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Abstract

Designing and deriving effective model-based reinforcement learning (MBRL)
algorithms with a performance improvement guarantee is challenging, mainly
attributed to the high coupling between model learning and policy optimization.
Many prior methods that rely on return discrepancy to guide model learning ignore
the impacts of model shift, which can lead to performance deterioration due to
excessive model updates. Other methods use performance difference bound to
explicitly consider model shift. However, these methods rely on a fixed threshold
to constrain model shift, resulting in a heavy dependence on the threshold and
a lack of adaptability during the training process. In this paper, we theoretically
derive an optimization objective that can unify model shift and model bias and then
formulate a fine-tuning process. This process adaptively adjusts the model updates
to get a performance improvement guarantee while avoiding model overfitting.
Based on these, we develop a straightforward algorithm USB-PO2 (Unified model
Shift and model Bias Policy Optimization). Empirical results show that USB-PO
achieves state-of-the-art performance on several challenging benchmark tasks.

1 Introduction

Nowadays, reinforcement learning (RL) has been gaining much traction in a wide variety of com-
plicated decision-making tasks ranging from academia to industry [40, 52, 10, 8, 5]. Part of this
is due to some remarkable model-free RL (MFRL) algorithms [38, 14, 12, 39, 17], which show
desirable asymptotic performance. However, their applications are hindered by the bottleneck of
sample efficiency. On the contrary, model-based RL (MBRL) algorithms, using a world model to
generate the imaginary rollouts and then taking them for policy optimization [29, 19], have high
sample efficiency while achieving similar asymptotic performance, thus becoming a compelling
alternative in practical cases [37, 15, 49].

Typically, MBRL algorithms iterate between model learning and policy optimization. Hence the
model quality is crucial for MBRL. Many prior methods [29, 19, 50, 36, 23] rely on return discrep-
ancy to obtain model updates with a performance improvement guarantee. While having achieved
comparable results, they only account for model bias in one iteration [19] but do not consider the
impacts of model shift between two iterations [20], which can lead to performance deterioration
due to excessive model updates. Although CMLO [20] explicitly considers model shift from the
perspective of the performance difference bound, it only sets a fixed threshold to constrain the impacts
of model shift and determines when the model should be updated accordingly. If this threshold is
set too low, the model bias of the following iteration will be large, which impairs the subsequent
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optimization process. If this threshold is set too high, the performance improvement can no longer be
guaranteed. We remark that such an update is heavily dependent on the choice of this threshold and
should be adjusted adaptively during the training process. Therefore, a smarter scheme is required to
unify model shift and model bias, enabling adaptively adjusting their impacts to get a performance
improvement guarantee.

In this paper, we theoretically derive an optimization objective that can unify model shift and model
bias. Specifically, according to the performance difference bound, we propose to minimize the sum
of two terms: the model shift term between the pre-update model and the post-update model and the
model bias term of the post-update model, each of which is denoted by a second-order Wasserstein
distance [45]. By minimizing this optimization objective after the model update via maximum
likelihood estimation (MLE) [6, 19], we can tune the model to adaptively find appropriate updates to
get a performance improvement guarantee.

Based on these, we develop a straightforward algorithm USB-PO (Unified model Shift and model
Bias Policy Optimization). To the best of our knowledge, this is the first method that unifies model
shift and model bias and adaptively fine-tunes the model updates during the training process. We
evaluate USB-PO on several continuous control benchmark tasks. The results show that USB-PO
has higher sample efficiency and better final performance than other state-of-the-art (SOTA) MBRL
methods and yields promising asymptotic performance compared with the MFRL counterparts.

2 Related works

MBRL algorithms are promising candidates for real-world sequential decision-making problems due
to their high sample efficiency. Existing studies can be divided into several categories [4, 43, 1, 32,
47, 9, 16] following their different usage of the model. Our work falls into the Dyna-style category
[43, 42]. Specifically, after model learning, the model generates the imaginary rollouts into the replay
buffer for subsequent policy optimization. Hence, both model learning and policy optimization have
critical impacts on asymptotic performance.

Some previous algorithms focus on the policy optimization process. CMBAC [48] introduces
conservatism to reduce overestimation of the action value function, and ME-TRPO [22] imposes
constraints on the policy to get reliable updates within the trust region. Our work is oriented towards
model learning, which is orthogonal to these algorithms. Hence, we are inclined to propose a generic
algorithm similar to [23, 19, 20] that can be plugged into many SOTA MFRL algorithms [14, 27],
rather than just proposing for a specific policy optimization algorithm.

A key issue in model learning is model bias, which refers to the error between the model and the real
environment [19]. As the imaginary rollout horizon increases, the impacts of model bias accumulate
rapidly, leading to compounding error and unreliable transitions. To mitigate this problem, several
effective methods have been proposed. The ensemble model technique [6, 24, 35] and the dropout
method [13] are employed to prevent model overfitting. The uncertainty estimation techniques are
used to adjust the rollout length [19, 28] or the transition weight [18, 36]. Furthermore, The multi-step
techniques [2, 46] are applied to prevent direct input of the imaginary states. We follow the previous
work [19] to use the combination of the ensemble model technique with short model rollouts to
mitigate the compounding error.

Performance improvement guarantee is a core concern in both MFRL and MBRL theoretic avenues.
In MFRL, methods such as TRPO [39] and CPI [21] choose to optimize the performance difference
bound, whilst most of the previous work in MBRL [29, 19, 50, 36, 23] choose to optimize the
difference of expected return under the model and that of the real environment, which is termed
return discrepancy. However, return discrepancy ignores model shift between two consecutive
iterations compared to the performance difference bound under the MBRL setting, which can lead
to performance deterioration due to excessive model updates. Although some recent methods have
also employed performance difference bound to construct theoretical proofs, they still suffer from
certain limitations. OPC [11] designs an algorithm to optimize on-policy model error, but it is similar
to return discrepancy in nature. DPI [41] uses dual updates to improve sample efficiency but tries
to restrict policy updates within the trust region, thus inhibiting exploration. CMLO [20] relies on
a fixed threshold to constrain the impacts of model shift, resulting in a heavy dependence on the
threshold and a lack of adaptability during the training process. Hence, we try to unify model shift
and model bias to form a novel optimization problem, adaptively fine-tuning the model updates to
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get a performance improvement guarantee. Still, some prior work [7, 34, 51] choose to consider
regret bound, among which [51] also reduce the impacts of the model changing dramatically between
successive iterations. Instead of unifying model shift and model bias, they choose to realize dual
optimization by considering maximizing the expectation of the model value rather than that of the
single model as a sub-process. Different from [51, 41, 26] that use dual optimization to train the
policy, we devise an extra phase to fine-tune the model.

