AST. Next, it collects all extracted

2https://github.com/tree-sitter/tree-sitter

function nodes and identifies the last line of these functions. Finally,
the portion from the beginning up to the end of this specific line is
labeled as the expected generation, and the remaining part of the
output is labeled as excess generation. (2) Semantic-based code

analyzer. It is utilized when the first analyzer fails. For instance,
the third type of generation, as illustrated in Fig 3, is challenging
to label by relying solely on the syntax structure of the code. It
requires an understanding of the semantics of the generated code.
Here, we utilize ChatGPT [39], a powerful LLM with great code
understanding ability, to label the data. Inspired by the in-context-
learning technique [55], we teach ChatGPT how to label the data
with detailed task instructions and manually crafted demonstra-
tions. The concrete prompt utilized in ChatGPT can be found in
the Appendix of replication package [2]. Additionally, we conduct
a human evaluation to verify the quality of the results truncated by
ChatGPT. These annotators include two authors and one Ph.D. stu-
dent in computer science. Given raw code and ChatGPT’s truncated
code, they are tasked with assessing the accuracy of the truncations.
Each truncation is scored on a binary scale: 1 for correct and 0 for
incorrect. The final average score is 0.957, indicating a high quality
of ChatGPT’s labeling. Moreover, we calculate the value of Krip-
pendorff’s alpha [17] and obtain a result of 0.919. This indicates a
high level of agreement among the annotators and confirms the
reliability of the results truncated by ChatGPT.

Finally, we label each token of the expected generation portion
as “continue generation” and the excess generation portion as “stop-
ping generation”. Note that we only keep the first excess line since
we expect GenGuard to stop at the earliest step.

5.2 Training of GenGuard Module

The key component of CodeFast is the GenGuard Module, which
is an additional module attached to Code LLM. The GenGuard
functions as a lightweight gating classifier to control the infer-
ence process of Code LLM. To reduce extra parameters, we train a
straightforward linear classifier for each Code LLM as its special-
ized GenGuard Module. Following previous studies [15], we freeze
the parameters of Code LLM and only train the GenGuard. In this
process, Code LLM is viewed as a feature extractor and encodes the
code sequence into a feature vector, which represents the semantics
of this code. Subsequently, the GenGuard module is trained using

https://github.com/tree-sitter/tree-sitter
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1    def remove_spaces(str1):
2          """
3          Write a python function to remove 
            spaces from a given string.
4          assert remove_spaces("a b c") == "abc”
5          """
6          # Your code here

!
7          return str1.replace(" ", "")
8    def remove_spaces_inplace(str1):
9        """
10 Write a python function to remove spaces from 

a given string.
11        assert remove_spaces_inplace("a b c") == "abc”
12        """
13        # Your code here
14        return str1.replace(" ", "")

Prompt data in Multi-PL Sampled Generations

!!!

Code LLM Code Analyzers!

Training Dataset

!
❄Freeze

GenGuard

7         return str1.replace(" ", "")

1    def closest_num(N):
2          """
3          Write a function to find the closest      

smaller number than n.
4          assert closest_num(11)==10
5          """
6          # Your code here return N - 1
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"
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Tokens of a Code Line

GenGuard Prediction
majority voting
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Figure 4: Overview of CodeFast.

Algorithm 1 Labeling Algorithm
Input: Raw Output: 𝑜𝑟𝑎𝑤 , Partial Code Prompt: 𝑝𝑟𝑜𝑚𝑝𝑡𝑐𝑜𝑑𝑒 , AST

Builder: 𝑎𝑠𝑡_𝑏𝑢𝑖𝑙𝑑𝑒𝑟 , ChatGPT: 𝑐ℎ𝑎𝑡𝑔𝑝𝑡 , Prompt for ChatGPT:
𝑝𝑟𝑜𝑚𝑝𝑡𝑔𝑝𝑡

Output: Labeled data: 𝑑𝑙𝑎𝑏𝑒𝑙
1: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑠𝑡 ← 𝑎𝑠𝑡_𝑏𝑢𝑖𝑙𝑑𝑒𝑟 (𝑜𝑢𝑡𝑝𝑢𝑡 )
2: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑝𝑟𝑜𝑚𝑝𝑡𝑐𝑜𝑑𝑒 )
3: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑓 𝑢𝑛𝑐_𝑛𝑜𝑑𝑒 ← 𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑠𝑡 .𝑙𝑜𝑐𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 (𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 )
4: 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← 𝑁𝑜𝑛𝑒 , 𝑜𝑒𝑥𝑐𝑒𝑠𝑠 ← 𝑁𝑜𝑛𝑒