3 Preliminaries

We consider a Markov Decision Process (MDP), defined by the tuple M = (S,A, p, r, γ, ρ0). S and
A denote the state space and action space respectively, and γ ∈ (0, 1) denotes the discount factor.
p(s′|s, a) denotes the dynamic transition distribution and we denote pM∗(s′|s, a) as that of the real
environment. ρ0(s) denotes the initial state distribution and r(s, a) denotes the reward function. RL
aims to find the optimal policy π∗ that maximizes the expected return under the real environment M∗

denoted by the value function V π
M∗ as Eq.(1):

π∗ = argmax
π

V π
M∗ = Eat∼π(·|st),st+1∼pM∗ (·|st,at)[

∞∑
t=0

γtr(st, at)|π, s0], s0 ∼ ρ0(s) (1)

MBRL algorithms aim to learn the dynamic transition distribution model, pM (s′|s, a), by using
samples collected from interaction with the real environment via supervised learning. We denote the
expected return under the model M of the policy π as V π

M and denote that under the real environment
of the policy π derived from the model M as V π|M . Additionally, we assume that r(s, a) is unknown
to the model M and the model will predict rM as the reward function. Besides, we denoteM as a
parameterized family of models and Π as a parameterized family of policies.

Let dπM (s, a) denote the normalized discounted visitation probability for (s, a) when starting at
s0 ∼ ρ0 and following π under the model M . Let pπM,t(s) denote the probability of visiting s at
timestep t given the policy π and the model M .

dπM (s, a) = (1− γ)

∞∑
t=0

γtpπM,t(s)π(a|s) (2)

We define the total variation distance (TVD) estimator as DTV (·||·) and the second-order Wasserstein
distance estimator as W2(·, ·).

4 USB-PO framework

In this section, we demonstrate a detailed description of our proposed algorithmic framework. i.e.,
USB-PO. In Section 4.1, a meta-algorithm of the USB-PO framework is provided as a generic
solution. In Section 4.2, we theoretically show how to unify model shift and model bias to get
a performance improvement guarantee3. In Section 4.3, the practical algorithm is proposed to
instantiate the USB-PO framework.

4.1 The overall algorithm

The general algorithmic framework of USB-PO is depicted in Algorithm 1, where the main difference
compared to the existing MBRL algorithms is the two-phase model learning process, namely phase 1
and phase 2. Phase 1 uses traditional MLE loss to train the model, which may impair the performance
by excessive model updates due to only considering the impacts of model bias. To mitigate this
problem, we introduce phase 2 to further fine-tune the model updates, whose optimization objective
is defined as Eq.(3).

argmin
pM2

Jphase2 = Edπ
M1

[W2(pM1 , pM2) +W2(pM2 , pM∗)] (3)

3The detailed derivations of all the theorems in this section are presented in the appendix.
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Algorithm 1 Meta-Algorithm of the USB-PO Framework
1: Initialize the policy π and the learned model;
2: Initialize the environment replay buffer D and the model replay buffer DM ;
3: for each epoch do
4: Use π to interact with the real environment: D ← D ∪ {(s, a, r, s′)};
5: Backup the current learned model for future use and denote this backed-up model as pM1

;
6: Phase 1: useD to train the learned model with the supervision of MLE and denote this updated

model as pM2
;

7: Phase 2: use Eq.(3) as optimization objective to further fine-tune pM2
;

8: Use pM2
to generate the imaginary rollouts: DM ← DM ∪ {(sM , aM , rM , s′M )};

9: Use D ∪DM to train the policy π
10: end for

Eq.(3) unifies the model shift term and the model bias term in the second-order Wasserstein distance
form, namely W2(pM1

, pM2
) and W2(pM2

, pM∗), thus achieving adaptive adjustment of their impacts
during the fine-tuning process. As demonstrated in Section 4.2 and Section 5.3, this is not equivalent
to the traditional methods of limiting the magnitude of model updates, but rather beneficial to get a
performance improvement guarantee.

4.2 Theoretical proof

Definition 1 (Performance Difference Bound). Recalling that V πi|Mi denotes the expected return
under the real environment of the policy πi ∈ Π derived from the model Mi ∈M. The lower bound
on the true return gap of π1 and π2 can be stated as,

V π2|M2 − V π1|M1 ≥ C (4)

By constantly increasing the value of C, the lower bound on the performance difference is guaranteed
to be lifted, leading to performance improvement. Therefore, we try to take model shift and model
bias into the formulation of C and maximize it to achieve our goal.
Theorem 1 (Performance Difference Bound Decomposition). Let Mi ∈M be the evaluated model
and πi ∈ Π be the policy derived from the model. The performance difference bound can be
decomposed into three terms,

V π2|M2 − V π1|M1 = (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
) (5)

Obviously, compared to directly optimizing the return discrepancy of each iteration [19], the per-
formance difference bound chooses to optimize the return discrepancy of two adjacent iterations,
namely V π2|M2 − V π2

M2
and V π1|M1 − V π1

M1
respectively, and the expected return variation between

these two iterations, namely V π2

M2
− V π1

M1
, demonstrating better rigorousness. For further discussion,

we introduce the following theorem.
Theorem 2 (Return Bound). Let Rmax denote the bound of the reward function, ϵπ denote
maxs DTV (π1||π2) and ϵM2