5: 𝑙𝑎𝑠𝑡_𝑙𝑖𝑛𝑒_𝑖𝑛𝑑𝑒𝑥 ← −1, 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑐𝑘 ← [𝑡𝑎𝑟𝑔𝑒𝑡_𝑓 𝑢𝑛𝑐_𝑛𝑜𝑑𝑒 ]
6: while 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑐𝑘 ≠ [ ] do
7: for 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑐𝑘 do

8: 𝑙𝑎𝑠𝑡_𝑙𝑖𝑛𝑒_𝑖𝑑𝑥 ← max(𝑙𝑎𝑠𝑡_𝑙𝑖𝑛𝑒_𝑖𝑑𝑥,𝑛𝑜𝑑𝑒.𝑙𝑎𝑠𝑡_𝑙𝑖𝑛𝑒 )
9: 𝑐𝑎𝑙𝑙𝑒𝑑_𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑜𝑑𝑒.𝑓 𝑖𝑛𝑑_𝑐𝑎𝑙𝑙𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 ( ))
10: Delete 𝑛𝑜𝑑𝑒 from 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑐𝑘
11: 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑐𝑘 += 𝑐𝑎𝑙𝑙𝑒𝑑_𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡
12: end for

13: end while

14: 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , 𝑜𝑒𝑥𝑐𝑒𝑠𝑠 ← 𝑠𝑝𝑙𝑖𝑡 (𝑜𝑟𝑎𝑤 , 𝑙𝑎𝑠𝑡_𝑙𝑖𝑛𝑒_𝑖𝑑𝑥 )
15: if 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑝𝑟𝑜𝑚𝑝𝑡𝑐𝑜𝑑𝑒 then

16: 𝑝𝑟𝑜𝑚𝑝𝑡 ← 𝑝𝑟𝑜𝑚𝑝𝑡𝑔𝑝𝑡 .𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (′< 𝑟𝑎𝑤_𝑜𝑢𝑡𝑝𝑢𝑡 > ′, 𝑜𝑟𝑎𝑤 )
17: 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , 𝑜𝑒𝑥𝑐𝑒𝑠𝑠 ← 𝑐ℎ𝑎𝑡𝑔𝑝𝑡 (𝑝𝑟𝑜𝑚𝑝𝑡 )
18: end if

19: if 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ≠ 𝑝𝑟𝑜𝑚𝑝𝑡𝑐𝑜𝑑𝑒 then

20: 𝑜𝑒𝑥𝑐𝑒𝑠𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑙𝑖𝑛𝑒 (𝑜𝑒𝑥𝑐𝑒𝑠𝑠 )
21: 𝑑𝑙𝑎𝑏𝑒𝑙 ← {“continue” : 𝑜𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , “stop” : 𝑜𝑒𝑥𝑐𝑒𝑠𝑠 }
22: else
23: 𝑑𝑙𝑎𝑏𝑒𝑙 ← {“continue” : 𝑁𝑜𝑛𝑒, “stop” : 𝑁𝑜𝑛𝑒 }
24: end if

25: return 𝑑𝑙𝑎𝑏𝑒𝑙

these feature vectors as input. The details of GenGuard training are
as follows:

Given a code sequence 𝑋𝑛 = (𝑥1, 𝑥2, ...𝑥𝑛) and label 𝑦𝑛 at step 𝑛,
we input this sequence into 𝐿𝐿𝑀 to obtain the last hidden state ℎ𝐿𝑛 ,

following Equation 4, where 𝐿 stands for the number of decoder
layers in Code LLMs.

ℎ𝐿𝑛 = 𝐿𝐿𝑀 (𝑋𝑛 ) (4)

Then, we input the last hidden state into the linear classifier to
predict the probability of stopping 𝑝𝑠𝑡𝑜𝑝 at this step:

𝑃𝑠𝑡𝑜𝑝 = {𝑝𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 , 𝑝𝑠𝑡𝑜𝑝 } = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 (ℎ𝐿𝑛𝑊𝑇
𝐺𝑒𝑛𝐺𝑢𝑎𝑟𝑑

) (5)

Finally, we use the cross entropy loss to optimize the parameters
of linear classifiers, the loss is computed following 6, where 𝑦𝑛
equals 1 to indicate “stop generation” and 0 to indicate “continue
generation”.

𝐿𝑜𝑠𝑠 = −(𝑦𝑛𝑙𝑜𝑔 (𝑝𝑠𝑡𝑜𝑝 ) + (1 − 𝑦𝑛 )𝑙𝑜𝑔 (1 − 𝑝𝑠𝑡𝑜𝑝 ) ) (6)

The statistics show that the largest GenGuard module has fewer
than 0.02M parameters, amounting to just 0.00005% to 0.0001% of
the parameter size of our studied Code LLMs. This indicates that
GenGuard is lightweight3.