M1
denote E(s,a)∼d

π1
M1

[DTV (pM1 ||pM2)]. For two arbitrary policies
π1, π2 ∈ Π, the expected return under two arbitrary models M1,M2 ∈M can be bounded as,

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (6)

By using Eq.(6), we can easily bound the decomposition terms of the performance difference bound
in Eq.(5).
Theorem 3 (Decomposition TVD Bound). Let ϵπi

Mi
denote E(s,a)∼d

πi
Mi

[DTV (pMi
||pM∗)]. Let Mi ∈

M be the evaluated model and πi ∈ Π be the policy derived from the model. The decomposition
terms can be bounded as,

V π2|M2 − V π1|M1 ≥ 2Rmaxγ

(1− γ)2
(ϵπ1

M1
− ϵπ2

M2
− ϵM2

M1
)− 2Rmaxϵπ

(1− γ)2
(7)
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Notably, the model shift term and the model bias term in TVD form, namely DTV (pM1 ||pM2) and
DTV (pM2 ||pM∗), are already present in the right-hand side of the Eq.(7). However, due to the
unknown term π2, we can not sample from dπ2

M2
. Thus, we need to make a further transformation

about the Eq.(7).

Theorem 4 (Unified Model Shift and Model Bias Bound). Let κ denote the constant 2Rmax

(1−γ)2 and
∆ denotes E(s,a)∼d

π1
M1

[DTV (pM2
||pM∗)] − E(s,a)∼d

π2
M2

[DTV (pM2
||pM∗)]. Let Mi ∈ M be the

evaluated model and πi ∈ Π be the policy derived from the model. The unified model shift and model
bias bound can be derived as,

V π2|M2 − V π1|M1

≥ κ(γ(E(s,a)∼d
π1
M1

[DTV (pM1 ||pM∗)−DTV (pM1 ||pM2)−DTV (pM2 ||pM∗)] + ∆)− ϵπ)
(8)

The ∆ term in Eq.(8) is still intractable. However, the fact that it covers dπ1

M1
and dπ2

M2
reminds us

that we may explore its relationship with the three TVD terms lying in the expectation of dπ1

M1
.

Theorem 5 (|∆| Upper Bound). Let Mi ∈ M be the evaluated model and πi ∈ Π be the policy
derived from the model. The term ∆ can be upper bounded as:

|∆| ≤ 2γ

1− γ
E(s,a)∼d

π1
M1

[DTV (pM1 ||pM2)max
s,a

DTV (pM2 ||pM∗)] +
2ϵπ
1− γ

max
s,a

DTV (pM2 ||pM∗)

(9)

Under the online setting, it is assumed that the error caused by policy shift, namely ϵπ , compared to
model bias has a relatively small scale [19, 50]. Therefore, we ignore the minor influence brought
by the policy. Additionally, the terms lying in the expectation of dπ1

M1
in Eq.(9) is the product of

the model shift term and the model bias term in TVD form, both of which have the range [0, 1]
[25], making the upper bound of |∆| become a higher-order term compared to each of them alone.
Thus, the critical element to lift the lower bound in Eq.(8) is the terms lying in the expectation of
dπ1

M1
. By maximizing these terms, namely minimizing DTV (pM1

||pM2
) + DTV (pM2

||pM∗)4, we
can achieve unifying model shift and model bias and adaptively fine-tuning the model updates to get
a performance improvement guarantee.

To make it practically feasible, we make additional assumptions. Specifically, let (X ,Σ) be a
measurable space and F is a set of functions mapping X to R that contains V π

M . When V π
M is

Lv-Lipschitz with respect to a norm || · ||, the integral probability metric [31] of two arbitrary
dynamic transition function M,M ′ ∈ M defined on X is as Eq.(10). Notice that if 1 ≤ p ≤ q,
Wp(pM , pM ′) ≤Wq(pM , pM ′) [30], and we can get W1(pM , pM ′) ≤W2(pM , pM ′). Hence, Eq.(3)
can be applied as the optimization objective to get a performance improvement guarantee.

sup
f∈F
|Es′∼pM

[f(s′)]− Es′∼pM′ [f(s
′)]| = Rmax

1− γ
DTV (pM ||pM ′) = LvW1(pM , pM ′) (10)

4.3 Practical implementation

We now instantiate Algorithm 1 by demonstrating an explicit approach. To better clarify, we would
like to state the four design decisions in detail: (1) how to parametrize the model, (2) how to estimate
the model bias term and model shift term in phase 2, (3) how to use the model to generate rollouts
and (4) how to use the model rollouts to optimize the policy π.

Predictive Model. We use a bootstrap ensemble of dynamic models {p1M , ..., pBM}, whose elements
are all probabilistic neural network, outputting the Gaussian distribution with diagonal covariance:
piM (st+1, rt+1|st, at) = N (µi

M (st, at),Σ
i
M (st, at)). The probabilistic ensemble model can capture

the aleatoric uncertainty arising from inherent stochasticities and the epistemic uncertainty corre-
sponding to ambiguously determining the underlying system due to the lack of sufficient data [6]. In
the field of MBRL, properly handling these uncertainties can achieve better asymptotical performance.
Following the previous work [19], we select a model uniformly from the elite set to generate the
transition at each step in the rollout process. In phase 1, the ensemble models are trained on shared
but differently shuffled data, where the optimization objective is MLE [6, 19].

4DTV (pM1 ||pM∗) is a constant for the optimization of M2
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Model Shift and Model Bias Estimation. Recalling that the model shift term refers to
W2(pM1 ||pM2) and the model bias term refers to W2(pM2 ||pM∗). For arbitrary two Gaussian
distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2), the second-order Wasserstein distance between
them is derived as Eq.(11) [33].

W2(p, q) =

√
||µ1 − µ2||22 + trace(Σ1 +Σ2 − 2(Σ

1
2
2 Σ1Σ

1
2
2 )

1
2 ) (11)

Let k1 denote the index of the selected model from M1 ensemble and k2 denote that from M2

ensemble. For the model shift term, we approximate it as W2(p
k1

M1
, pk2

M2
). For the model bias term,

we approximate it as 1
B−1

∑B
b=1,b ̸=k2

W2(p
k2

M2
, pbM2

).