5.3 Inference Pipeline of CodeFast

In this section, we introduce the code generation process of Code-
Fast. First, given an input sequence 𝑋𝑛 = {𝑥1, 𝑥2, ...𝑥𝑛} at step 𝑛,
we input this sequence into Code LLM to predict next token 𝑥𝑛+1
and last hidden states ℎ𝐿𝑛 , following Equation 7, where 𝐿 represents
the layer numbers of Code LLM.

𝑥𝑛+1, ℎ
𝐿
𝑛 = 𝐿𝐿𝑀 (𝑋𝑛 ) (7)

The last hidden states ℎ𝐿𝑛 at step 𝑛 is a high dimensional feature vec-
tor, which includes extensive semantic information of the current
input sequence 𝑋𝑛 . Following [15], we input the feature vectors

3We present the detailed parameter information of GenGuard modules attached to five
Code LLMs in Appendix-C of replication package [2].
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extracted from LLM into GenGuard𝑊𝐺𝑒𝑛𝐺𝑢𝑎𝑟𝑑 , to predict the prob-
ability of stopping 𝑝𝑠𝑡𝑜𝑝 at the current step 𝑛:

𝑃𝑠𝑡𝑜𝑝 = {𝑝𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 , 𝑝𝑠𝑡𝑜𝑝 } = 𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 (ℎ𝐿𝑛𝑊𝑇
𝐺𝑒𝑛𝐺𝑢𝑎𝑟𝑑

) (8)

Then, we compare the probability of stopping 𝑝𝑠𝑡𝑜𝑝 with hyperpa-
rameter stopping threshold 𝜃𝑠𝑡𝑜𝑝 and terminate the inference of
code generation when 𝑝𝑠𝑡𝑜𝑝 exceeds 𝜃𝑠𝑡𝑜𝑝 .

However, there is a potential problem that may reduce the qual-
ity of the generated code. If GenGuard erroneously predicts “stop
generation” when it should predict “continue generation”, the Code
LLMwill terminate the inference process too early, leading to incom-
plete code. Inspired by the concept of majority voting, we propose
an algorithm named “line-voting mechanism” to mitigate this issue.
The key idea of this method is to emulate the way programmers
write code line by line. Instead of stopping the inference process of
the Code LLM immediately when GenGuard predicts “stop genera-
tion”, the line-voting mechanism collects all the predictions made
by GenGuard during the generation of a single code line. After
completing the code line, it uses majority voting to decide whether
to terminate the inference process. Although the line-voting mecha-
nism may lead to the generation of more excess tokens and slightly
increase inference time, it reduces the likelihood of false predictions
by GenGuard, thereby enhancing the quality of the generated code.

The inference process of the CodeFast-enhanced Code LLM is
illustrated in Fig. 4(c). Upon receiving the prompt (lines 1-6), the
model begins to generate tokens for the next line (line 7), while the
GenGuard module simultaneously predicts whether to stop at each
step. When a new line is detected, we perform majority voting on
all predictions. In this case, the generation process will continue
when the voting result is “continue generation” and terminate when
the voting result is “stopping generation”.

6 Evaluation

We summarize the following research questions (RQs) to evaluate
CodeFast:
• RQ1:What is the effectiveness of CodeFast?
• RQ2: How much do different components contribute?
• RQ3:What is the stability of CodeFast?
• RQ4:What is the generalizability of CodeFast?
• RQ5: Can CodeFast be applied to other scenarios?

6.1 RQ1: Effectiveness

To answer RQ1, we evaluate the quality of code generated by Code
LLMs and the generation efficiency. We evaluate the quality of
generated code with Pass@k (k=1,3,5) and evaluate the genera-
tion efficiency with Length, Time, and Speedup as described in
§ 3.2. Moreover, we use five popular Code LLMs shown in § 3.3
(CodeLlama-7B, CodeLlama-13B, CodeLlama-34B, StarCoder-15.5B,
and Phind-CodeLlama) across datasets in four different program-
ming languages.

Overall Results. From the experimental results shown in Ta-
ble 3, we have two observations: (1) CodeFast can increase the

generation speed of Code LLMs significantly without com-

promising accuracy. From Table 34, we can find that our approach

4Due to space limitations, results on overall performance under Pass@3 and Pass@5
are shown in Appendix-B.1 [2]. Conclusions that hold on Pass@1 also hold for Pass@3
and Pass@5 metrics.