Model Rollout. Following the previous work [19], we use short branch rollouts to alleviate the
impacts of compounding error.

Policy Optimization. Our work allows being plugged in many SOTA MFRL algorithms, e.g. SAC
[14], TD3 [12], etc. Here we employ SAC as an example.

5 Experiment

Our experiments are designed to investigate three primary questions: (1) How well does USB-
PO perform on reinforcement learning benchmark tasks compared to SOTA MBRL and MFRL
algorithms? (2) How to understand USB-PO? (3) Does USB-PO have a similar performance on
different learning rate settings in phase 2?

5.1 Comparison with baselines

To highlight our algorithm, we compare USB-PO against some SOTA MBRL and MFRL algorithms.
The MBRL baselines include CMLO [20], which carefully chooses the threshold for different environ-
ments to constrain the impacts of model shift, MBPO [19], which is the variant without our proposed
model fine-tuning process and uses return discrepancy to get a performance improvement guarantee,
SLBO [29], which also enjoys theoretical performance guarantee under the return discrepancy scheme
and STEVE [4], which employs model for value expansion. The MFRL baselines include SAC
[14], the SOTA MFRL algorithm in terms of asymptotic performance and PPO [38], which explores
monotonic improvement under the model-free setting.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

USB-PO(ours) CMLO MBPO STEVE SLBO SAC PPO convergence

Figure 1: Comparison against baselines on continuous control benchmarks. Solid curves refer to
the mean performance of trials over different random seeds, and shaded area refers to the standard
deviation of these trials. Dashed lines refer to the asymptotic performance of SAC (at 3M steps).

We evaluate USB-PO and these baselines on six MuJoCo [44] continuous control tasks in OpenAI
Gym [3], covering Humanoid, Walker2d, Ant, HalfCheetah, Hopper and Inverted-Pendulum, with

6



more details showing in the appendix. To be fair, we employ the standard 1000-step version of these
tasks with the same environment settings.

Figure 1 shows the learning curves of all compared methods, together with the asymptotic perfor-
mance. The results show that our algorithm is remarkably advanced over the MFRL algorithms
regarding sample efficiency, along with asymptotic performance on par with the SOTA MFRL algo-
rithm SAC. Compared to the MBRL baselines, our method achieves higher sample efficiency and
better final performance. Notably, compared to CMLO, which requires a finely chosen threshold for
each environment to constrain the impacts of model shift, our method utilizes the same learning rate
for the fine-tuning process in all environments. This further validates unifying the model shift and the
model bias to adjust the model updates adaptively is reasonable.

Computational Cost. We report our computational cost compared to MBPO [19] in Appendix D.4.
Although USB-PO is a two-phase model training process, continuing to use the fine-tuned model
for the next iteration has the potential to accelerate model convergence and then possibly reduce the
training time.

5.2 How to understand USB-PO

In this section, we first design an experiment to illustrate the value magnitude of ∆, the model
shift term and the model bias term, validating whether using the second-order Wasserstein distance
satisfies the prerequisites for getting a performance improvement guarantee, and then use more
in-depth experiments to illustrate how USB-PO works and show its superiority.

Value Magnitude. We choose 2 challenging tasks in MuJoCo, HalfCheetah and Walker2d, and plot
the value of ∆, the model shift term and the model bias term during the training process respectively.
To approximate the ∆ practically, we use the samples from the model replay buffer before the update
of the model and the policy to approximate sampling from dπ1

M1
and use the samples generated by

them after update to approximate sampling from dπ2

M2
.

HalfCheetah-v2 Walker2d-v2

Δ model shift model bias

Figure 2: The value magnitude of the ∆, the model
shift term and the model bias term during the train-
ing process in HalfCheetah and Walker2d.

As shown in Figure 2, the magnitude of ∆ gener-
ally oscillates in a slight manner around 0 while
the magnitude of model shift term and the model
bias term are much larger than ∆ even in the
converged cases. Therefore, it is reasonable to
ignore the impacts of ∆ in Eq.(8). This further
supports that minimizing Eq.(3) can get a per-
formance improvement guarantee.

Working Mechanism. To illustrate the sig-
nificance of our method, we calculate the op-
timization objective value before and after the
fine-tuning process and plot their difference, as
shown in Figure 3. All random seeds show the
consistent result that at the beginning of training
the sum of model bias and model shift is large and thus the fine-tuning magnitude is relatively large.
As the model is trained to converge, the fine-tuning process also gradually converges to ensure the
stability of the model. Notice that in some cases the fine-tuning process does not choose to fine-tune
the model updates actually (0 refers to no update, which means the updates in phase 1 are reasonable),
which further supports our theorem and the motivation of this paper, i.e., actively adaptive adjustment
of the model updates to get a performance improvement guarantee, rather than passively waiting for
model shift to surpass a given threshold to make a substantial update [20]. Based on the performance
comparison in Figure 1, we argue that actively adaptive updates are more beneficial.

We further plot the difference of the model shift term, the model bias term and the average prediction
error before and after the fine-tuning process. As shown in Figure 4 (a), when the fine-tuning actually
operates, the difference of the model shift term and the model bias term are both positive. As shown
in Figure 4 (b), the fine-tuning process has a positive effect on the reduction of the average prediction
error. These observations suggest that USB-PO has other positive effects during the fine-tuning
process, i.e. potentially reducing both model shift and model bias and leading to model overfitting
avoidance.
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Walker2d-v2

Figure 3: (a) the difference of the optimization objective value before and after the fine-tuning process
during the training process over 5 random seeds. (b) the average prediction error during the training
process over these random seeds. The model is generally near convergence when training times reach
1K.

Walker2d-v2

Figure 4: (a) we choose a specific random seed to show the details of the first 30 training times,
covering the difference of optimization objective value, the model shift term and the model bias term
before and after the fine-tuning process. (b) the difference of average prediction error before and after
the fine-tuning process during the training process over the previously used random seeds.