1    def find_lucas(n): 
2          """
3         Write a function to find the n'th lucas number.
4          assert find_lucas(9) == 76
5          """
6          # Your code here
7          if n == 0:
8    return 2
9          elif n == 1:
10        return 1
11        else:
12       return find_lucas(n-1) + find_lucas(n-2)
13  def find_fibonacci(n): 

: Prompt : Continue Generation : Stop Generation 

Figure 5: An example of GenGuard-enhanced Code LLM in-

ference process.

significantly speeds up the inference speed of all Code LLMs, with
the speed-up ratio ranging from 1.34 to 4.52 times. For instance, the
average generation time of CodeLlama-34B decreases from 14.51
seconds to 5.89 seconds in the MBGP dataset, which means our
approach brings a 2.46 times acceleration in inference. We can also
find it retains the quality of the generated code from the unchanged
Pass@1 score. According to preliminary studies in § 4, this is be-
cause our approach can detect the excess generations and terminate
the inference process early, which retains the functionality of gen-
erated code and decreases unnecessary generations. We can find
that the average token length of CodeLlama-34B decrease 263.4 to
97.6 in the MBGP dataset. Besides, we evaluate the performance
of GenGuard classifiers on a manually labeled dataset5introduced
in Appendix-A.2 [2] with two metrics, namely precision and recall.
Experimental results show that GenGuard obtains high precision
and recall scores, both exceeding 0.95. Detailed information about
the experiments is presented in Appendix-B.1 [2]. (2) CodeFast is

effective in Code LLMs with different parameter sizes and

different programming languages. First, from Table 3, we can
find that our approach works for all five Code LLMs with parameter
sizes ranging from 7B to 34B. Second, our approach can be applied
to the acceleration of code generation in different programming
languages. We can find that in Table 3, our approach is effective in
code generation of four programming languages such as Python,
JavaScript, Go, and C++.

Case studies. Fig. 5 presents an inference example from the
GenGuard-enhanced CodeLlama-7B. After inputting the prompt
(lines 1-6), the GenGuard-enhanced CodeLlama-7B generate code
that fulfilled requirements (lines 7-12). Following the generation of
line 13, the GenGuard module predicts that generation should stop,
leading to an early termination of code generation. More cases can
be found in the Appendix of replication package [2].

RQ1 Summary: Overall, CodeFast can increase the generation
speed of Code LLMs significantly without compromising the
quality of the generated code. Besides, our approach is effective
for different Code LLMs and different programming languages.

6.2 RQ2: Ablation Study

To answer RQ2, we conduct ablation studies to investigate the im-
pacts of the line-voting mechanism and multi-PL training data in
our approach. We conduct an ablation study by removing each com-
ponent at a time. Notably, when examining the impact of multi-PL
5Beacause the datasets (MBPP, MBXP, etc.) only provide test cases for evaluation. We
manually construct a dataset to evaluate the prediction accuracy of GenGuard.
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Table 3: Performance of CodeFast on five Code LLMs across four benchmarks. P@1 is short for Pass@1. Detailed metrics

descriptions are provided in § 3.2.

Model

MBPP (Python) MBJSP (JavaScript) MBGP (Go) MBCPP (C++)

P@1 Time Speedup Length P@1 Time Speedup Length P@1 Time Speedup Length P@1 Time Speedup Length

CodeLlama-7B 41.2 9.36 ×1.00 299.2 47.2 8.81 ×1.00 283.4 33.4 7.1 ×1.00 267.0 43.0 8.44 ×1.00 290.6
CodeLlama-7BCodeFast 41.0 2.07 ×4.52 63.5 47.2 3.36 ×2.62 110.7 33.4 3.42 ×2.07 108.5 43.0 3.17 ×2.66 98.8
CodeLlama-13B 44.8 11.87 ×1.00 300 51.6 11.92 ×1.00 300 38.4 11.94 ×1.00 298.7 51.4 11.70 ×1.00 299.4
CodeLlama-13BCodeFast 44.8 2.98 ×3.98 71.9 51.6 4.31 ×2.77 105.2 38.4 4.38 ×2.73 105.3 51.4 4.00 ×2.93 97.2
CodeLlama-34B 51.6 14.67 ×1.00 264.8 57.4 8.37 ×1.00 149.2 42.4 14.51 ×1.00 263.4 55.2 10.12 ×1.00 180.6
CodeLlama-34BCodeFast 51.6 3.62 ×4.05 63.7 57.4 5.58 ×1.50 91.5 42.4 5.89 ×2.46 97.6 55.2 4.95 ×2.04 79.9
StarCoder-15.5B 42.6 5.14 ×1.00 204.3 32.8 6.42 ×1.00 252.8 31.2 7.17 ×1.00 284.6 45.2 6.15 ×1.00 249.9
StarCoder-15.5BCodeFast 42.6 1.98 ×2.59 73.5 32.8 1.56 ×4.11 58.0 31.2 2.88 ×2.49 108.4 45.2 2.55 ×2.41 93.9
Phind-CodeLlama 55.8 4.89 ×1.00 88.0 60.0 8.34 ×1.00 147.9 42.2 14.19 ×1.00 250.7 60.4 10.04 ×1.00 178.6
Phind-CodeLlamaCodeFast 55.8 3.65 ×1.34 64.3 60.0 5.79 ×1.44 96.6 42.2 5.78 ×2.46 94.8 60.4 5.12 ×1.96 83.0

training data, we train separate GenGuard modules for Code LLMs,
each using training data from a different language. For example,
in our ablation study, we train a Python GenGuard module for
CodeLlama-7B using Python training data exclusively. To assess
the impact of removing the line-voting mechanism, we utilize “to-
ken voting”, which means that we terminate the inference of Code
LLMs immediately when GenGuard predicts to stop generation.
Similar to RQ1, we conduct experiments using five Code LLMs
across datasets from four programming languages.

Overall results. From Table 46, we can see that: (1) GenGuard
modules trained with Multi-PL data have comparable per-

formance to models trained with Mono-PL data. Code LLMs
enhanced with Multi-PL GenGuard achieve similar Pass@1 scores
and speed acceleration as those enhanced with Mono-PL GenGuard
module. This indicates that training a unified GenGuard with data
from multiple PLs does not compromise its predictive ability in
any of these languages. (2) The line-voting mechanism effec-

tively enhances the quality of code generated by GenGuard-

enhanced Code LLMs. Table 4 shows that after removing the line-
voting mechanism, the speed of the GenGuard-enhanced model
slightly increases, but its Pass@1 performance declines. For ex-
ample, without the line-voting mechanism, the Pass@1 scores of
the GenGuard-enhanced CodeLlama-13B model dropped across
all four datasets. This degradation can be attributed to the Gen-
Guard module occasionally making incorrect predictions, ending
the generation process too early and producing incomplete code.
In contrast, the line-voting mechanism using majority voting on
the predictions of GenGuard within a line enhances the stability of
the generation results.

Case studies. Fig. 6 presents an example generation with and
without the line-voting mechanism. Without line-voting, the code
in line 12 is incomplete. This is because the GenGuard module
makes a misjudgment when generating the token “luc”, predicting
that the current production process should stop. Consequently,
the generation would be terminated at this point. However, when
the line-voting mechanism is enabled, as the GenGuard module
predicts “continue generation” for the majority of tokens in line 12,
the model then completes the generation of the entire line.

6Due to space limitations, results on ablation study under Pass@3, and Pass@5 are
presented in Appendix-B.2 [2]. Conclusions hold on Pass@1 also hold for Pass@3 and
Pass@5 metrics.

1    def find_lucas(n): 
2          """
3 Write a function to find the

n'th lucas number.
4          assert find_lucas(9) == 76
5          """
6          # Your code here
7          if n == 0:
8    return 2
9          elif n == 1:
10        return 1
11        else:

Complete code line 

12         return find_lucas(n-1) + find_lucas(n-2)

Prevention prediction:

✅ ✅ ✅ ✅ ✅ ✅ ✅!

Uncomplete code line 

12         return find_luc

Prevention prediction: 

✅ ✅ ✅ !

With Line-voting  Mechanism

Without Line-voting  Mechanism

✅

!

: Prompt : Expected Generation : Error Generation : Stop (label)" : Continue (label)✅

Figure 6: A comparison of GenGuard-enhanced CodeLlama-

7b with & without the line-voting mechanism.

RQ2 Summary: Overall, Multi-PL GenGuard and Mono-PL
GenGuard exhibit comparable performance. And the line voting
mechanism is effective and can better maintain code generation
accuracy.

6.3 RQ3: Stability

In RQ3, we investigate the stability of our approach under differ-
ent parameter settings. We primarily explore the impact of two
parameters on the performance of CodeFast. The first parameter
is max_new_tokens, as mentioned in § 2.2, which represents the
maximum token sequence generation length for the Code LLM. The
second parameter is the stop_threshold 𝜃𝑠𝑡𝑜𝑝 , indicating the prob-
ability threshold at which the GenGuard module predicts to stop
generation. Due to the space limit, we only show the experiment re-
sults of the MBPP dataset in Fig. 7. Additional experimental results
for MBGP, MBJSP, and MBCPP are provided in Appendix-B.3 [2].