Additionally, the change in the adjustment magnitude of the average prediction error indicates that
the model can converge under the role of the fine-tuning process, which is consistent with Figure 3,
forming bi-verification.

To conclude, when USB-PO actively recognizes that an improper update happens, it performs a
pullback operation (the model fine-tuning process) to secure the performance improvement guarantee
while avoiding model overfitting. In contrast, when USB-PO considers that a reasonable update is
done, no actual operation will be taken. According to the performance comparison results in Figure 1,
it is verified that the model quality plays a determinant role in the Dyna-Q [42] algorithms.

5.3 Ablation study

In this section, we design 3 ablation experiments to strengthen our superiority.

Optimization Objective Variants. We set three variants for our optimization objective, covering
(1) without the model shift term and the model bias term, which is equal to MBPO [19], (2) with the
model shift term, (3) with the model bias term. As shown in Figure 5, only optimizing the model
shift term results in a drop in sample efficiency since the fine-tuning process makes M2 tend to
update towards M1 and only optimizing the model bias term leads to performance deterioration due
to excessive model updates.

8



0K 50K 100K 150K 200K 250K 300K
steps

0

2000

4000

6000

av
er

ag
e 

re
tu

rn

Walker2d-v2

Algorithm
with none
with model shift
with model bias
with both

Figure 5: The average return of different opti-
mization objective variants over different random
seeds.
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1e-3 (original)

Figure 6: The average return of USB-PO and
MBPO with different learning rates over different
random seeds.

Not Equivalent to Limiting the Update Magnitude. We set different learning rates for MBPO
to compare with USB-PO. As Figure 6 shows, USB-PO is more dominant from the perspective of
the average return, which further strengthens that USB-PO is not equivalent to limiting the update
magnitude, but rather beneficial to get a performance improvement guarantee.

Learning Rate Performance Comparison. We set up an ablation experiment on the learning rate
of the fine-tuning process. As shown in Figure 7, unlike CMLO which is strongly dependent on a
carefully chosen threshold for each environment to constrain the impacts of model shift, USB-PO is
less sensitive to the learning rate of phase 2.

Walker2d-v2 HalfCheetah-v2

learning rate 1e-4 learning rate 3e-4 learning rate 5e-4 MBPO maximum performance

Figure 7: Performance of different learning rates on Walker2d and HalfCheetah during the whole
training process. Each learning rate is repeated several times over different random seeds and the
dashed line refers to the maximum average returns of MBPO.

6 Discussion

In this paper, we propose a novel MBRL algorithm called USB-PO, which can unify model shift
and model bias, enabling adaptive adjustment of their impacts to get a performance improvement
guarantee. We further find that our method can potentially reduce both model shift and model bias,
leading to model overfitting avoidance. Empirical results on several challenging benchmark tasks
validate the superiority of our algorithm and more in-depth experiments are conducted to demonstrate
our mechanism. The limitation of our work is we do not investigate the change of model shift and
model bias in this optimization problem theoretically. Therefore, one direction that merits further
research is how to solidly interpret the variation of model shift and model bias in this fine-tuning
process.
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7 Appendix

A Proof Sketch

To better clarify our theoretical results, we provide a proof sketch here. Firstly, we decompose the
performance difference bound under the model-based setting into three terms (Theorem 1). Secondly,
by means of using Return Bound (Theorem 2), we can bound these three terms individually (Theorem
3). Then, we can do some transformation to get Unified Model Shift and Model Bias Bound (Theorem
4), which bounds the model shift term and the model bias term in total variation form. However, due
to the intractable property of ∆, we further explore the upper bound of |∆| (Theorem 5), finding that
∆ can be ignored. Finally, by the Integral Probability Metrics (Lemma 3) and the property of the
Wasserstein distance, we derive the target which bounds the model shift term and the model bias term
in the Wasserstein distance form.

Figure 8: Theoretical sketch of USB-PO.

B Useful Lemmas

In this section, we provide some proof to support our theoretical analysis.
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Lemma 1 (Total variation Distance). Consider a measurable space(Ω,Σ) and probability measures
P and Q are defined on (Ω,Σ). The total variation distance between P and Q is defined as:

DTV (P ||Q) = sup
A∈Σ
|P (A)−Q(A)| (12)

Eq.(12) can be equivalently written as:

DTV (P ||Q) =
1

2

∑
ω∈Ω

|P ({ω})−Q({ω})| (13)

Proof: The proof of this lemma can be found in [25].
Lemma 2 (Total Variation Distance of Joint Distributions). Given two distributions p(x, y) =
p(x)p(y|x) and q(x, y) = q(x)q(y|x), the total variation distance between them can be bounded as:

DTV (p(x, y)||q(x, y)) ≤ DTV (p(x)||q(x)) + max
x

DTV (p(y|x)||q(y|x)) (14)

Proof:

DTV (p(x, y)||q(x, y)) =
1

2

∑
x,y

|p(x, y)− q(x, y)|

=
1

2

∑
x,y

|p(x)p(y|x)− q(x)q(y|x)|

=
1

2

∑
x,y

|p(x)p(y|x)− p(x)q(y|x) + p(x)q(y|x)− q(x)q(y|x)|

≤ 1

2

∑
x,y

p(x)|p(y|x)− q(y|x)|+ |p(x)− q(x)|q(y|x)

=
1

2

∑
x,y

p(x)|p(y|x)− q(y|x)|+ 1

2

∑
x

|p(x)− q(x)|

= Ex∼p(x)[DTV (p(y|x)||q(y|x))] +DTV (p(x)||q(x))
≤ DTV (p(x)||q(x)) + max

x
DTV (p(y|x)||q(y|x))

(15)

Lemma 3 (Integral Probability Metrics). Consider a measurable space(X ,Σ). The integral proba-
bility metric associated with a class F of real-valued functions on X is defined as

dF (P,Q) = sup
f∈F
|EX∼P [f(X)]− EY∼Q[f(Y )]| (16)

where P and Q are probability measures on X . We demonstrate the following special cases:

(a) If F = {f : ||f ||∞ ≤ c}, then we have

dF (P,Q) = cDTV (P ||Q) (17)

(b) If F is the set of L− Lipschitz function with a norm || · ||, then we have

dF (P,Q) = LW1(P,Q) (18)

In our paper, to distinguish the dynamic transition function, we choose F to be the class covering V π
M .