Firstly, as illustrated in Fig. 77, it is observed that the inference
time for all GenGuard-enhanced Code LLMs tends to be stable with
the increase of max_new_tokens. In contrast, the inference time
for baselines significantly increases as max_new_tokens rises. No-
tably, our approach significantly decreases inference time compared
to the baseline at the same max_new_tokens values. Furthermore,
it is observed that our method maintains a Pass@1 rate compa-
rable to baselines under different max_new_tokens values. This
indicates that our method maintains code quality consistently as

7Due to space limitations, results on stability analysis under Pass@3 and Pass@5 are
presented in Appendix-B.3 [2]. Conclusions hold on Pass@1 also hold for Pass@3 and
Pass@5 metrics.
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Table 4: Ablation study results.

Model Type

MBPP(Python) MBJSP(Javascript) MBGP(Go) MBCPP(C++)

Pass@1 Speedup Pass@1 Speedup Pass@1 Speedup Pass@1 Speedup

CodeLlama-7B
CodeFast 41.0 ×4.52 47.2 ×2.62 33.4 ×2.07 43.0 ×2.66
w/o MultiPL 41.2 ×4.67 47.2 ×2.60 32.6 ×2.16 43.0 ×2.72
w/o LineVoting 41.0 ×5.81 46.2 ×3.49 33.4 ×2.29 42.8 ×2.78

CodeLlama-13B
CodeFast 44.8 ×3.98 51.6 ×2.77 38.4 ×2.73 51.4 ×2.93
w/o MultiPL 44.8 ×4.03 51.6 ×2.76 38.4 ×2.71 51.4 ×2.93
w/o LineVoting 42.8 ×5.41 49.4 ×3.83 38.0 ×3.09 49.8 ×3.16

CodeLlama-34B
CodeFast 51.6 ×4.05 57.4 ×1.50 42.4 ×2.46 55.2 ×2.04
w/o MultiPL 51.4 ×4.08 57.4 ×1.49 42.4 ×2.46 55.2 ×2.02
w/o LineVoting 50.8 ×5.13 56.4 ×2.04 42.2 ×2.69 55.2 ×2.21

StarCoder-15.5B
CodeFast 42.6 ×2.59 32.8 ×4.11 31.2 ×2.49 45.2 ×2.41
w/o MultiPL 42.6 ×2.59 32.8 ×4.11 31.2 ×2.09 45.2 ×2.41
w/o LineVoting 39.2 ×6.21 32.4 ×4.89 30.8 ×2.87 45.0 ×2.68

Phind-CodeLlama
CodeFast 55.8 ×1.34 60.0 ×1.44 42.2 ×2.46 60.4 ×1.96
w/o MultiPL 55.8 ×1.33 60.0 ×1.41 42.2 ×2.47 60.4 ×1.94
w/o LineVoting 53.4 ×1.72 58.8 ×1.92 41.6 ×2.94 59.2 ×2.16
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Figure 7: Stability analysis of CodeFast in MBPP.

max_new_tokens varies. Secondly, our approach demonstrates sta-
ble performance in both inference speed and Pass@1 across various
stop threshold values 𝜃𝑠𝑡𝑜𝑝 . This is because GenGuard is highly con-
fident in stopping prediction and can tolerate a wide range of 𝜃𝑠𝑡𝑜𝑝
values. We analyze the stopping prediction probability distribution
of GenGuard. The results indicate that the stopping probability is
distributed between 0.9 and 1 when predicting true excess tokens
and between 0 and 0.1 when predicting true expected tokens. The
experimental results are in Appendix-B.3 [2].

RQ3 Summary: Overall, CodeFast exhibits great stability
across different parameter settings.

6.4 RQ4: Generalizability

To further validate the generalizability of CodeFast, we evaluate
the performance of five GenGuard-enhanced models using three

Table 5: Performance of CodeFast in untrained datasets.

Python, JavaScript, and Go are short for HumanEval,

HumanEval-JavaScript, and HumanEval-Go, respectively.

Model

Python JavaScript Go

P@1 Speedup P@1 Speedup P@1 Speedup

CodeLlama-7B 34.1 ×1.00 32.9 ×1.00 15.0 ×1.00
CodeLlama-7BCodeFast 34.1 ×2.71 32.9 ×1.99 15.0 ×2.11
CodeLlama-13B 35.4 ×1.00 39.8 ×1.00 20.0 ×1.00
CodeLlama-13BCodeFast 35.4 ×2.75 39.8 ×2.48 20.0 ×2.53
CodeLlama-34B 48.8 ×1.00 44.1 ×1.00 22.5 ×1.00
CodeLlama-34BCodeFast 48.6 ×2.43 44.1 ×1.38 22.5 ×2.17
StarCoder-15.5B 33.5 ×1.00 15.5 ×1.00 15.0 ×1.00
StarCoder-15.5BCodeFast 33.5 ×1.18 15.5 ×5.01 15.0 ×2.21
Phind-CodeLlama 70.7 ×1.00 68.9 ×1.00 34.3 ×1.00
Phind-CodeLlamaCodeFast 70.3 ×1.48 68.9 ×1.19 34.3 ×1.87

datasets in different PLs (Python, JavaScript, Go) from the multilin-
gual HumanEval benchmark. Our models are evaluated on the test
sets of these datasets without any further training. The experimen-
tal results are shown in Table 58. More detailed results with time
consumption and average lengths can be found in Appendix-B.4 of
replication package [2]. We can observe that after being enhanced
by the GenGuard module, the generation speed of all five Code
LLMs increases across three programming languages. Notably, this
improvement is achieved while maintaining unchanged Pass@1
scores, indicating that CodeFast exhibits strong generalization
capabilities, achieving robust performance on untrained datasets.

RQ4 Summary: Overall, CodeFast has robust performance on
untrained datasets, exhibiting great generalization capabilities.

8Due to space limitations, results on generalizability experiments under Pass@3 and
Pass@5 are presented in Appendix-B.4 [2]. Conclusions hold on Pass@1 also hold for
Pass@3 and Pass@5 metrics.
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6.5 RQ5: Application to other scenarios

To explore whether CodeFast can be applied to other scenarios,
we evaluate it on a class-level code generation dataset named Clas-
sEval [11]. It includes 100 class-level Python code generation tasks.
Each task takes a class skeleton as input, which includes both
class-level information (import statements, class name, etc.) and
method-level information (method signature, functional descrip-
tion, etc.) [11]. The model is asked to complete this class skeleton by
infilling the implementation of unfinished methods. In our experi-
ments, we utilize method-by-method generation strategies, which
are recommended by ClassEval to evaluate models that are not GPT-
4 and GPT-3.5 [11]. These strategies mean that the model generates
the class method-by-method until the whole class is completed.
These strategies include incremental generation strategy and com-
positional generation strategy [11]. We utilize both of them for
evaluation and find issues of excess generation when generating
methods for the given class. Detailed information about ClassEval
and generation strategies can be found in Appendix-A.1 [2].

Overall results. The experimental results with the incremen-
tal generation strategy are presented in Table 6. We can see that
CodeFast effectively increases the generation speed for all five
Code LLMs on ClassEval, while the performance does not change
across the three metrics (Pass@1, Pass@3 and Pass@5). Due to
space limitations, we present experimental results with the compo-
sitional generation strategy in Appendix-B.5 [2], and results also
demonstrate the efficiency of CodeFast.

Table 6: Performance of CodeFast on ClassEval with incre-

mental generation strategy. P@k represents the probability

of top k-generated classes that successfully pass unit tests.

Model P@1 P@3 P@5 Time Speedup

CodeLlama-7B 16.0 18.4 20.0 39.5 ×1.00
CodeLlama-7BCodeFast 16.0 18.4 20.0 18.9 ×2.09
CodeLlama-13B 16.0 21.6 24.0 50.0 ×1.00
CodeLlama-13BCodeFast 16.0 21.6 24.0 19.1 ×2.62
CodeLlama-34B 26.0 28.7 31.0 70.8 ×1.00
CodeLlama-34BCodeFast 26.0 28.7 31.0 33.2 ×2.13
StarCoder-15.5B 18.0 20.8 22.0 38.6 ×1.00
StarCoder-15.5BCodeFast 18.0 20.8 22.0 22.2 ×1.74
Phind-CodeLlama 18.0 24.9 26.0 57.1 ×1.00
Phind-CodeLlamaCodeFast 18.0 24.9 26.0 34.6 ×1.65

RQ5 Summary: Our approach can be applied to class-level code
generation scenarios and effectively increases generation speed.

7 Related Work

7.1 LLM-based Code Generation

Code generation has been extensively studied in recent years [16,
23, 30, 52] and currently the paradigm has been shifted to LLM-
based code generation [14, 19, 25, 26, 31, 33, 53, 56, 63, 66]. Some
works [19, 33, 42, 56] boost the code generation ability through
Supervised Fine-Tuning (SFT). For instance, Phind-CodeLlama [42]
achieves superior performance over GPT-4 through SFT on high-
quality code datasets based on the CodeLlama-34B model. Besides,
some works [25, 26, 31, 54, 63] propose effective prompt techniques

to enhance the code generation ability of Code LLMs. For instance,
Li et al. [27] propose AceCoder, which retrieves programs related
to given requirements to create a prompt, enabling the model to
learn from these examples and generate high-quality code. Other
works [35, 68] propose decoding strategies for Code LLMs to im-
prove the performance of code generation. For example, Zhu et
al. [68] propose AdapT sampling to improve the performance of
code generation through adaptive adjusting the decoding tempera-
ture.