Since the value function can converge to rmax

1−γ , it only needs to satisfy the Lv-Lipschitz continuity
and thus we can get rmax

1−γ DTV (pM ||pM ′) = LvW1(pM , pM ′) for any arbitrary model M,M ′.

C Missing Proof

Theorem 1 (Performance Difference Bound Decomposition). Let Mi ∈M be the evaluated model
and πi ∈ Π be the policy derived from the model. The performance difference bound can be
decomposed into three terms,

V π2|M2 − V π1|M1 = (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
) (19)
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Proof: We introduce two additional terms V π1

M1
and V π2

M2
that allow the performance difference bound

objective to be divided into three operators based on the return bounds, which can be reformulated
separately.

V π2|M2 − V π1|M1 = V π2|M2 − V π1|M1 + (V π1

M1
− V π1

M1
) + (V π2

M2
− V π2

M2
)

= (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
)

(20)

Theorem 2 (Return Bound). Let Rmax denote the bound of the reward function, ϵπ denote
maxs DTV (π1||π2) and ϵM2

M1
denote E(s,a)∼d

π1
M1

[DTV (pM1
||pM2

)]. For two arbitrary policies
π1, π2 ∈ Π, the expected return under two arbitrary models M1,M2 ∈M can be bounded as,

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (21)

Proof: We give the thorough proof referring to Lemma B.4 in MBPO [19] as follows.

V π2

M2
− V π1

M1
=

∞∑
t=0

γt
∑
s,a

(pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a))r(s, a)

≥ −Rmax

∞∑
t=0

γt
∑
s,a

|pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a)|

= −2Rmax

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(22)

According to the Lemma 2, we have:

DTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ DTV (p

π1

t,M1
(s)||pπ2

t,M2
(s)) + max

s
DTV (π1(·|s)||π2(·|s))

= DTV (p
π1

t,M1
(s)||pπ2

t,M2
(s)) + ϵπ

(23)
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Further we expand the first term:

DTV (p
π1

t,M1
(s)||pπ2

t,M2
(s))

=
1

2

∑
s

|pπ1

t,M1
(s)− pπ2

t,M2
(s)|

=
1

2

∑
s

|
∑
s′

pπ1

M1
(s|s′)pπ1

t−1,M1
(s′)− pπ2

M2
(s|s′)pπ2

t−1,M2
(s′)|

≤ 1

2

∑
s

∑
s′

|pπ1

M1
(s|s′)pπ1

t−1,M1
(s′)− pπ2

M2
(s|s′)pπ2

t−1,M2
(s′)|

≤ 1

2

∑
s,s′

pπ1

t−1,M1
(s′)|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|+ pπ2

M2
(s|s′)|pπ1

t−1,M1
(s′)− pπ2

t−1,M2
(s′)|

=
1

2
Es′∼p

π1
t−1,M1

(s′)[
∑
s

|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|] +DTV (p

π1

t−1,M1
(s′)||pπ2

t−1,M2
(s′))

=
1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s

|pπ1

M1
(s|s′)− pπ2

M2
(s|s′)|]

=
1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s

|
∑
a

pπ1

M1
(s, a|s′)− pπ2

M2
(s, a|s′)|]

≤ 1

2

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)[
∑
s,a

|pπ1

M1
(s, a|s′)− pπ2

M2
(s, a|s′)|]

=

t∑
t′=1

Es′∼p
π1
t′−1,M1

(s′)DTV (p
π1

M1
(s, a|s′)||pπ2

M2
(s, a|s′))

≤
t∑

t′=1

Es′∼p
π1
t′−1,M1

(s′)[ϵπ + Ea∼π1 [DTV (pM1(s|s′, a)||pM2(s|s′, a))]]

= tϵπ +

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

(24)

Then move the result of Eq.(24) to Eq.(23), we can get:

DTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ (t+1)ϵπ+

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1(s|s′, a)||pM2(s|s′, a))

(25)
Next, we move the result of Eq.(25) to Eq.(22), we can get:

V π2

M2
− V π1

M1

≥ −2Rmax

∞∑
t=0

γt((t+ 1)ϵπ +

t∑
t′=1

Es′,a∼p
π1
t′−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a)))

= −2Rmax(
ϵπ

(1− γ)2
+

1

1− γ

∞∑
t=1

γtEs′,a∼p
π1
t−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a)))

(26)
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Here, we first simplify the second term of the Eq.(26)

1

1− γ

∞∑
t=1

γtEs′,a∼p
π1
t−1,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

1− γ

∞∑
t=0

γtEs′,a∼p
π1
t,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

(1− γ)2
(1− γ)

∞∑
t=0

γtEs′,a∼p
π1
t,M1

(s′,a)DTV (pM1
(s|s′, a)||pM2

(s|s′, a))

=
γ

(1− γ)2
Es′,a∼d

π1
M1

(s′,a)DTV (pM1(s|s′, a)||pM2(s|s′, a))

=
γ

(1− γ)2
ϵM2

M1

(27)

Then we bring this result back to Eq.(26) and the proof is complete.

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (28)

Theorem 3 (Decomposition TVD Bound). Let ϵπi

Mi
denote E(s,a)∼d

πi
Mi

[DTV (pMi
||pM∗)]. Let Mi ∈

M be the evaluated model and πi ∈ Π be the policy derived from the model. The decomposition
terms can be bounded as,

V π2|M2 − V π1|M1 ≥ 2Rmaxγ

(1− γ)2
(ϵπ1

M1
− ϵπ2

M2
− ϵM2

M1
)− 2Rmaxϵπ

(1− γ)2
(29)

Proof: According to CMLO [20] and Eq.(21), the term V π1|M1 − V π1

M1
can be approximated as

− 2Rmaxγ
(1−γ)2 ϵπ1

M1
, thus we only need to bound the remaining two terms.