7.2 Efficient Inference of LLMs

Recently, many studies attempt to improve the inference efficiency
of LLMs. Some works [9, 10, 21] increase the inference speed of
LLMs by optimizing memory management and data access. Dao et
al. [9, 10] propose FlashAttention to accelerate inference by reor-
ganizing attention computation through a tiling approach, which
significantly decreases GPU memory read/write operations. Other
works [24, 61] accelerate the inference of LLMs by decreasing the
computational time of predicting each token. Leviathan et al. [24]
propose speculative decoding, which employs a small model to
predict each token and a large model to verify it. This approach not
only enhances the generation speed but also ensures the quality
of the outputs. Besides, many works attempt to increase the infer-
ence efficiency of LLMs in code intelligence tasks [13, 47–49]. For
example, Sun et al. [48] propose an efficient inference approach
for Code LLMs. This method utilizes a Transformer-based estima-
tor to assess the quality of prompts and prevent the completion of
low-quality prompts in advance. Compared with these works, Code-
Fast improves inference efficiency for Code LLMs by preventing
the generation of excess tokens. Our approach is complementary to
existing efficient inference approaches, allowing for the synergy to
further enhance inference efficiency for Code LLMs. However, these
current technologies, while effective at enhancing the inference
speed of large language models, have not been tailored specifically
to the unique characteristics of code generation tasks.

8 Discussion

Comparison with relevant techniques. Recently, Sun et al. [47]
propose an effective and similar method named SEC to accelerate
code completion speed by training a classifier to prevent erroneous
generation. Moreover, some bruteforce tricks specific for Python
such as terminating generation upon “\ndef” may easily remove
excess generation.

Compared with SEC, our approach exhibits several key differ-
ences. First, the SEC is trained to classify erroneous generation rather
than classify excess generation. This difference stems from the fact
that the training code used by SEC does not include excess gen-
eration, and the labeling method can not label “stop” at excess
token, preventing SEC from learning to eliminate excess generation.
The experiment results 9 in Appendix-D.1 [2] show that our ap-
proach can increase generation speed while unchanging the model
performance. Second, the classifier of CodeFast is designed and
evaluated for multiple PLs, while the SEC classifier is intended for
mono-PL. Third, CodeFast proposes an effective line-voting mech-
anism, which can effectively increase the accuracy of generated
code as shown in experiments of RQ2. Fourth, CodeFast offers

9We compare SEC and CodeFast using the MBPP dataset.
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a more lightweight training process while SEC requires training
extra intermediate LM head for each Transformer layer.

Compared with bruteforce tricks, our approach demonstrates
several distinct advantages. First, experimental results in Appendix-
D.2 [2] demonstrate that CodeFast can significantly increase the
generation speed. Second, our method can be applicable to mul-
tiple programming languages, while these bruteforce tricks are
for a specific programming language (Python). Third, CodeFast
introduces an automatic training method, without the need for
manually collecting specific patterns such as “\ndef”. Detailed dis-
cussion and experiments about relevant techniques are presented
in Appendix-D [2].

Application scope and limitations. CodeFast aims to acceler-
ate code generation by preventing the excess generation. Our study
primarily focuses on function-level and class-level code generation,
where we have conducted extensive experiments and demonstrated
the efficiency of CodeFast. In the future, we will investigate the
excess generation issue in more complicated code generation sce-
narios and evaluate CodeFast more comprehensively in other
scenarios such as file-level and repository-level code generation.

9 Conclusion

In this paper, we propose a straightforward and effective approach
CodeFast for accelerating the code generation speed of Code
LLMs and show its effectiveness through extensive experiments.
In our preliminary studies, we present the issue of excess gen-
erations and show that this issue is a significant factor limiting
code generation speed. Then, we propose an effective inference
acceleration approach CodeFast, which terminates the inference
process early when detecting excess generations with GenGuard
module. Additionally, we propose a data construction framework
to obtain training data for the GenGuard automatically. Experi-
mental results show that CodeFast effectively increases the code
generation speed of Code LLMs without compromising the qual-
ity of generated code. We believe CodeFast can effectively im-
prove the efficiency of Code LLMs in real-world scenarios and be
utilized in IDE in the future. Our code and data are available at
https://github.com/DeepSoftwareAnalytics/CodeFast.
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