For the term V π2|M2 − V π2

M2
, we use Eq.(21) to bound it.

V π2|M2 − V π2

M2
≥ −2Rmax(

max
s

DTV (π2||π2)

(1− γ)2
+

γ

(1− γ)2
ϵπ2

M2
)

= −2Rmaxγ

(1− γ)2
ϵπ2

M2

(30)

Similarly, for the term V π2

M2
− V π1

M1
, we can get:

V π2

M2
− V π1

M1
≥ −2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (31)

We now combine these three bounds together and complete the proof.

V π2|M2 − V π1|M1 = (V π2|M2 − V π2

M2
)− (V π1|M1 − V π1

M1
) + (V π2

M2
− V π1

M1
)

≥ −2Rmaxγ

(1− γ)2
ϵπ2

M2
+

2Rmaxγ

(1− γ)2
ϵπ1

M1
− 2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
)

=
2Rmaxγ

(1− γ)2
(ϵπ1

M1
− ϵπ2

M2
− ϵM2

M1
)− 2Rmaxϵπ

(1− γ)2

(32)

Theorem 4 (Unified Model Shift and Model Bias Bound). Let κ denote the constant 2Rmax

(1−γ)2 and
∆ denotes E(s,a)∼d

π1
M1

[DTV (pM2
||pM∗)] − E(s,a)∼d

π2
M2

[DTV (pM2
||pM∗)]. Let Mi ∈ M be the

evaluated model and πi ∈ Π be the policy derived from the model. The unified model shift and model
bias bound can be derived as,

V π2|M2 − V π1|M1

≥ κ(γ(E(s,a)∼d
π1
M1

[DTV (pM1 ||pM∗)−DTV (pM1 ||pM2)−DTV (pM2 ||pM∗)] + ∆)− ϵπ)
(33)
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Proof: Based on Eq.(29), we add a new term κE(s,a)∼d
π1
M1

[DTV (pM2 ||pM∗)] to reformulate the
optimization objective.

Theorem 5 (|∆| Upper Bound). Let Mi ∈ M be the evaluated model and πi ∈ Π be the policy
derived from the model. The term ∆ can be upper bounded as:

|∆| ≤ 2γ

1− γ
E(s,a)∼d

π1
M1

[DTV (pM1
||pM2

)max
s,a

DTV (pM2
||pM∗)] +

2ϵπ
1− γ

max
s,a

DTV (pM2
||pM∗)

(34)

Proof: First, we combine these two terms.

|∆| = |E(s,a)∼d
π1
M1

[DTV (pM2 ||pM∗)]− E(s,a)∼d
π2
M2

[DTV (pM2 ||pM∗)]|

= (1− γ)|
∞∑
t=0

γt
∑
s,a

(pπ1

t,M1
(s, a)− pπ2

t,M2
(s, a))DTV (pM2(s

′|s, a)||pM∗(s′|s, a))|

≤ (1− γ)max
s,a

DTV (pM2
(s′|s, a)||pM∗(s′|s, a))

∞∑
t=0

γt
∑
s,a

|pπ1

t,M1
(s, a)− pπ2

t,M2
(s, a)|

= 2(1− γ)max
s,a

DTV (pM2
||pM∗)

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(35)

Recalling that we get the result of the sum equation above in Eq.(25), and then we have:

|∆| ≤ 2(1− γ)max
s,a

DTV (pM2
||pM∗)(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
)

=
2γ

1− γ
Es,a∼d

π1
M1

[DTV (pM1
||pM2

)max
s,a

DTV (pM2
||pM∗)] +

2ϵπ
1− γ

max
s,a

DTV (pM2
||pM∗)

(36)

D Experimental Details

D.1 Environment Setup

We evaluate the algorithm over a series of MuJoCo [44] continuous control benchmark tasks. To
ensure fairness, we use the standard 1000-step version of all the environments. The details of the
environment setup are from OpenAI Gym [3], as shown in Table 1.

Table 1: The general outline of the MuJoCo environment.

Environment-Version State Dim Action Dim Termination
Ant-v2 27 8 obs[0]<0.2 or obs[0] > 1.0

HalfCheetah-v2 17 6 -
Hopper-v2 11 3 obs[1] ≥ 0.2 or obs[0] ≤ 0.7

Humanoid-v2 45 17 obs[0] < 1.0 or obs[0] > 2.0
InvertedPendulum-v2 4 1 obs[1] > 0.2 or obs[1] < -0.2

Walker2d-v2 17 6 obs[0] ≥ 2.0 or obs[0] ≤ 0.8 or
obs[1] ≥ 1.0 or obs[1] ≤ -1.0

D.2 Baseline implementation

MFRL Baselines. We use two state-of-the-art model-free algorithms, i.e. SAC [14] and PPO
[38], to do baseline comparison. To demonstrate the final performance and sampling efficiency
of our method, we train SAC for 3M steps, which is much more than MBRL algorithms. The
hyperparameters are consistent with the author’s settings.
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MBRL Baselines. We use several state-of-the-art model-based algorithms to do baseline com-
parison, covering CMLO [20], MBPO [19], SLBO [29] and STEVE [4]. The implementation of
CMLO is based on the opensource repo published by the author and all of the hyperparameters are
set according to the paper [20]. Our algorithm USB-PO is implemented based on the opensource
repo published by Janner who is the author of MBPO.

We present the final performance on six continuous benchmark tasks in Table 2. The results demon-
strate that our algorithm achieves competitive performance compared to both MBRL and MFRL
baselines over these tasks. Each result in the table shows the average and standard deviation on the
maximum average returns among different random seeds and we choose 250K for HalfCheetah-v2,
300K for Walker2d-v2, 300K for Humanoid-v2, 250K for Ant-v2, 15K for Inverted-Pendulum-v2,
120K for Hopper-v2.

Table 2: The final performance on six continuous benchmark tasks.

HalfCheetah Humanoid Walker2d

MBRL

STEVE 12406.29±458.08 4318.32±853.60 1109.23±1163.74
SLBO 1915.47±1398.73 459.46±34.27 3107.93±1887.09
MBPO 12765.67±594.54 5546.77±221.72 4582.06±67.44
CMLO 10143.55±193.82 5577.01±219.89 4807.60±99.89

USB-PO 15105.91±177.75 5973.75±110.99 5691.62±162.57
MFRL(@3M steps) SAC 15012 6207 5879

Ant InvertedPendulum Hopper

MBRL

STEVE 779.72±45.67 778.54±265.51 1131.61±623.52
SLBO 707.79±218.80 793.24±334.90 898.68±233.21
MBPO 4926.10±818.38 1000.00±0.00 3436.00±120.72
CMLO 5123.71±783.97 1000.00±0.00 3495.41±71.02

USB-PO 6340.84±119.06 1000.00±0.00 3694.22±46.19
MFRL(@3M steps) SAC 5934 1000 3610

D.3 Hyperparameters

Our algorithm USB-PO is based on MBPO [19] and is implemented according to the opensource repo
published by the MBPO author. Except for the learning rate in phase 2 of our USB-PO algorithm,
the hyperparameters are completely identical to the MBPO settings for all environments. In all
benchmark tasks, we set this learning rate to 1e-4.

D.4 Computing Infrastructure

In Table 3, we list our computing infrastructure and the computational time for training USB-PO
on these six continuous benchmark tasks. Note that the time we report is the cost for 4 random
seeds simultaneously on one graphics card. For Humanoid, only two random seeds can be run
simultaneously because of the limitation of graphics memory.

Table 3: Computing infrastructure and the computational time for each benchmark task compared to
MBPO, where the time unit d denotes day and h denotes hour.

HalfCheetah Humanoid Walker2d Ant InvertedPendulum Hopper
CPU AMD EPYC 7B12 64-Core Processor
GPU NVIDIA 2080Ti

MBPO times 2.46d 1.64d 1.75d 2.88d 3.43h 17.81h
USB-PO times 2.29d 1.51d 1.65d 2.91d 3.42h 18.28h

E Comparison with Prior Works

In this section, we compare USB-PO with prior theoretical works to emphasize our contribution, as a
complementary to the main paper. First, we give a summary and then show the details as follows.
MBPO-Style does not consider model shift and CMLO-Style rely on a fixed threshold to constrain

18



model shift. Our algorithm, USB-PO, adaptively adjusts the model updates in a unified manner (unify
model shift and model bias) to get the performance improvement guarantee.

MBPO-Style [19, 39, 23, 50]. They use the return discrepancy bound V π|M ≥ V π
M −C(ϵm, ϵπ) to

improve the lower bound on the performance under the real environment, i.e. as long as improving
V π
M by more than C(ϵm, ϵπ) can guarantee improvement on V π|M . Obviously, This scheme is

guaranteed under a fixed model and it does not consider the change in model dynamic during updates
nor the performance variation concerning model shift. Even worse, if the model has some excessive
updates, it is impractical to find a feasible solution to meet the improvement guarantee.

CMLO-Style [20]. They use the performance difference bound under the model-based setting
V π2|M2 − V π1|M1 ≥ C to directly consider model shift and model bias. However, they finally derive
a constrained lower-bound optimization problem and use a fixed threshold to constrain model shift,
i.e. sups∈S,a∈A DTV (PM1(·|s, a)||PM2(·|s, a)) ≤ σM1,M2 and determine when to update the model
accordingly. Notably, we find that this fixed threshold plays a key role in the whole algorithm and
needs to be carefully adjusted for each environment. If this threshold is set too low, the model bias
of the following iteration will be large, which impairs the subsequent optimization process. If this
threshold is set too high, the performance improvement can no longer be guaranteed. Additionally,
using a fixed threshold during the whole training process makes the algorithm problematic to adjust
adaptively.

USB-PO (Ours). Following CMLO-Style [20], we also use the performance difference bound
under the model-based setting to directly consider model shift and model bias. Compared to relying
on a fixed threshold to constrain model shift, we use a transformation to unify model shift and model
bias into one formulation without the constraint (Theorem 4). Due to the intractable property of ∆,
we further explore the upper bound of |∆|, finding that ∆ can be ignored with respect to model shift
and model bias alone (Theorem 5). Finally, the optimization objective we get can be used to fine-tune
M2 in a unified manner to adaptively adjust the model updates to get a performance improvement
guarantee. Notably, our algorithm can use the same learning rate of Phase 2 and our algorithm is
robust to this learning rate. To the best of our knowledge, this is the first method that unifies model
shift and model bias and adaptively fine-tunes the model updates during the training process.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

difference of model bias difference of model shift difference of optimization objective value

Figure 9: We choose a specific random seed to show the details of the first 30 training times on all
benchmark tasks, covering the difference of optimization objective value, the model shift term and
the model bias term before and after the fine-tuning process.

19



F Additional Experiment

F.1 Working Mechanism Extension

To illustrate that the ability of USB-PO to reduce both model shift and model bias potentially is
not a coincidence that exists only in the Walker2d environment, we add experimental results in
other MuJoCo [44] environments. As shown in Figure 9, when the fine-tuning actually operates, the
difference of the model shift term and the model bias term among all of the benchmark tasks are
generally both positive, further validating our superiority.

F.2 Ablation Study Extension

Here, we show the results of the ablation study on all of the MuJoCo benchmark tasks.

As shown in Figure 10, only optimizing the model shift term results in a drop in sample efficiency
while only optimizing the model bias term leads to performance deterioration. Only fine-tuning the
model updates in a unified manner can achieve excellent performance.

HalfCheetah-v2 Walker2d-v2 Humanoid-v2

Ant-v2 InvertedPendulum-v2 Hopper-v2

with none with model shift with model bias with both

Figure 10: Optimization Objective Variants on all MuJoCo benchmark tasks.
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